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The existence of bound states for the s-wave Klein—-Gordon equation for vector and scalar Hulthén-type potentials is shown,
provided that the potential “size” is large enough. The solution can be explicitly written down in terms of hypergeometric func-
tions. The effects of strong coupling on the bound states are discussed.

1. Intreduction

The nonrelativistic Schrodinger equation with the
Hulthén potential can be solved exactly for s-states
[1]. This naive potential explains quite well the elec-
tronic properties of F'-colour centers in alkali ha-
lides [2]. Moreover, the model of the three-dimen-
sional delta-function well could be considered as a
Hulthén potential with the radius of the force going
down to zero, within a nonrelativistic framework [3].
Nevertheless, relativistic effects for a particle under
the action of this potential could become important,
especially for strong coupling.

2. Bound state solutions

In order to introduce relativistic corrections in a
non-perturbative way, we shall solve the s-wave
Klein—-Gordon equation (Ai=c¢=1)

{@/dr?+ [E-V(r) ]P= [m+5(r) P}u(r) =0, (1)

where the particle wave function is w(r)=u(r)/r.
We consider vector and scalar Hulthén-type poten-
tials which are written as

Vo So

V(r)=_e”'"— S(?‘):——er"a—

T _t (2)

respectively, where a is the range of the potentials.
We should emphasize the Coulomb-like behavior of

the potentials near the origin, since it will be used
below.

Introducing the parameters = (m?*~E2)!/2 (real
for bound states), a=na, = (2EV,+2mS,)""*a and
r=35%—F3)'2a, and the new variable x=exp(—r/
a), eq. (1) can be rewritten as

, Q2ulx) du(x)
a2 7 dx
2 2.2
-(az-iﬁ_ix+ (1”_);)2) u(x)=0. (3)

Bound state solutions of this equation satisfy the
boundary conditions #(1)}=0 (#—0) and 4{0)=0
(r-»oc). The trial function

u(x)=x*(1-x)'*W(x), (4)
with §=8, =—1+ ({4 2?)1/? leads to the equation
x(1=x) dngxgx)
+[204+ 1= (20 +28+3)x] diix)
dx
—[(Ra+1){(1+8) - FIW(x)=0. (5)

Solutions of eq. (5) can be expressed in terms of
hypergeometric functions; taking into account the
boundary condition #(0)=0 we find
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Wi{x)=,F (a+d+1+p at+d+l—y2a+tl; x),
(6)

where
p=+ (@?4 F+p7)12
=a[(m+8,)*— (E=V;)?}'2.

Considering that y is real for bound states (see be-
low), the condition E+m>1,—S; should be ful-
filled; thus we avoid discussing the Klein paradox
(tunneling of the particle from positive to negative
energy stales; this effect depends only on the poten-
tial strength and is quite independent of the poten-
tial shape). We can observe from the last condition
that if the scalar potential is stronger than the vector
potential, the Klein paradox cannot occur,

Recalling eq. (1) and using the transformation
formulas for hypergeometric functions [4] we write
the wave function as

M2+ IM(-1=-28
IMNoa—-d+y)Ia—d—y)

XoF{a+d+1+p, at+d+1—y 2425, 1-Xx)

I'Ca+ 1)Y'(1+248)
Noa+d+ 1+ (a+d+1-7)

u(x)=x%(1—=x)'+¢

+x*(1—x)"*

X Fi{la—d+y, a—6—y, —26,1—x) . (7)

Note that the first term is obtained from the second
term replacing 5+ 1 by —3J; since 1+6, = ~9J; we
can choose a unique value of 4. Hence, we take
d=8,=—1+(14+4r*) hereafter. Near the origin
{x—1) the wave function behaves as

1+ I'(—1-28)
wry~r JF(a—J-i—y)F(a—&—y)
s r(1+26) ®)

Na+d+ 1+ M a+d+1—9)"

The square of the potential energy, which appears in
the Klein-Gordon equation, takes the form
const X *~2 as r—0. Therefore, 2(r) and 52(r) have
finite expectation values only if u(r) ~ r!~# with p< 4,
The second term of eq. (8) does not satisfy this con-
dition and it should wvanish, leading to
Mo+14+8=y)>0o. Thus we obtain the quantum
condition o +d—y= -1, =2, ... s0 allowed energy
values are given through the equation
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a=[pi—nT=(2n—-1)8]/2(n+4),
n=l,2, (9)

Combining everything, the (unnormalized) s-wave
function can be written as

—nr

V()= (1—e "/)!*

X F (1—n 2a+28+n+1; 2+ 156777, (10)

where the hypergeometric function degenerates into
a polynomial of degree #—1 in the variable exp{ —r/
a). In particular, the ground state wave function is
found to be

—nr

Vilry=— (1—e ra)\s, (11)
which behaves like the wave function of the delta-well
potential w(r) ~exp{ —#r)/r for large r values. The

ground state energy F, is given by
2a(m?—E})'?

_EVo+mS,

SI_V1 ([1+4(S5-Vda?]'?—1}-1.

(i2)

3. Discussion

After solving the Klein-Gordon equation (1) for
scalar plus vector Hulthén-type potentials, we should
make some remarks.

(a) For pure vector potentials ( Fy7#0, S,=0), a
bound state can exist irrespective of the sign of
(attractive or repulsive), as seen by inspection of eq.
(12}. When V(r) is weakly attractive (repulsive), a
bound state may exist with energy somewhat below
m {above—m).

(b) For pure attractive scalar potentials {¥,=0,
Sp>0), all bound states appear in pairs, with ener-
gies = E,. Since the Klein—-Gordon equation is in-
dependent of the sign of E for scalar potentials, the
wave functions become the same for both energy val-
ues. For pure repulsive scalar potentials ( V=0,
So<0) no bound states can occur at all.

(c) There exists a minimum potential “size” to
obtain a bound state, as we can see from eq. (12).
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The lefi- and the right-hand sides may be regarded
as a positive semicircle and a straight line versus the
bound state energy, respectively. A bound state does
exist if both curves cross one another. This leads to
a condition on the potential parameters for binding
a particle. For pure vector, pure scalar and equally
mixed potentials the condition can be easily found
to be l<m/| V| <i+2m3a®, (So/m)(a*m?=1)
>t and 2m|Vola®>}, respectively.

(d) In the case of equally mixed potentials
V{r)=58(r), eq. (1) reduces to a Schridinger-like
equation for the potential —2V,/[exp(r/a)-1].
Energy levels are easily computed from eq. (9) with
=0 and Vy=3%, In particular, we obtain
(m*—E;)'?*=aV,(E;+m)—1/2a for the ground
state energy (if any).

(e) If the vector potential is stronger than the sca-
lar potential, i.e. V> 8, the parameter § becomes a
complex number when (V2—S3)a?>1. Thus the
wave function w(r)=u(r)/r oscillates rapidly near
the origin (see eq. (8) ), without reaching any limit.
This behavior should be regarded as a particle falling
to the center {5]. Also, the expectation value of the
square of the potential energy becomes infinite. Note
that a particle falls even for finite values of the po-
tential parameters V,, S; and a. The difficulties aris-
ing in gquantum mechanics when the potential is
highly singular were considered earlier by Case [6].

(f) Unlike the previous case, if S,> V, the param-
eter & is always a real number, and therefore the par-
ticle does not collapse to the center for finite values
of the potential parameters. For very strong scalar
potentials (Sy— +o0), the bound state energy is given
by E.=(m/2a—1/4a%)'/?, whenever m>1/2a.
Therefore, the particle cannot fall to the center, no
matter how large S,. We think this is a nontrivial fea-
ture of relativistic quantum mechanics.

(g) For equally mixed potential (F,=.5,), the
particle energy tends to —m as the potential depth
becomes infinite. The particle is pushed down to the
negative energy continuum. The corresponding wave
function {11) cannot be normalised in the usual form
and hence there is no particle binding.

PHYSICS LETTERS A

3 April 1989

(h) Finally, we should remark that nonrelativistic
results [1] are found for weak coupling as the par-
ticle mass becomes very large. For strong coupling
we need a relativistic wave equation,

4. Conclusions

We may conclude that the Klein—Gordon equation
for vector and scalar Hulthén-type potentials can be
solved exactly for s-states, so we can include relativ-
istic mass—energy corrections in a non-perturbative
way. The obtained wave functions may be used as a
starting point to evaluate the spin-orbit interaction
or the Darwin energy by perturbative or variational
methods, Bound state can occur provided that the
potential parameters (depth and range) verify ade-
quate conditions. The effects of sirong potentials have
been discussed, within the limitations of a single-
particle relativistic wave equation.
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