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Unusual behaviour of the conductance in Gaussian superlattices
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Abstract

We study the conductance at finite temperature of pass-band GaAs-Al,Ga;_As superlattices with Gaussian modulated Al
mole fraction. Such structures present bands of almost unscattered electronic states and high peak-to-valley ratio in the j—
V' characteristic. We found a critical point, indicating the onset for the transition from the conducting to the nonconducting
regime, by tuning the chemical potential in the vicinity of the band of unscattered states. Remarkably, the conductance of
the Gaussian superlattice remains finite around the critical point even at zero temperature.
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1. Introduction

During the last two decades the progress of
heterostructure growth technology has made pos-
sible the birth of low-dimensional physics, giv-
ing us unforeseeable discoveries and opening a
new generation of electronics and optoelectronics
devices. These devices, based on the concept of
bandgap engineering, have modified people’s every-
day life. Among the devices that can be obtained
with a semiconductor superlattice (SL), a desirable
one would be a high-performance band-pass fil-
ter capable of transmitting electrons lying within a
given energy band. A band-pass filter based on a
GaAs-Al,Ga;_,As SL was first proposed by Tung and
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Lee [1], but was never fabricated because the current
state of the art of molecular beam epitaxy does not
allow to grow it with a low number of defects.

Recently, Gomez et al. [2-4] proposed and grew
a new electron band-pass filter design, also based on
GaAs-Al,Ga;_,As heterostructures and referred to as
Gaussian SL (GSL). The improved design allowed to
be built with a limited number of defects and keeping
much better performance than uniform SL. The inter-
est of GSL is twofold. First, the transmission prob-
ability 7 is almost equal to unity for energies within
the allowed bands, in contrast to the oscillatory be-
haviour of 7 as a function of energy in uniform SLs.
Second, the transition from the gaps to the allowed
bands is extremely sharp, thus leading to j—V charac-
teristic presenting peak-to-valley ratios much greater
than uniform SL.

The aim of this article is to study electron trans-
port properties of the GSL in the vicinity of the
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transition from the nonconducting regime to the con-
ducting regime. Our main goal is to report the exis-
tence of a saturation stage in this conducting—non-
conducting transition. To this end, first we compare
the transmission probability for both the GSL and the
uniform SL. Next, we analyze the DC-conductance
of the GSL as a function of the chemical potential for
several temperatures to find the transition en-
ergy. Then, we describe the dependence of the
DC-conductance on the temperature for values of
the chemical potential located above and below the
transition energy. We show that a saturation regime
appears and survives even at zero temperature. Fi-
nally, we develop a model for a better understanding
of the origin of the saturation regime.

2. Transmission through Gaussian superlattices

The GSL is a quantum well based GaAs-Al,Ga;_,
As SL, where only the barrier heights are modulated
by a proper choice of the Al mole fraction x, according
to the modulating function ¥ exp[ — (z}')*/a*], where
zp is the coordinate along the growth direction of the
nth barrier midpoint and ; is the maximum height of
the potential barrier entering the heterostructure. The
origin of coordinates is set at the centre of the GSL.
In particular, we have considered a GSL with 15 bar-
riers and /5 =350 meV, corresponding to the samples
used in Ref. [2]. The width of the barriers is 1.5 nm,
the width of the wells is 6.2 nm, and the parameter
o is 28.875 nm. For comparison we also considered
an uniform SL with the same widths for barriers and
wells, respectively, 1.5 and 6.2 nm. Fig. 1 depictes the
conduction-band edge profiles of the uniform SL and
GSL. For the uniform SL the Al fraction, x, is con-
stant and the barrier height is /) =350 meV for all the
15 barriers. This uniform SL will help us to compare
the features of the GSL to those found in conventional
uniform SLs.

For our present purposes, it is enough to focus on
electron states close to the GaAs gap and use the
one-band effective mass framework to find the enve-
lope functions. We calculate the transmission proba-
bility 7 for the GSL and for the uniform SL with the
parameters detailed above by means of the standard
transfer-matrix method (see Ref. [2] for details). In
Fig. 2 the calculated transmission probability is plot-
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Fig. 1. Schematic diagram of the conduction-band edge profiles
of (a) uniform and (b) Gaussian SLs.

1.0

LS

= 0.5
0.0 0.3 0.4
E (eV)

1.0
~0.5- ’
0.0

Fig. 2. Transmission probability 7 as a function of energy E for (a)
Gaussian and (b) uniform SLs with the same number of barriers
and layers widths. Dashed lines indicated the energy of the highest
barriers. Notice that 7 is almost constant and equal to unity for
the GSL while the usual oscillatory behaviour is observed in the
uniform SL.

ted as a function of the incident energy E for (a) the
GSL and (b) the uniform SL. Notice the occurrence
of two bands below the highest barrier (dashed lines
at 0.35 eV). As we discussed before the value of
for the GSL is almost constant and equal to unity for
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energies within these two bands in contrast to the stan-
dard oscillating behaviour for the uniform SL.

3. Conductance

Once we have computed the transmission coeffi-
cient, the finite-temperature four-probe DC conduc-
tance G can be obtained in the Landauer—Biittiker for-
malism [5] through the following expression, earlier
discussed in detail by Engquist and Anderson [6]

2¢2  [(—0f/0E)U(E)dE
“h [(=0fJOE)[1 — (E)]dE’

where integrations extend over the allowed bands,
f(u, p) is the Fermi—Dirac distribution, p denotes
the chemical potential of the sample and f = 1/kgT,
where kg is the Boltzman constant. From the above
formula the zero temperature limit can also be ob-
tained straightforwardly, giving the well-known Lan-
dauer formula [7] which describes four probe DC con-
ductance measurements at zero temperature

28 o(p)

We now proceed to compute the DC conductance
for the GSL. In the upper panel of Fig. 3 we plot-
ted G as a function of the chemical potential u for
several values of the temperature. Notice the cross-
ing zone that allows us to define a critical energy
E.=207.3 meV, in the transition from the gap to the
allowed band. In the lower panel of Fig. 3 we show
the dependence of G on temperature for values of the
chemical potential above and below the critical en-
ergy E.. For energies far from the critical point the be-
haviour of G is explained by the scaling theory. In the
gaps we deal with spatially localized states, therefore
we expect G to vanish when temperature approaches
zero. On the other hand, for energies within the al-
lowed bands the states spread over the whole sample
(extended) and G should approach infinity with tem-
perature going down to zero. However, for energies in
the vicinity of the critical energy the situation is com-
pletely different. The conductance G exhibits a plateau
for low enough temperature below and above the criti-
cal energy. When the chemical potential lies far apart
from the critical point the size of the plateau reduces

G(T,p) =

(1)
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Fig. 3. Upper panel; Conductance of the GSL as a function of the
chemical potential u for several values of the temperature between
T'=240 and 30 K. The circle marks the crossing point that allows
us to define a critical energy Ec = 207.3 meV. The lower panel
shows the conductance G as a function of temperature for values
of 1 above and below E¢ (between u=209 and 198 meV). Notice
the plateaus in the vicinity of E..

until it disappears. The transmission coefficient in the
vicinity of the critical energy [see Fig. 2(a)] is a very
sharp monotonic function but is not a step function.
Therefore, the value of G could not be neither zero
or infinity even at zero temperature, as is straightfor-
wardly deduced from Eq. (2). The presence of clean
plateaus on GSL is remarkable and we will trace back
to this point later. It can be guessed that they ap-
pear due to the unusual flat profile of 7 in the con-
ducting regime and the fact that t grows sharply and
monotonically in the vicinity of E., as we will show
later.

We compute now the DC conductance for the uni-
form SL. In the upper panel of Fig. 4 we have plotted
G as a function of the chemical potential u for sev-
eral values of the temperature. The lower panel of
Fig. 4 displays the conductance as a function of tem-
perature for several values of u. Notice that, though
some plateus are still observed, they seem to dis-
appear for some values of the chemical potential
even near the critical energy. Thus, it seems that
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Fig. 4. Conductance G of the uniform SL as a function of the
chemical potential p (upper panel) for several values of the tem-
perature (between 7'=240 and 30 K) and as a function of temper-
ature (lower panel) for several values of u (between u =217 and
175 meV). Notice the completely different behaviour as compared
to Fig. 3 and the absence of plateaus.

conductance plateaus are not so cleanly observed in
uniform SLs as in GSLs.

4. A simple model

Aiming to understand the origin of the plateaus, we
propose a toy model to elucidate the main features
of the unusual behaviour of G for the GSL. The de-
pendence of T with the chemical potential observed in
Fig. 2 looks like a step function but with a region of
finite width W between the two regimes, namely non-
conducting (7 = 0 in the gap) and conducting (7 =1
in the allowed band). We now study the behaviour of
G for an ideal system with an “ad hoc” step function
transmission probability. Needless to say that this ide-
alized system should behave like the GSL as far as
the “ad hoc” 1 keeps the main features similar to the
computed values of t for the GSL.

In the inset of Fig. 5 we have plotted the ad hoc
transmission coefficient 7 that mimics the behaviour of
the GSL. The single parameter /' measures the width
of the region of the transition between the conducting
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Fig. 5. Conductance G as a function of the chemical potential
for several values of the temperature (7' between 30 and 240 K
from top to bottom of the upper panel) and as a function of
temperature for several values of u (1 between 92 and 110 meV
from bottom to top of the lower panel). The inset shows the ad
hoc t function used to compute G.

and nonconducting regimes. For simplicity we set a
linear dependence between the two regimes but any
smooth function would provide similar results. We
take the values £. =100.0 meV and W =1 meV. The
upper panel of Fig. 5 shows the DC conductance G as
a function of the chemical potential for several values
of temperature, calculated from (1) for the “ad hoc”
transmission coefficient 7. The lower panel displays
the DC conductance G as a function of the temperature
for several values of the u above and below E.. Both
results are very similar qualitatively and quantitatively
to those showed in Fig. 3.

The dependence of the plateaus with the value of
W is shown in Fig. 6, where we plotted the conduc-
tance G as a function of temperature for several val-
ues of the width . The value of the chemical poten-
tial is u = 0.10005 meV. It can be demonstrated that
the conductance for f~! < for a given value of the
chemical potential yu is given by

G =2 W

)2
T + O(T?). 3)
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Fig. 6. Conductance G as function of temperature for several
values of the width W of the ad hoc 7, shown in the inset of Fig.
5. The value of u in (¢) is u=0.10005 meV and we checked that
the results are not modified for any value of p in the vicinity of
the transition. The case W = 0 corresponds to the step function.
Notice that the smaller the width W the smaller the size of the
plateaus.

Furthermore, we will find a plateau below temper-
atures satisfying the following condition f~! ~ W.
The qualitative behaviour of the results does not de-
pend on u in the vicinity of the transition. The case
W = 0 corresponds to the step function. Notice that
the smaller the width W the smaller the size of the
plateaus, approaching an ideal M—I transition for the
case of the step-function with W = 0. It should be
mentioned that it is not easy to change the value of
W in a real GSL, but we have enlarged the scope
of our results showing that the plateaus exhibited by
the GSL will appear for any system with a 7 close
to a step function. We would like to stress again that
the particular behaviour of 7 between the conducting

and non-conducting regimes is not important pro-
vided we keep the smooth shape and monotonic in-
crease of the transmission coefficient, as occurs in the
GSL.

5. Conclusions

To conclude, we have reported the unusual be-
haviour of the conductance G for a GSL, showing the
existence of a saturation regime in the conducting—
nonconducting transition at any temperature. We also
mimic the system by using an “ad hoc” transmis-
sion coefficient, similar to a step function but with
a finite width of the transition region. This naive
model allows us to better understand the nature of the
conducting—nonconducting transition.
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