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Abstract

We study the transport properties of independent carriers through a quantum wire coupled to a quantum-dot a
electrical conductance at zero temperature can be expressed through a non-linear discrete dynamical system as the
quantum dots varies. The dynamical system shows a rich behavior, determining a non-trivial conductance dependen
Fermi energy. The conductance depends smoothly on the Fermi energy far from the site-energy of the quantum do
center of the band the conductance develops a complex pattern due to constructive and destructive interference in th
channel.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Recent progress in semiconductor manufactu
makes it feasible to tune the physical properties
quantum dots (QDs) in a controllable way [1]. Wh
single QDs are referred to asartificial atoms, an array
of coupled QDs can be then considered as anartifi-
cial crystal [2–4]. Quantum effects in these artifici
crystals are potentially useful in nanotechnology si
coupling to the continuum states shows an even–
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parity effect in the conductance when the Fermi ene
is localized at the center of the energy band [5–8].

In this context, we have recently considered a n
quantum device based on a quantum wire (QW) c
pled to a QD array [9], acting as scatterer for tra
mission through the QW. This arrangement provi
a unique way to tuning the QW transport prop
ties by virtue of the attached QD array. The cond
tance at zero temperature through the QW show
complex behavior as a function of the Fermi ener
This dependence can be accounted for by an equ
lent dynamical system, the results being strongly
pendent on the number of QDs in the attached
ray.
.
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In this Letter we report further progress along t
lines indicated above and shed more light on
complex behavior of the conductance of the QW wh
the number of QDs in the attached array is large.
this end, we carry out an extensive analytical stu
of the equivalent dynamical system, and focus
attention on the conditions for the existence or abse
of fixed points of the non-linear map. In addition,
generalization of the even–odd parity effect to the c
of Fermi energy lying out of the center of the band
carried out.

2. Model Hamiltonian and conductance

We model the system by assuming independ
carriers. Thus, the system Hamiltonian can be writ
asH = HQW + HQD-QW + HN

QD, where

HQW = v
∑

i

(c
†
i ci+1 + c

†
i+1ci),

HQD-QW = V0(d
†
1c0 + c

†
0d1),

(1)HN
QD = ε0

N∑
l=1

d
†
l dl + Vc

N−1∑
l=1

(d
†
l dl+1 + d

†
l+1dl).

The operatorsc†
i andd

†
l create an electron at sitesi

and l, respectively. Herev and Vc are the hoppings
in the QW and in the array withN QDs, respectively
The number of sites in the QW is taken to be infini
Finally, ε0 is the energy level of each QD andV0 is the
hopping between the QW and the QD array.

In the limit of vanishing potential drop across t
QW, the conductanceG is related to the transmissio
coefficient at the Fermi energy by the one-chan
Landauer formula at zero temperature. After so
algebra, the conductance can be cast in the form [

(2)GN = 2e2

h

Q2
N

Q2
N + Γ 2

,

whereQN is the continued fraction

(3)QN = ε − ε0 − V 2
c

ε − ε0 − . . .

ε − ε0 − V 2
c

ε − ε0

,

Fig. 1. Conductance, in units of 2e2/h, versus Fermi energy, in unit
of Γ , for N = 15 QD array withVc = Γ andε0 = 0.

andΓ (ε) ≡ V 2
0 /2v|sinkd|. The dispersion relation in

the QW isε = 2v coskd , d being the lattice spacing
Notice that Γ � V 2

0 /2v close to the center of th
band. As an example, Fig. 1 shows the conducta
for N = 15 whenVc = Γ andε0 = 0. We observe the
occurrence ofN antiresonances andN −1 resonance
in the conductance of the QW (see Ref. [9] for furth
details).

It is worth to mention thatΓ can be regarde
as the width of the antiresonance whenN = 1 and
Q1 = ε − ε0, as can bee seen from (2). On increas
N , the conductance displaysN antiresonances. Sinc
the entire energy range spanned by the antiresona
namely |ε − ε0|/Γ < 2, is independent ofN (see
Fig. 1 and discussions in the next section), the ave
width ΓN of the antiresonance must scale as 1/N on
increasing the number of QDs in the array. By analo
with the single antiresonance case, we define
effectivecouplingVeff through the relationshipΓN ≡
V 2

eff/2v. Therefore, the effective coupling between t
QW and the QD array scales asVeff ∼ V0/

√
N . This

scaling results from the fact that the eigenfunct
amplitude in the QD array scales as 1/

√
N at the

edges, i.e., at the site directly coupled to the QW.

3. Equivalent dynamical system

When the number of attached QDs is large, a r
phenomenology appears for different values of
Fermi energy. When the Fermi energy lies far fro
the center of the QW band (|ε − ε0| > 2Vc), the
conductance presents regular and smooth beha
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Fig. 2. Mapping of the non-linear map (4) showing the fixed poin

However, the conductance strongly fluctuates clos
the center of the QW band for minute variations of
Fermi energy (|ε − ε0| < 2Vc). In order to shed ligh
onto this complex behavior, the continued fractionQN

in Eq. (3) is written asQN = (ε − ε0)xN , wherexN

satisfies the following non-linear map,

(4)xN+1 = f (xN) = 1− α

xN

, N = 1,2,3, . . .

with x1 = 1 andα ≡ V 2
c /(ε − ε0)

2 for ε 
= ε0. Thus,
we are faced to a one-dimensional map (4) w
control parameterα.

The equivalent non-linear map has two fixed poi
at

(5)x∗± = 1

2
(1± √

1− 4α ),

when α < 1/4, namely|ε − ε0| > 2Vc, as shown in
Fig. 2. The fixed pointx∗+ (x∗−) is stable (unstable)
This result explains the smooth tails seen in Fig
when|ε − ε0|/Γ > 2.

The non-linear map (4) undergoes a saddle-n
bifurcation at α = αbif ≡ 1/4, that is |ε − ε0| =
2Vc, with a single fixed point atx∗ = 1. There are
not fixed points whenα > αbif , namely |ε − ε0| <

2Vc (see Fig. 2). Consequently, minute variatio
of the Fermi energy result in a dramatic change
the conductance of the QW, as it can be conclu
from Fig. 1.
4. Periodic orbits

As stated in Ref. [9], when the Fermi ener
matches the energy of the QDs (ε = ε0) the conduc-
tance takes on two values,GN = 0 (perfect reflection)
for N odd andGN = 2e2/h (perfect transmission) fo
N even. From the viewpoint of the equivalent dyna
ical system (α → ∞) this symmetry corresponds to
periodic orbit of period 2. Let us try to generalize th
result to get all the possible finite sets of values of
conductance associated to periodic orbits of the
tem.

QN can be expressed in the form [9]:QN =
DN/DN−1 whereDN = det(HN

QD − εI). In this way,
the eigenenergies of the QD array are zeroes ofQN ,
which are also zeroes ofGN . The eigenenergies of
QD array of sizeN are given by

(6)Ek,N = ε0 + Vc cos

(
πk

N + 1

)
, k = 1, . . . ,N.

Let us study the behavior of the conductance (2) w
the Fermi energyε matches one of the values give
in Eq. (6) other thanε0. It is clear thatQN(Ek,N ) =
(ε − ε0)xN = 0. As ε 
= ε0 it follows that xN = 0.
Introducing this result in Eq. (4) we get

xN+1 = f (xN) = f (0) = ∞,

(7)xN+2 = f (xN+1) = f (∞) = 1 = x1,

so we have found a periodic orbit of periodN + 1
for the map (4) that, in terms of the conductance
yields

GN(Ek,N) = 0,

GN+1(Ek,N ) = 2e2

h
,

GN+2(Ek,N ) = 2e2

h

(Ek,N − ε0)
2

(Ek,N − ε0)2 + Γ 2

(8)= G1(Ek,N).

This means that we have onlyN + 1 different values
for the conductance whenε = Ek,N . Thus transpor
properties of the QW may be used to measure
size of the attached QD array. As an example, Tab
shows the values ofxN , QN and GN for an orbit
of period 4 corresponding to the Fermi energyε =
E1,3 = ε0 + √

2Γ (α = 1/2).
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Table 1
Periodic orbit of period 4

N xN = 1− 1/2xN−1 QN (E1,3) = √
2Γ xN

h

2e2 GN(E1,3) = 2x2
N/(2x2

N + 1)

1 1
√

2Γ 2/3
2 1/2 (

√
2/2)Γ 1/3

3 0 0 0
4 ∞ ∞ 1
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Fig. 3. Quasiperiodic orbit forα = 0.3.

5. Quasiperiodic orbits and absence of chaos

Let us now study the behavior of the conductan
when the Fermi energyε belongs to the QW ban
(|ε − ε0| < 2Vc) but is not of the form given in Eq. (6)
In this case strong fluctuations of the conductance
observed. Orbits of the non-linear map are not perio
but quasiperiodic, as shown in Fig. 3 forα = 0.3.

Finally, we focus the attention on the possib
transition to chaotic behavior of the system. In or
to survey the existence of chaotic orbits, we calcu
the Lyapunov exponentΛ(α) as a function ofα. As
shown in Fig. 4Λ(α) < 0 for α < αbif andΛ(α) = 0
for α � αbif thus ruling out chaotic orbits for any valu
of α.

6. Summary

In summary, we have studied the transport pr
erties of independent carriers through a QW si
coupled to a QD array. Based on an equivalent
namical system, we have carried out an analysis of
previously reported complex behavior of the cond
Fig. 4. Lyapunov exponent as a function ofα.

tance at zero temperature. When the Fermi energy
far from the level of the QD, the conductance depe
smoothly on both the energy and the number of Q
We have related this feature with the existence of fi
points of the equivalent dynamical system. On the c
trary, when the Fermi energy is close to the level
the QD, the conductance develops resonances an
tiresonances due to constructive and destructive in
ference in the ballistic channel, respectively. In t
case there are not fixed points. The previously fo
even–odd symmetry when the Fermi energy matc
the level of the QD has been extended to the rest o
eigenenergies of the QD array for any sizeN , based
on the notion of periodic orbits of the non-linear ma
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