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A relativistic interaction without Klein paradox
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We consider a new type of interaction in the Dirac equation, obtained replacing m—m+iy®' F(x, ) in the free-particle Hamil-
ionian. In contrast to electrostatic-like potentials, confining potentials of the form V(x,) =K|x,|", where K and » arc positive
parameters, can bind particles. This result is related to the absence of the Klein paradox.

It is well established that the Dirac equation for
electrostatic linear potentials presents no bound states
[1,2]. The same result is also found for arbitrary po-
tentials increasing with increasing the separation.
Galic [3] has identified this somewhat surprising re-
sult as another fine example of the Klein paradox [4].
The classic example used to illustrate the Klein par-
adox is the potential step [5,6]. When the potential
exceeds the value E+ m, the reflection coefficient ex-
ceeds unity. In view of the Dirac hole theory, the
strong electrostatic potential raises the energy of the
occupied negative energy levels so that particles tun-
nel through to positive energy levels in the free-field
region [7], leading to a reflection coefficient larger
than unity.

In a recent paper, Moshinsky and Szczepaniak {8]
have considered a new type of linear interaction in
the Dirac equation. The resulting equation can sup-
port bound states, In the nonrelativistic limit their
equation corresponds to a three-dimensional iso-
tropic harmonic oscillator with a strong spin-orbit
coupling, so the authors gave the name of Dirac os-
cillator to this system. A one-dimensional version of
the Dirac oscillator is obtained replacing

m-om+1iy%y mowx, (1)

in the free-particle Hamiltonian [9]. Here x, and w
stand for the spatial coordinate and the oscillator
frequency, respectively. The fact that Dirac particles
remain bound by this interaction suggests that the
Klein paradox is absent. One of the aims of this Let-

ter is to show that this assumption is actually valid.
On the other hand, we want to discuss the Dirac
equation with a new type of interaction, which will
be introduced by means of the substitution

mom+iyy' Vix,), (2)

where V(x,) is an arbitrary, time-independent po-
tential. In the special case F(x,)=max, (2) re-
duces to (1). Therefore the Dirac equation reads

[pur*—m—iy% 'V (x:) Jw=0. (3)
In order to solve {3) we use the ansatz
w=[puy*+m—iy"y' V{x)x, (4)
so0 that, after substituting (4) into (3), we obtain
(pup¥=m?—V2(x,) —ip,py% ' V(x:)

=iy P (x)puy*1x=0. (5)

Since p,=E, p; and p, are constants of motion, the
spinor solution y takes the form

x=x(x) exp[i{poxo—p2X; —P3x3) ], (6)
where y(x,) satisfies the equation
[=d*/dxf+ V" (x)y°+ V2 (x))
—2iy% " (P27 + 3 y* )V (1) 12 (X))
=(E*=m*-p? )x(x:) (7)

and we have introduced the notation p3 =p2+p3.
Here the prime denotes the derivative with respect
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to the argument. For the present problem we choosc
the representation

o (1 0 i {0 o"‘)
y‘(o —1)’ y_(—o“’ 0/ (8)

To obtain a Schrodinger-like equation we perform
the unitary transformation

(2)*()61))
¢ (x1)/’

where ¢ * are two-component spinors and

x{x)= {9)

1 .
N TRIES A
X [(p2—p)7*+p37°]. (10)
Thus we find
[—d2/dxT £V (x}+ V(%))
12p, V(x)a 19" (x1)
=(E2—m?—p3)¢*(x,) . (11)

Let ¢* be eigenvectors of ¢* corresponding to the
eigenvalue s* (1 or —1). Thus we finally write

U=

[- d/dxi Vix))+ Vz(XJ)
20, V(x)sF o™ (x))
=(E*-m*=pi)o-(x,). (12)

This is nothing but a Schrodinger-like equation for
the two-component spinors ¢*. The complete so-
lution of the Dirac equation (3) is found by means
of {4), (6) and (9) in a straightforward way, pro-
vided that ¢ * are known through eq. {12), Note that
(12) reduces to a nonrelativistic harmonic oscillator
equation in the case V(x,)=mwx,.

Let us consider a confining type potential of the
form V(x,)=K|x,|% where K and v are positive pa-
rameters. For large values of the spatial coordinate
X, the asymptotic form of (12) is simply written as

(—d*/dxi+K*x1)o* (x,)
=(E*—m?—pi)o*{(x1). (13)

Therefore, one clearly sees that an infinite set of
bound states occurs along the x, direction. Hence eq.
(3) can also be used to explain the observed con-
finement of quarks. The form of the interaction is
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nol manifestly covariant, although kinematics terms
are. Concerning the three-dimensional Dirac oscil-
lator, Benitez et al. [ 10] have recently demonstrated
that the interaction term can be writien 1n a covari-
ant form. Their arguments could be extended to in-
clude more general interactions of the form
iy%y-rf(|r|), fbeing an arbitrary function. The one-
dimensional version of this kind of interaction is
nothing but what appears 1n eq. (2). Therefore the
existence of bound states is frame independent, as
expected from a physical point of view. The fact that
the occurrence of bound siates does not depend on
the particular frame selected 1s also valid for two
Dirac particles interacting by means of potentials
similar to that given in (1), in the instant form ap-
proximation [11].

The occurrence of bound states is due to the fact
that the interaction we have introduced in (3) pre-
sents no Klein paradox, as we mentioned above, To
demonstrate this point, we now take a potential step
of the form V(x;)=V,8(x,), & being the Heaviside
step function and V;> 0. For particles moving along
the x; direction {p,=p;=0), a straightforward cal-
culation yields the following reflection coefficient,

(E2—m?) 2 (B2—m2= V) 124V,

R | —m) P (B —m V) P—iF,

(14)

It is an easy matter to check that R< 1 for all values
of I, ranging from 0 to oo. Therefore, particles can-
not tunnel from states below ¥, on the right side to
the left. Hence we can conclude that there is no Klein
paradox in this case. The absence of this tunneling
mechanism is clearly related to how the product ip®y!
works in the Dirac equation (3). The effects of the
term iy%y-r, corresponding to the three-dimensional
Dhrac oscillator, has been studied by Martinez et al.
[12]. These authors found that the supersymmetric
properties of the Dirac oscillator Hamiltonian are re-
lated 1o the stability of the Dirac sea. Although these
authors did not discuss the Klein paradox, such a
stability would explain the absence of tunneling for
the © barrier. From a more heuristic point of view,
Dominguez-Adame and Gonzilez [9] suggest that
the possible origin of the Dirac oscillator interaction
is related to scalar potentials rather than electrostatic
potentials, which are known not 1o present the Klein
paradox. The extension of these results to the one-
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dimensional interaction (2) is straightforward.

The author thanks Dr. Méndez for helpful
comments.
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