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Abstract

We present a model for a class of random binary lattices by introducing a one-dimensional system where impurities are
placed in one sublattice while host atoms lie on the other sublattice. The source of disorder is the stochastic fluctuation of the
impurity energy from site to site. We study the optical absorption spectra and the peculiarities of the motional narrowing
effect at the band edges for perturbative and nonperturbative degrees of disorder. Analytical results agree well with
numerical simulations. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 71.35.Aa; 36.20.Kd; 73.20.Jc

1. Introduction

Several years ago, Knapp raised the concept of
motional or exchange narrowing in one-dimensional
Ž . w x1D disordered systems 1 and fruitfully explained
many optical phenomena in low-dimensional disor-
dered systems like J aggregates and conjugated poly-

Ž w xmers for a review, see Refs. 2,3 and references
.therein . Roughly speaking, this author demonstrated

that the disorder seen by the quasi-particles of the
excited system is reduced as compared to the seeding
degree of disorder, namely the width of the probabil-
ity distribution of the on-site energy, as soon as the
states of the individual molecules are collectivized
due to the intermolecular interactions. The suppres-
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sion factor depends on whether or not the disorder is
small enough to be regarded as a perturbation. In the
perturbative case, this factor is determined by the
square root of the number of sites in the entire
system, while in the nonperturbative case this num-
ber should be substituted by the so-called number of
coherently bound molecules, due to the occurrence
of the Anderson localization whenever the on-site
energy is an uncorrelated random variable.

Numerically simulated absorption spectrum of
polysilane with an uncorrelated Gaussian distribution
of nearest-neighbor couplings are similar to those for

w xan uncorrelated diagonal disorder 4 . In contrast,
simulations of off-diagonal disorder given by Gauss-

w xian randomness in the molecular positions 5 found
that the behavior of the optical observables does not

w xfit the standard motional narrowing effect 1 . Re-
cently, this discrepancy has been uncovered by

w xMalyshev and Domınguez-Adame 6 , pointing out´

0375-9601r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
Ž .PII: S0375-9601 00 00469-2



( )F. Domınguez-AdamerPhysics Letters A 273 2000 141–145´142

the appearance of correlations in the intersite cou-
plings even if the fluctuations of the molecular posi-
tions are uncorrelated. Furthermore, it is nowadays

w xwell established both theoretically 7,8 and experi-
w xmentally 9 that extended states may arise in 1D

random systems when disorder is correlated, in con-
trast to the earlier believe that all eigenstates should

w xbe localized 10 . The motional narrowing effect and
the competition between the localization length and
the correlation length have been considered very

w xrecently by Rodrıguez et al. 11 .´
In this work, we report further progress along the

lines in the preceding paragraphs. In particular, we
focus our attention on a new 1D tight-binding model
of correlated disordered system supporting extended

w xstates 12,13 . We built up our model by considering
a 1D random binary lattice with two species, referred
to as A and B atoms hereafter. We further assume
that the site energy of A atoms is randomly dis-
tributed from site to site while that of B atoms is the
same over the other sublattice. We have demon-
strated analytically the occurrence of extended states
in the vicinity of the site energy of B atoms in spite
of the fact that the system is purely 1D and random
w x13 . Here we study the peculiarities of the motional
narrowing effect and their manifestation through the
optical properties of this system.

2. Model

Let us consider a tight-binding Hamiltonian with
nearest-neighbor interactions

< : ² < < : ² < < : ² <HHs e n n yJ n nq1 yJ nq1 n ,Ý n
n

1Ž .

< :where the state vector n represents an excitation at
Ž .site n. In the present 1D binary system, A B atoms

Ž .are placed at odd even positions of the otherwise
regular lattice, whose corresponding site energies are

Ž .e e with ns1,2, . . . N, N being the num-2 ny1 2 n

ber of unit cells of the system. According to our
model, site energies at even positions are the same
and we can set e s0 without loss of generality.2 n

The source of disorder arise from the stochastic
fluctuations of site energy at odd positions. We

� 4Nassume that e is a set of uncorrelated2 ny1 ns1

random Gaussian variables with mean value Õ and
variance s 2. Hereafter s will be referred to as
degree of disorder. The joint distribution function is
represented by the direct product of single Gauss-
ians. Thus

² :e sÕ ,av2 ny1

² : 2 2
X Xe e s Õ qs d , 2Ž . Ž .av2 ny1 2 n y1 nn

² :where the angular brackets . . . indicate the aver-av

age over the ensemble. Although the system is one-
dimensional and random, it has been demonstrated
analytically the existence of a delocalized state in

w xinfinite systems at Es0 13 . Most important, there
'Ž .exist many ; N states close to the resonant

energy that remain extended in finite systems, in the
sense that their localization length is larger than the
system size.

3. Perturbative motional narrowing effect

We now calculate the motional narrowing effect
in the perturbative limit by considering small degree
of disorder s . To this end, we start by writing down
the eigenstates and eigenenergies of the unperturbed

Ž .Hamiltonian ss0 , corresponding to a diatomic
lattice with on-site energies 0 and Õ in each unit cell.
We assume rigid boundary conditions and Õ)0.
The last restriction is only for the sake of clarity in
the exposition of results, as they are trivially general-
ized to the case Õ-0. There are two allowed bands,

2 2(the first one ranging from Õr2y Õr2 q4 JŽ .
up to 0 and the second one ranging from Õ up to

2 2(Õr2q Õr2 q4 J for Õ)0. The normalizedŽ .
eigenstates of the unperturbed Hamiltonian can be
written as

< :K ,"

N4
" < :s a sin 2ny1 K 2ny1Ž .�( Ý K2 Nq1 ns1

" < :qb sin 2nK 2n , 3Ž . Ž .4K
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Ž .where K'kpr 2 Nq1 with ks1,2, . . . , N and

y1r2"EK"a s 1q ,K "E yÕK

y1r2"E yÕK"b s 1q . 4Ž .K "EK

Ž .Here the labels " refer to the upper q and the
Ž .lower y band, respectively. The dispersion rela-

tion within each band is given by

2Õ Õ
" 2 2E s " q4 J cos K . 5Ž .(K 2 4

The perturbative part of the Hamiltonian, HH , isp

diagonal in the site representation and comes from
the stochastic fluctuations of the on-site energy at
odd sites around the mean value Õ. Therefore HH sp

N Ž . < : ² <Ý e yÕ 2ny1 2ny1 . In the K-repre-ns1 2 ny1
Ž .sentation 3 , the matrix elements of HH are ex-p

pressed through linear combinations of Gaussian
variables e yÕ with zero mean2 ny1

² < < X X:K , ll HH K , llp

ll ll
X

NX4a aK K
s e yÕ sin 2ny1 KŽ . Ž .Ý 2 ny12 Nq1 ns1

=
Xsin 2ny1 K , 6Ž . Ž .

where ll and ll
X indicate the band. Consequently,

they also have a joint Gaussian distribution with zero
mean. In what follows, we will deal with the fluctua-
tions of the square of the matrix elements given in
Ž .6 since they determine the linear optical response
of the system.

Concerning optical transitions, since the states
Ž .with ks1 one per band carry almost the entire

oscillator strength of the system, in the perturbative
limit the optical absorption spectrum is dominated by

Ž .two Gaussian peaks located at the bottom top of
Ž .the lower upper band. It is easy to demonstrate that

the oscillator strength is proportional to a ".b ",K K
" " Ž .where a and b are given by 4 , so that theK K

lower energy transition becomes more intense.
Therefore, we restrict ourselves to this transition,
whose standard deviation is given by s sB with1 11

2 ²² < < X :2:XB ' K ,y HH K ,y . After performing theavk k p

Ž . Xsummations 6 one can obtain B . Close to thek k

zone center, which is responsible of the linear optical
response of the system, the calculation yields

2 2' XÕ q16 J yÕ 2qdk k X
XB s s , k ,k <N ,(k k 2 2' 2 Nq12 Õ q16 J

7Ž .

Ž . y y
Xwhere in 4 we have replaced E and E by theirK K

values at the zone center since K™0. Therefore, the
standard deviation of the main absorption line is
given by

2 2'Õ q16 J yÕ 3
s s s . 8Ž .(1 2 2' 2 Nq12 Õ q16 J

Ž .As it can be seen from 8 , the standard deviation of
the Gaussian peak scales as Ny1r2, showing the

w xso-called motional narrowing effect 1 . Notice that
the reduction factor carries information on the sys-
tem parameter ÕrJ.

4. Nonperturbative degree of disorder

The perturbative approach we have carried out in
the preceding section holds for small degree of disor-
der. On increasing the degree of disorder, mixing of
the states ks1 with the other states strongly affect
the system optical response. Hence, one should com-
pare the energy difference between the two lowest

< y y <states, dE ' E yE , with the typical fluctua-12 K K1 2

² < < :tion of K ,y HH K ,y represented by B ,1 p 2 12
Ž .where K 'mpr 2 Nq1 . The perturbative ap-m

proach is valid provided dE )B and fails other-12 12

wise. The energy difference can be readily deter-
Ž .mined from 5

12p 2 J 2 1
dE s , N41. 9Ž .12 22 2' 2 Nq1Ž .Õ q16 J

ŽFor higher values of the degree of disorder dE -12
.B the perturbative approach fails; not all sites12

contribute to the optical spectrum since the Anderson
localization length becomes smaller than the system
size. Thus, N should be replaced by N ) -N in the

w x )above equations 1 , where N is often referred to as
the number of coherently bound molecules. Maly-



( )F. Domınguez-AdamerPhysics Letters A 273 2000 141–145´144

Fig. 1. Absorption spectra for one-dimensional random binary
Ž . Ž .lattices with Js1, Ns125 250 sites and Õsy1 solid lines

Ž .and Õsq1 dashed lines . The narrow and broad peaks corre-
spond to s s0.1 and s s0.9, respectively. Notice the scale
factor in the later case. Each spectrum comprises the results of
10000 realizations of the disordered system.

shev proposed a self-consistent estimation of N ) by
applying the perturbative criterion mentioned above
to a typical localization segment of length N )

w x14,15 . This approach yields excellent results for
uncorrelated and pairwise correlated diagonal disor-

w x ) )der 16 . Thus, we use the condition B sdE ,12 12

where the asterisk means the substitution of N by
) Ž . Ž .N in 7 and 9 . In doing so we obtain

1r3
2 2'1 Õ q16 J yÕ

s s . 10Ž .
) 2 2' 'ž /2 N q1 12 2 p J

Ž . ) Ž .Finally, replacing in 8 N by N given by 10 we
get for the standard deviation of the peaks

s 4r3
)s sC , 11aŽ .1 1r3J

where
4r3

2( ÕrJ q16 yÕrJŽ .'3
Cs .1r3 22' (2 12 2 p ÕrJ q16Ž .Ž .

11bŽ .

This expression holds for Õ)0 as well as for Õ-0.
The power-like dependence s 4r3 also appears in

dealing with uncorrelated and pairwise correlated
Ždiagonal disorder but with different C see, e.g., Ref

w x.16 and can be obtained from a more rigorous
framework using the coherent potential approxima-

w xtion 17 .

5. Numerical simulations

To check the accuracy of the above analytical
approach, we have obtained numerically the absorp-

Ž . w xtion line shape, I E , according to Ref. 5 . We fix
the value Js1 and focus our attention on the degree
of disorder s , ranging from 0.1 up to 0.9. We have

Ž .diagonalized the Hamiltonian 1 for chains of Ns
Ž .125 250 sites with rigid boundary conditions. The

number of randomly generated systems is 10 000 for
each value of s . We show in Fig. 1 several exam-
ples of the optical absorption spectra for various
values of the parameters Õ and s ; only the lower
energy side of the spectra is shown. For small values
of s the position of the main line agrees very well

2 2(with the value Õr2y Õr2 q4 J obtained fromŽ .
Ž .5 . This main line broadens and becomes redshifted
on increasing the degree of disorder, as expected.

The value of s ) was obtained by nonlinear1

Gaussian fitting of the low energy side of the spectra

Fig. 2. Standard deviation s ) as a function of s 4r3 for different1

values of Õ, indicated at the right of each line, with Js1 and
Ž .Ns125 250 sites . Solid lines represent the least square fits and

each point comprises the results of 10000 realizations of the
disordered system.
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Table1
) 4r3 Ž .Slope of s – s plots obtained analytically from 12 and1

numerically for different values of the parameter Õ

Õr J Analytical Numerical

y2 0.42 0.57
y1 0.34 0.51

0 0.25 0.40
1 0.17 0.29
2 0.12 0.19

10 0.010 0.014

and the results are presented in Fig. 2. It is found
that this magnitude scales as s 4r3 for the various
values of Õ studied, as predicted by our estimates
Ž .11 . The slopes of the straight lines are slightly

Ž .larger than those obtained from 12 , as shown in
Table 1; nevertheless, the coincidence should be
admitted as being highly surprising in view of the
simple assumptions we made.

6. Conclusions

In this paper we have considered the motional
narrowing effect in a 1D random binary lattice where
disorder lies in one of the two sublattices. This
system could be regarded as a simple model of
semiconductor binary alloy – like ternary III-V com-

Ž .pounds. In these alloys say Al Ga As , the cationx 1yx
Ž .sublattice is occupied by the same atoms say As

Ž .while anions say Al and Ga are randomly dis-
tributed over the other sublattice. Starting from a
perturbative approach, we found that the width of the
absorption line scales as ;Ny1r2 for small degree
of disorder, showing the motional narrowing effect.
For larger degrees of disorder, we determined self-
consistently the spatial extend of the excitation wave
function, according to the prescription raised by

w xMalyshev 14,15 . The spatial extend of the excita-
tion wave function is smaller than the system size

and the width of the absorption line scales as ;s 4r3.
Our estimates agree well with numerically simulated
optical absorption spectra.
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