
ARTICLE IN PRESS
1386-9477/$ - se

doi:10.1016/j.ph

�Correspondi

Antofagasta, C

21.

E-mail addre
Physica E 25 (2005) 384–389

www.elsevier.com/locate/physe
Electronic transmission through a quantum wire by
side-attached nanowires

P.A. Orellanaa,�, M.L. Ladrón de Guevaraa, F. Domı́nguez-Adameb
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Abstract

A system of arrays of nanowires side-coupled to a quantum wire is studied. Transport through the quantum wire is

investigated by using a noninteracting Anderson tunneling Hamiltonian. An analytical expression of the conductance at

zero temperature is given, showing a band with alternating forbidden and allowed minibands due to the discrete

structure of the nanowires. A generalization of the odd–even parity symmetry is found in this system, whose

conductance exhibits a forbidden miniband in the center of the band for an odd number of sites in the nanowires, while

shows an allowed band for an even number.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Advances in nano-manufacturing have made
feasible to growth nanometer sized systems, such
as arrays of quantum dots [1–3], molecular wires
[4] and quantum wires (QW) [5]. Quantum effects
in these nanowires (NWs) are potentially useful in
e front matter r 2004 Elsevier B.V. All rights reserve
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nanotechnology, since coupling to the continuum
states shows an even–odd parity effect in the
conductance when the Fermi energy is localized at
the center of the energy band [6–9].

In this context, we have recently considered new
quantum devices based on a NW [10] or a
nanoring [11] side-coupled to a QW. The NW
and the nanoring act as scatterers for electron
transmission through the QW. These arrange-
ments allow to tune the QW transport through the
attached structure. The conductance at zero
temperature through the QW shows a complex
d.
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behavior as a function of the Fermi energy: far
from the center of the band the conductance
depends smoothly on the Fermi energy, while
around the center it develops an oscillating band
with resonances and antiresonances due to quan-
tum interference in the ballistic channel.

In this work, we report further progress along
the lines indicated above. In particular, we study
theoretically the transport properties of a set of
side-coupled NWs attached to a perfect QW. This
configuration resembles a quantum wave guide
with serial side-stub structures, similar to those
reported in Refs. [12–14]. We find an analytic
expression for the conductance at zero tempera-
ture, which shows a band with alternating
forbidden and allowed minibands. In addition, a
generalization of the even–odd parity effect to the
case of the Fermi energy lying at the center of the
band is demonstrated.
2. Model

The system under consideration is shown in
Fig. 1. The QW contains a number N of side-
attached NWs with M sites of one energy level.
The system, assumed in equilibrium, is modeled by
a noninteracting Anderson tunneling Hamiltonian
[3] that can be written as H ¼ HQW þ HNW þ

HQW�NW; where

HQW ¼ v
X

i

ðc
y

i ciþ1 þ c
y

iþ1ciÞ ð1aÞ
0

0

Fig. 1. N side-coupled NWs with M sites attached to a perfect

QW.
describes the dynamics of the QW, v being the
hopping between neighbor sites of the QW, and c

y

i

(ci) creates (annihilates) an electron in the ith site.

HNW ¼ e0
XN

j¼1

XM

l¼1

d
y

j;ldj;l

þ V c

XN

j¼1

XM�1

l¼1

ðd
y

j;ldj;lþ1 þ h.c.Þ ð1bÞ

is the Hamiltonian for the N side-attached NWs,
where dj;l (dy

j;l) is the annihilation (creation) operator
of an electron in the quantum dot l of the jth NW, e0
is the corresponding single level energy, and V c the
tunneling coupling between sites in the NWs, assumed
all equal. The coupling of the QW with the side-
attached NWs is described by the Hamiltonian

HQW�NW ¼ V 0

XN

j¼1

ðd
y

j;1cj þ c
y

j dj;1Þ; ð1cÞ

where V0 is the hopping between the QW and the
NWs.

The Hamiltonian for the QW, HQW; corre-
sponds to the free-particle Hamiltonian on a
lattice with spacing d and whose eigenfunctions
are expressed as Bloch solutions

jki ¼
X1

j¼�1

eikdjj ji; ð2Þ

where jki is the momentum eigenstate and jji is a
Wannier state localized at site j. The dispersion
relation associated with these Bloch states reads

e ¼ 2v cosðkdÞ : ð3Þ

Consequently, the Hamiltonian supports an en-
ergy band from �2v to þ2v and the first Brillouin
zone expands the interval ½�p=d;p=d�: The sta-
tionary states of the entire Hamiltonian H can be
written as

jcki ¼
X1

j¼�1

ak
j j ji þ

XN

j¼1

XM

l¼1

bk
j;lj j; li; ð4Þ

where the coefficient ak
j (bk

j;l) is the probability
amplitude to find the electron in the site j of the
QW (l of the jth NW) in the state k, that is,

ak
j ¼ h jjcki; bk

j;l ¼ h j; ljcki: ð5Þ
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The amplitudes ak
j and bk

j;l obey the following
linear difference equations:

ak
j ¼ vðak

jþ1 þ ak
j�1Þ; jp0 and j4N; ð6aÞ

eak
j ¼ vðak

jþ1 þ ak
j�1Þ þ V0bk

j;1;

j ¼ 1; . . . ;N ; ð6bÞ

ðe� e0Þb
k
j;1 ¼ V cb

k
j;2 þ V0ak

j ; j ¼ 1; . . . ;N; ð6cÞ

ðe� e0Þb
k
j;l ¼ V cðb

k
j;lþ1 þ bk

j;l�1Þ;

j ¼ 1; . . . ;N ; l ¼ 2; . . . ;M � 1; ð6dÞ

ðe� e0Þb
k
j;M ¼ V c bk

j;M�1; j ¼ 1; . . . ;N: ð6eÞ

Iterating backwards the equation for bk
j;M we

can express the amplitudes bk
j;1 ( j ¼ 1; . . . ;N) in

terms of ak
j as a continued fraction

bk
j;1 ¼

V0ak
j

e� e0 �
V2

c

e� e0� . .
.

e� e0 �
V 2

c

e� e0

: ð7Þ

Therefore the equation for ak
j can be cast in the

form

eak
j ¼ vðak

jþ1 þ ak
j�1Þ þ V2

0=QMak
j ;

j ¼ 1; . . . ;N ; ð8Þ

with QM the continued fraction

QM ¼ e� e0 �
V 2

c

e� e0� . .
.

e� e0 �
V2

c

e� e0

: ð9Þ

The above expression can be written in a more
compact form as [15]

QM ¼ V c sin½ðM þ 1Þy�= sin My; ð10Þ

where e� e0 ¼ 2V c cos y:
Let us define the renormalized energy ~e 
V2

0=QM : This contains all the information about
each of the side-attached NWs. Thus, the problem
reduces to one of a linear NW of N sites of
effective energies ~e: In order to study the solutions
of (6a) and (8), we assume that the electrons are
described by a plane wave incident from the far left
with unity amplitude and a reflection amplitude r,
and at the far right by a transmission amplitude t.
That is,

ak
j ¼ eikdj þ re�ikdj ; jo1; ð11aÞ

ak
j ¼ teikdj ; j4N: ð11bÞ

Inserting (11) into (6a) and (8), we get a
inhomogeneous system of linear equations for t,
r and ak

j ( j ¼ 1; . . . ;N), leading to the following
expression:

t ¼ ð2i=DÞ sin k; ð12aÞ

with D given by

D ¼ eikN ðe�ikDN þ 2DN�1 þ eikDN�2Þ; ð12bÞ

where DN is the N � N determinant

DN ¼

x 1 0 . . . 0

1 x 1 . . . 0

. .
. . .

. . .
.

0 . . . 1 x 1

0 . . . 0 1 x

������������

������������

; ð12cÞ

with x ¼ ðe� ~eÞ=v: DN can be written explicitly as

DN ¼

sin½ðN þ 1Þq�

sin q
; jðe� ~eÞ=2vjp1;

sinh½ðN þ 1Þk�
sinh k

; otherwise:

8>><
>>:

ð12dÞ

For the sake of simplicity, we have defined cos q ¼

ðe� ~eÞ=2v and cosh k ¼ jðe� ~eÞ=2vj:
The transmission probability is given by T ¼

jtj2; and is related to the linear conductance G at
the Fermi energy e by the one-channel Landauer
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formula at zero temperature [16],

GðeÞ ¼
2e2

h
TðeÞ: ð13Þ
3. Results

Let us introduce the dimensionless conductance
g ¼ G=ð2e2=hÞ: If jðe� ~eÞ=2vjp1; gðeÞ reduces to

g

¼
1

cos2ðNqÞ þ ½sinðNqÞð1 þ cos q cos kÞ=ðsin q sin kÞ�2
;

ð14aÞ

that is, g oscillates as a function of N and q. On the
contrary, when je� ~ej42v we get

g

¼
1

cosh2
ðNkÞ þ ½sinhðNkÞð1 þ cosh k cos kÞ=ðsinh k sin kÞ�2

:

ð14bÞ

Thus, g vanishes exponentially when N is large, as
a function of the product Nk; g � e�2Nk:
1.0

0.5

0.0

g

1.0

0.5

0.0
-3 -2 -1 0 1 2 3

g

ε/Γ

(a)
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Fig. 2. Dimensionless conductance versus Fermi energy, in units of G
N ¼ 7 when e0 ¼ 0:
The conductance is found to exhibit forbidden
minibands (minigaps) that depend on the number
of sites of the attached NWs. To illustrate this
behavior, let us consider first the simplest cases
with M ¼ 1 and M ¼ 2; that is, one and two sites
in the side-attached arrays, respectively. Fig. 2
shows the conductance versus e for M ¼ 1 and
different values of the number of arrays N. For N

sufficiently large, g vanishes within a range
�½G;G�; with G ¼ V 2

0=2v; and the system shows a
minigap of width 2G: Fig. 3 displays the con-
ductance for M ¼ 2: Now the minigaps take place
around the bonding (e� ¼ �V c) and the antibond-
ing (eþ ¼ V c) energies of the attached NWs.
Moreover, an allowed miniband develops around
the center of the band.

For larger M and fixed N, the system develops a
set of alternating forbidden and allowed mini-
bands in the range ½�V c;V c�: Fig. 4 shows the
behavior of the conductance for different values of
M. The number of forbidden minibands matches
exactly the number of sites in the attached NWs,
M, and the number of the allowed bands equals
M � 1: Furthermore, the minigaps open around
the energies in the spectrum of the isolated NW. In
-3 -2 -1 0 1 2 3

ε/Γ

(b)

(d)

¼ V2
0=2v; for M ¼ 1 and (a) N ¼ 2; (b) N ¼ 3; (c) N ¼ 5 and (d)
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Fig. 3. Dimensionless conductance versus Fermi energy, in units of G; for M ¼ 2; (a) N ¼ 1; (b) N ¼ 3; (c) N ¼ 5; and (d) N ¼ 7 NWs,

with V c ¼ G and e0 ¼ 0:
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Fig. 4. Dimensionless conductance versus Fermi energy, in

units of G; for N ¼ 5 NWs, (a) M ¼ 5 and (b) M ¼ 6; sites in

the NWs, with V c ¼ G and e0 ¼ 0:
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fact, from Eq. (14b) we can conclude that the
conductance vanishes when k ! 1; i.e., jðe�
~eÞ=2vj ! 1: From Eq. (10), this condition is
satisfied if y ¼ mp=M with m ¼ 1; . . . ;M and the
respective energies are e ¼ e0 þ 2V c cos½mp=ðM þ

1Þ�: These energies correspond to the spectrum of
an isolated NW. On the other hand, it follows
from Eq. (14a) that, within each allowed mini-
band, the condition of maximum transmission is
reached when sinðNqÞ ¼ 0; i.e, q ¼ np=N with n ¼

1 . . .N: Then, each allowed miniband of the
conductance has N maxima. Additionally, an
interesting property arises in relation to the single
attached NW, namely the odd–even parity effect
[10]. If the number M is odd, a forbidden band
develops around center of the band while an
allowed one arise for M even.

As we mentioned in the introduction, the
configuration studied in this work resembles the
serial side-stub structures, similar to those pre-
viously studied in Refs. [12–14]. In fact, such
continuous systems can also be described by our
discrete model by taking V0 ¼ V c ¼ v and con-
sidering the conductance around the center of the
band. Fig. 5 displays the conductance for a large
number of attached NWs for a fixed number of
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Fig. 5. Dimensionless conductance versus Fermi energy, in

units of v, near the center of the bands for N ¼ 5 NWs, (a)

M ¼ 100 and (b) M ¼ 101 sites in the NWs, with V c ¼ V0 ¼ v

and e0 ¼ 0:

P.A. Orellana et al. / Physica E 25 (2005) 384–389 389
attached NWs N ¼ 5 (M ¼ 100 and 101). Re-
markably these results are similar to those
obtained using continuous models. Thus, our
model Hamiltonian retains the main features of
the serial side-stub structures.
4. Summary

In this work, we studied the conductance at zero
temperature through a QW with a set of arrays of
side-attached NWs. We found that this displays an
oscillating pattern with forbidden and allowed
minibands, due to constructive and destructive
interference in the ballistic channel, respectively.
For uniform NW arrays of M sites, M minigaps
and M � 1 allowed minibands arise. The minigaps
develop around the electronic level of an isolate
NW. It should be stressed that the particular setup
we suggested allows us to control the energy and
the width of the minibands in an independent
fashion. Moreover, the system shows an odd–even
parity behavior of the conductance when the
Fermi energy lies at the center of the band. If the
number of sites in the NWs is even, an allowed
miniband is developed. On the contrary, a minigap
is formed when this number is odd. This property
arises from the intrinsic electronic properties of the
NWs.
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