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all partial waves and parities.
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According to their behavior under Lorentz transformations, the
interaction potentials for the Dirac equation are either vector,
scalar or pseudoscalar. Here the term vector means the time com-
ponent of a Lorentz vector, while a scalar potential is equivalent to
a dependence of the mass upon position. Relativistic wave equa-
tions with vector and scalar linearly rising potentials have been
widely used to investigate the confinement of particles in nuclear
and hadron physics. When the linear potential is vectorlike, there
exist no bound states and only tunneling solutions arise [1,2].
Therefore, vector linear potentials cannot confine particles, being
another fine example of the Klein tunneling [3]. On the contrary,
scalar linear potentials can bind relativistic particles and give rise
to confinement since the mass of the particle increases without
bound when the separation from the center gets larger [2,4,5].
Similar conclusions can be drawn for vector and scalar quadratic
potentials [6].

In spite of the fact that vector linear and quadratic poten-
tials cannot bind particles, it is possible to extend the quantum
harmonic oscillator to the relativistic domain [6]. In this context,
Moshinsky and Szczepaniak introduced a new type of interaction
in an attempt to describe a relativistic oscillator by means of a
Dirac equation linear in both momenta and coordinates [7]. The
authors gave the name of Dirac oscillator to this model, whose
nonrelativistic limit leads to a standard harmonic oscillator equa-
tion with spin–orbit term. The complete energy spectrum and the
electromagnetic potential associated to the Dirac oscillator were
found by Benítez et al. [8]. The spectrum presents degeneracies
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which are explained by a symmetry Lie algebra [9]. Regardless
the intensity of the coupling, this interaction leaves the vacuum
unchanged and the Klein tunneling is avoided [8,10]. Therefore,
in contrast to the vector linear potential, the resulting states are
truly bound and the Dirac oscillator is a good candidate to ex-
plain the observed confinement of quarks [11]. This interaction has
also been considered in the two-body Dirac equation, presenting
interesting features which are not shared with the one-body os-
cillator [12]. Recently, a photonic realization of the Dirac oscillator
based on light propagation in engineered fiber Bragg gratings has
been discussed by Longhi [13]. Therefore, the interest of the Dirac
oscillator is rather general and well beyond high energy physics.

The aim of this Letter is to study the spectroscopy of the
Dirac oscillator in a (3 + 1)-dimensional space perturbed by a sur-
face delta potential, solving the associated Lippmann–Schwinger
equation. Therefore, we present a generalization of the results
obtained in Ref. [14], in the sense that we do not restrict our-
selves to (1 + 1)-dimensional space. In addition, in Ref. [14] the
perturbation was described by a nonlocal separable potential.
The δ-function limit of a nonlocal potential in the Dirac equa-
tion is mathematically well defined [15] and the corresponding
Lippmann–Schwinger equation is valid even in this limit. However,
as discussed in Ref. [16], there exist some ambiguities in defining
the surface delta potential (local) that require a careful analysis of
the Lippmann–Schwinger equation, as we show below.

We arrive at the Dirac oscillator equation by the non-minimal
substitution p → p − imωβr, where m is the mass of the particle,
ω is the oscillator frequency and β is the usual Dirac matrix de-
fined below. From the above considerations, the Dirac Hamiltonian
may be written in the standard notation as (in units with h̄ = 1
and c = 1)
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Fig. 1. Energy levels of a Dirac oscillator perturbed by a surface delta potential as a function of the coupling constant λ for ω = m. Left and right panels correspond to κ = −1
and κ = 1, respectively. Solid (dashed) lines correspond to the results for R = 0.3/m (R = 1/m). The solutions of the unperturbed Dirac oscillator are marked with red points.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

Fig. 2. Shift of the energy levels as a function of the radius R for ω = m, κ = −1
and λ = π/4. The levels of the unperturbed Dirac oscillator are plotted with dashed
gray lines. The wave functions corresponding to the four red points are shown in
Fig. 3. The wave functions at points marked a − d are shown in Fig. 3 below. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this Letter.)

H= α · (p − imωβr) + βm + V R(r) ≡H0 + V R(r). (1)

We choose the representation

α =
(

0 σ
σ 0

)
, β =

(
I2 0
0 −I2

)
,

where σ = (σx, σy, σz) contains the Pauli matrices and I2 is the
2 × 2 unity matrix.

We are interested in the energy spectrum of the Dirac oscil-
lator, whose Hamiltonian is given by H0 in (1), perturbed by a
potential V R(r) approaching the δ-shell limit with radius R . How-
ever, as mentioned above, the resulting equation is ambiguous if
one takes the limit V R(r) → λδ(r − R) from the outset. The origin
of the ambiguity is the following. Since the Dirac equation is lin-
ear in momentum, the wavefunction itself must be discontinuous
at r = R to account for the singular term V R(r) → λδ(r − R). How-
ever, the product of a discontinuous function and the δ-function
is mathematically ill defined. This ambiguity can be avoided by
solving the corresponding Dirac equation for any arbitrary sharply
peaked at r = R function, R being the radius of the shell, and then
take the δ-function limit with the constraint

R+	R∫
R−	R

V R(r)dr = λ, 	R → 0, (2)

where λ is the dimensionless coupling constant.
For the moment, we only assume that the potential V R(r) is

spherically symmetric. The eigenfunctions of definite parity and to-
tal angular momentum ( J 2, J z) are written in the form

Ψ (r) = 1

r

(
i f (r)

g(r)σ · r/r

)
Φl

jm j
, (3)

where Φl
jm j

are the normalized two-components eigenfunctions of

J 2, J z , L2 and S2 [17]. Using (1) and (3), the Dirac equation leads
to

d

dr
φ(r) = [

σzγ (r) − σxm + iσy
(

E − V R(r)
)]

φ(r), (4)

where the upper and lower components of the radial spinor φ(r)
are f (r) and g(r), respectively. Here κ = ∓( j + 1/2) for l = j ± 1/2
and we have defined γ (r) = κ/r +mωr for brevity. Eq. (4) is solved
by a Newmann solution as follows [18]

φ(r) = P̂ exp

{ r∫
r0

dr′ [σzγ
(
r′) − σxm + iσy

(
E − V R

(
r′))]}φ(r0),

where P̂ is the ordering operator. Setting r = R + 	R and r0 =
R − 	R , taking the limit 	R → 0 and using the constraint (2) we
finally obtain the following boundary condition

φ(R + 	R) = exp(−iλσy)φ(R − 	R), (5)

which becomes independent of how the δ-function limit is taken
and thus we avoid any ambiguity defining the relativistic surface δ

potential.
Once the correct boundary condition at the singularity has been

obtained, we proceed to find the energy spectrum of the perturbed
Dirac oscillator. To this end, we write the Lippmann–Schwinger so-
lution of the radial Dirac equation (4)

φ(r) = −
R+	R∫

R−	R

G(
r, r′; E

)
V R

(
r′)φ(

r′)dr′, (6)

where the Green function for the unperturbed problem is a 2 × 2
matrix satisfying the inhomogeneous differential equation[
−iσy

∂

∂r
+ σxγ (r) + σzm − E

]
G(

r, r′; E
) = I2δ

(
r − r′). (7)

The Green function exhibits a jump discontinuity at the line r = r′ .
The value of the jump can be obtained by integration of (7) in the
vicinity of this line. The result is

G(r + 	R, r; E) − G(r − 	R, r; E) = iσy . (8)

The product V R(r)φ(r) in the integral (6) is not well defined if
one takes the limit V R(r) → λδ(r − R), as we already discussed.
Thus, we consider the same limiting procedure discussed previ-
ously and solve (6) for any arbitrary sharply peaked at r = R
function and then take the δ-function limit. Using the radial Dirac
equation (4) one finds that the integral equation (6) leads to (see
Ref. [19] for details)
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Fig. 3. Plots of |φ(r)|2 as a function of the dimensionless radial coordinate z = r · m for the four different values of the delta-shell radius R indicated in Fig. 2 by red circles,
when ω = m, κ = −1 and λ = π/4. The corresponding unperturbed eigenstate is plotted using gray solid regions.

φ(r) = iG(r, R; E)σy
[
φ(R + 	R) − φ(R − 	R)

]
. (9)

Hence we have obtained a closed expression for the perturbed
eigenfunctions. The energy levels can be obtained by setting r =
R + 	R in (9) and using the boundary condition (5)

det
[
I2 − iG(R + 	R, R; E)σy

(
eiσyλ − I2

)] = 0. (10)

Therefore, the energy spectrum of the perturbed Dirac oscillator
can be obtained provided the Green function for the unperturbed
problem is known. The Green function of the Dirac oscillator can
be cast in the form

G(
r, r′; E

) =
(

G++(r, r′; E) G+−(r, r′; E)

G−+(r, r′; E) G−−(r, r′; E)

)
and it was calculated in Ref. [20]. For the sake of brevity we only
quote here the final expressions of the diagonal terms

G±± = E ± m

mω

Γ (ν± − μ± + 1
2 )

Γ (2ν± + 1)
√

rr′

× Mμ±,ν±
(
mωr2

<

)
Wμ±,ν±

(
mωr2

>

)
, (11a)

where Mμ,ν and Wμ,ν are the Whittaker functions, r< = min(r, r′)
and r> = max(r, r′). The parameters μ± and ν± are defined as

μ± = 1

4

(
E2 − m2

mω
− 2κ ± 1

)
, ν± = 1

2

∣∣∣∣κ ± 1

2

∣∣∣∣. (11b)

The off-diagonal terms are calculated from the following expres-
sions

G±∓ = 1

E ∓ m

[
∓ ∂

∂r
+ κ

r
+ mωr

]
G∓∓. (11c)

Real solutions of (10) with the Green function given by (11)
yield the energy levels of the perturbed Dirac oscillator. Due to the
boundary condition (5), the energy levels of the perturbed Dirac
oscillator satisfy the property E(m, κ, R, λ) = E(m, κ, R, λ + �π),
� being an integer. Since the energy levels are π -periodic func-
tions of the coupling constant, we can restrict ourselves to the
range −π/2 < λ � π/2 hereafter. Fig. 1 shows these levels as a
function of the coupling constant for the case ω = m. The energy
levels of the perturbed Dirac oscillator are shifted upwards on in-
creasing the coupling constant from −π/2 to π/2. Notice that the

levels of the perturbed Dirac oscillator cross those of the unper-
turbed oscillator only when λ = nπ , n being an integer. According
to Eq. (5), in this case φ(R + 	R) = (−1)nφ(R − 	R) and the sur-
face δ potential is actually transparent.

In the limit λ → 0, the eigenvalues of the unperturbed system
are recovered [21]. They correspond to the poles of G , namely the
set of values E0(m, κ) for which (E0 ± m)Γ (ν± − μ± + 1/2) → ∞

E2
0(m, κ) − m2 = 4mω

[
n + θ(κ)(2κ + 1)

]
, E0 	= −m, (12)

where θ is the Heaviside step function and n is a nonnegative in-
teger.

Due to the confining properties of the Dirac oscillator, the spa-
tial extent of the eigenstates increases with the absolute value of
the energy, |E|. If this spatial extent is much smaller than the ra-
dius of the surface δ potential, the net effect of the perturbation
on the eigenfunction is small, and therefore the energy does not
change noticeably. This trend is clearly observed in Fig. 2, where
the energy levels are plotted as a function of the radius R for
ω = m, κ = −1 and λ = π/4. When the dimensionless coupling
constant is large, the energy levels display anticrossings, as seen in
the figure. Moreover, each energy level approaches the same level
of the unperturbed Dirac oscillator in the two limiting situations,
mR 
 1 and mR � 1.

Finally, the change of the probability density |φ(r)|2 due to the
surface δ potential is shown in Fig. 3. The set of parameters cho-
sen correspond to the four red circles in Fig. 2, i.e., all of them
are taken from the same original unperturbed eigenstate. As R is
increased, the eigenstate transits between two loosely perturbed
states — upper left and lower right panels. In between, states with
probability density strongly peaked around r = R are found.

In summary, we have calculated the shift of the energy lev-
els of the Dirac oscillator perturbed by a surface δ potential using
a Green function technique. The method is valid for any sharply
peaked potential approaching the δ-function and consequently it
is free of the ambiguities appearing in defining relativistic δ-
interactions [16]. Remarkably, the energy spectrum is a π -periodic
function of the coupling constant λ, a situation not found in the
(1 + 1)-dimensional Dirac oscillator perturbed by a nonlocal δ po-
tential [14].



Author's personal copy

3478 J. Munárriz et al. / Physics Letters A 376 (2012) 3475–3478

Acknowledgements

Work in Madrid was supported by MICINN (project MAT2010-
17180). R.P.A. Lima would like to thank CAPES via project PPCP-
Mercosul, CNPq, and FINEP (Brazilian Research Agencies) as well as
FAPEAL (Alagoas State Research Agency) for partial financial sup-
port.

References

[1] M.L. Glasser, N. Shawagfeh, J. Math. Phys. 25 (1984) 2533.
[2] F. Domínguez-Adame, M.A. González, Europhys. Lett. 13 (1990) 193.
[3] H. Galic, Am. J. Phys. 56 (1988) 312.
[4] C.L. Critchfield, J. Math. Phys. 17 (1976) 261.
[5] B. Ram, J. Phys. A: Math. Gen. 20 (1987) 5023.
[6] F.M. Toyama, Y. Nogami, Phys. Rev. A 59 (1999) 1056.

[7] M. Moshinsky, A. Szczepaniak, J. Phys. A: Math. Gen. 22 (1989) L817.
[8] J. Benítez, R.P. Martínez y Romero, H.N. Núñez-Yepes, A.L. Salas-Brito, Phys. Rev.

Lett. 64 (1990) 1643.
[9] C. Quesne, M. Moshinsky, J. Phys. A: Math. Gen. 23 (1990) 2262.

[10] F. Domínguez-Adame, Phys. Lett. A 162 (1992) 18.
[11] M. Moreno, A. Zentella, J. Phys. A: Math. Gen. 22 (1989) L821.
[12] F. Domínguez-Adame, B. Méndez, Can. J. Phys. 69 (1991) 780.
[13] S. Longhi, Opt. Lett. 35 (2010) 1302.
[14] F. Domínguez-Adame, Europhys. Lett. 15 (1991) 569.
[15] M.G. Calkin, D. Kiang, Y. Nogami, Phys. Rev. C 38 (1988) 1076.
[16] F. Domínguez-Adame, J. Phys. A: Math. Gen. 23 (1990) 1993.
[17] D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics, McGraw–Hill, New York,

1964, p. 53.
[18] B.H.J. McKellar, G.J. Stephenson, Phys. Rev. A 36 (1987) 2566.
[19] B. Méndez, F. Domínguez-Adame, J. Phys. A: Math. Gen. 25 (1992) 2065.
[20] A.D. Alhaidari, Int. J. Theor. Phys. 43 (2004) 939.
[21] R. Szmytkowski, M. Gruchowski, J. Phys. A: Math. Gen. 34 (2001) 4991.


