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Abstract

We study the transport properties of independent carriers through a quantum wire coupled to a quantum-dot array. The
electrical conductance at zero temperature can be expressed through a non-linear discrete dynamical system as the number c
guantum dots varies. The dynamical system shows a rich behavior, determining a non-trivial conductance dependence on the
Fermi energy. The conductance depends smoothly on the Fermi energy far from the site-energy of the quantum dots. At the
center of the band the conductance develops a complex pattern due to constructive and destructive interference in the ballistic
channel.
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1. Introduction parity effectin the conductance when the Fermi energy
is localized at the center of the energy band [5-8].
Recent progress in semiconductor manufacturing  In this context, we have recently considered a new
makes it feasible to tune the physical properties of quantum device based on a quantum wire (QW) cou-
guantum dots (QDs) in a controllable way [1]. While pled to a QD array [9], acting as scatterer for trans-
single QDs are referred to astificial atoms an array mission through the QW. This arrangement provides
of coupled QDs can be then considered asa#iii- a unique way to tuning the QW transport proper-
cial crystal [2—4]. Quantum effects in these artificial ties by virtue of the attached QD array. The conduc-
crystals are potentially useful in nanotechnology since tance at zero temperature through the QW shows a
coupling to the continuum states shows an even—odd complex behavior as a function of the Fermi energy.
This dependence can be accounted for by an equiva-
— . lent dynamical system, the results being strongly de-
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In this Letter we report further progress along the 1.0

lines indicated above and shed more light on the
complex behavior of the conductance of the QW when
the number of QDs in the attached array is large. To
this end, we carry out an extensive analytical study
of the equivalent dynamical system, and focus the
attention on the conditions for the existence or absence
of fixed points of the non-linear map. In addition, a

G(e)/(2¢°/h)
o
T

generalization of the even—odd parity effect to the case 0.0 I I 1 I T
of Fermi energy lying out of the center of the band is 83 2 -1 0 1 2 3
carried out. e/

Fig. 1. Conductance, in units 082/ , versus Fermi energy, in units
of I, for N =15 QD array withV,. = I" andeg = 0.

2. Model Hamiltonian and conductance

del th b ing ind q andF(s)—V2/2v|sinkd| The dispersion relation in
We model the system by assuming independent y,o o\ s — 2y coskd, d being the lattice spacing.

carriers. Thus, the system Hamiltonian can be written Notlce that ' ~ V02/2v close to the center of the

asH = How + Hqp-qw + Hgp, Where band. As an example, Fig. 1 shows the conductance
for N =15 whenV, = I" andgg = 0. We observe the

t t :
How=v Z(Ci Ci+1l + € 1Ci), occurrence ofV antiresonances and — 1 resonances
i in the conductance of the QW (see Ref. [9] for further
Hgp-qw = Vo(cho + cgdl) details).

Vo1 It is worth to mention that" can be regarded
as the width of the antiresonance whan= 1 and
oo = So;dl a+ Ve 121: @ dpa+dgd). @) Q1= ¢ — &0, as can bee seen from (2). On increasing
N, the conductance displayé antiresonances. Since
The operatorse;r and le create an electron at sites the entire energy range spanned by the antiresonances,
and!, respectively. Here and V, are the hoppings namely|e — eo|/I" < 2, is independent ofV (see
in the QW and in the array witlv QDs, respectively.  Fig. 1 and discussions in the next section), the average
The number of sites in the QW is taken to be infinity. width I'y of the antiresonance must scale gvlon
Finally, g is the energy level of each QD ag is the increasing the number of QDs in the array. By analogy
hopping between the QW and the QD array. with the single antiresonance case, we define an
In the limit of vanishing potential drop across the effect|vecoupl|ng Vett through the relationshigy =
QW, the conductancé is related to the transmission eff/2v Therefore, the effective coupling between the
coefficient at the Fermi energy by the one-channel QW and the QD array scales &g ~ Vo/+/N. This
Landauer formula at zero temperature. After some scaling results from the fact that the eigenfunction
algebra, the conductance can be cast in the form [9] amplitude in the QD array scales ag N at the
edges, i.e., at the site directly coupled to the QW.

2¢2 Q2
Gy = , 2
e @)
whereQy is the continued fraction 3. Equivalent dynamical system
VCZ When the number of attached QDs is large, a rich
Oy =¢—¢0— £ —g0— ’ @) phenomenology appears for different values of the
) Fermi energy. When the Fermi energy lies far from
£ —e0— Ve the center of the QW bande(— o > 2V,), the

€ — &0 conductance presents regular and smooth behavior.
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Fig. 2. Mapping of the non-linear map (4) showing the fixed points.

However, the conductance strongly fluctuates close to

the center of the QW band for minute variations of the
Fermi energy e — go| < 2V,). In order to shed light
onto this complex behavior, the continued fract@g

in Eq. (3) is written asDy = (¢ — gg)xy, Wherexy
satisfies the following non-linear map,

Xyvpi=fay) =1— —, N=1,23... (4
XN
with x; = 1 anda = V2/(s — 0)? for & # &o. Thus,
we are faced to a one-dimensional map (4) with
control parameted.
The equivalent non-linear map has two fixed points
at

1
X:T::E(]_:t\/l—40l), (5)
whena < 1/4, namely|e — go| > 2V,, as shown in
Fig. 2. The fixed pointc} (x*) is stable (unstable).
This result explains the smooth tails seen in Fig. 1
when|e — gol/T" > 2.

The non-linear map (4) undergoes a saddle-node

bifurcation ata = apif = 1/4, that is |¢ — go| =
2V., with a single fixed point at* = 1. There are
not fixed points whenx > apjs, hamely|e — go| <
2V. (see Fig. 2). Consequently, minute variations
of the Fermi energy result in a dramatic change in
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4. Periodic orbits

As stated in Ref. [9], when the Fermi energy
matches the energy of the QDs=£ ¢g) the conduc-
tance takes on two valueG,y = 0 (perfect reflection)
for N odd andG y = 2¢2/ h (perfect transmission) for
N even. From the viewpoint of the equivalent dynam-
ical system ¢ — oo) this symmetry corresponds to a
periodic orbit of period 2. Let us try to generalize this
result to get all the possible finite sets of values of the
conductance associated to periodic orbits of the sys-
tem.

Oy can be expressed in the form [9Py =
Dy/Dy_1 whereDy = deI(HéVD — ¢I). In this way,
the eigenenergies of the QD array are zeroe® gf
which are also zeroes @ y. The eigenenergies of a
QD array of sizeV are given by

Ern =60+ V.CO k
=g —,
kN = &0 ¢ N1

Let us study the behavior of the conductance (2) when
the Fermi energy matches one of the values given
in Eq. (6) other tharzg. It is clear thatQn (Ex.n) =

(e — e0)xy = 0. As ¢ # ¢q it follows that xy = 0.
Introducing this result in Eq. (4) we get

., N. (6)

xnvy1= f(n) = f(0) =00,

xnvy2= fQnt1) = f(o0) =1=1x1,

Q)

so we have found a periodic orbit of peridd + 1
for the map (4) that, in terms of the conductance (2),
yields

Gn(Ek,N)=0,
2¢2
Gyi1(Epn) = o
2¢>  (Ex,n — €0)?
G E = — :
N+2(Ek,N) I (Ern —c02+ 172
=G1(Ex N). (8)

This means that we have only + 1 different values
for the conductance when= Ej y. Thus transport
properties of the QW may be used to measure the
size of the attached QD array. As an example, Table 1
shows the values ofy, Oy and Gy for an orbit

the conductance of the QW, as it can be concluded of period 4 corresponding to the Fermi energy=

from Fig. 1.

E13=¢e04+ 2T (0 =1/2).
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Table 1
Periodic orbit of period 4
N xy=1-1/2xy_1 ON(E13)=+2Txy 22 GN(ELg) =24 /(2% +1)
1 1 V2r 2/3
2 1/2 ~2/2r 1/3
3 0 0 0
4 00 [ee) 1
0.5
6 4
0 P
3 4
A -0.5 1
R’é 0 <
-3 -1.51
-6
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6 3 0 3 6 0.1 0214 03 04 05
n o
Fig. 3. Quasiperiodic orbit fo& = 0.3. Fig. 4. Lyapunov exponent as a functioncof

5. Quasiperiodic orbitsand absence of chaos tance at zero temperature. When the Fermi energy lies

far from the level of the QD, the conductance depends
smoothly on both the energy and the number of QDs.
We have related this feature with the existence of fixed
points of the equivalent dynamical system. On the con-
trary, when the Fermi energy is close to the level of
the QD, the conductance develops resonances and an-
tiresonances due to constructive and destructive inter-
ference in the ballistic channel, respectively. In this
case there are not fixed points. The previously found
even—odd symmetry when the Fermi energy matches
the level of the QD has been extended to the rest of the
eigenenergies of the QD array for any si¥e based

on the notion of periodic orbits of the non-linear map.

Let us now study the behavior of the conductance
when the Fermi energy belongs to the QW band
(Je —eol < 2V,) butis not of the form given in Eq. (6).

In this case strong fluctuations of the conductance are
observed. Orbits of the non-linear map are not periodic
but quasiperiodic, as shown in Fig. 3 fo= 0.3.

Finally, we focus the attention on the possible
transition to chaotic behavior of the system. In order
to survey the existence of chaotic orbits, we calculate
the Lyapunov exponemt («) as a function ofx. As
shown in Fig. 4A(a) < O for o < apjf and A(e) =0
for o > apif thus ruling out chaotic orbits for any value
of a.
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