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Exciton states and optical absorption in quantum wires under laser radiation
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We analyze the exciton states in a quantum wire under intense laser radiation. Electrons and holes are
confined by the parabolic potential of the quantum wire. An exactly solvable model is introduced for
calculating the exciton binding energy, replacing the actual Coulomb interaction between the electron
and the hole by a projective operator.
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The nature of exciton states has a significant influence on the
optical properties of semiconducting nanostructures, like quan-
tum dots and quantum wires (QWs). Quantum confinement ef-
fects arise when the size of the nanostructure is of the order of
the exciton radius in the bulk semiconductor, leading to an en-
hancement of the exciton binding energy and an increase of the
oscillator strength. As a consequence, optical absorption lines in
semiconducting nanostructures are blue-shifted and carry informa-
tion about the confinement of carriers. Most important, changes
in the electronic and optical properties of nanostructures may be
properly controlled by an appropriate selection of the sample ge-
ometry and material parameters, opening new potential applica-
tions in optoelectronics. In order to understand their dependence
on material and geometry parameters, exciton states and bind-
ing energy have been calculated in a large number of different
semiconducting nanostructures. The effective-mass approximation
is usually taken as starting point to construct the Hamiltonian for
the interacting electron–hole pair. Nevertheless, since no analytical
solutions are available in many geometries of interest within this
framework, the electronic states and the binding energy are often
obtained by means of variational or numerical techniques [1–5].

Therefore, and in view of the lack of analytical solutions of the
exciton problem in QWs, in this work we consider an interacting
electron–hole pair within the effective-mass framework. Since the
operation of optoelectronic devices relies on the interaction of car-
riers with electromagnetic radiation, we also take into account the
effects of an intense laser field on the exciton states. We address
the study by introducing a solvable model in which the Coulomb
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potential between the electron and the hole is replaced by a non-
local separable potential (NLP) [6,7]. In the case of semiconducting
nanostructures in the absence of a laser field, the NLP method
yields an exactly solvable envelope-function equation from which
exciton states can be readily obtained with little computational ef-
fort [8,9]. Our aim in this Letter is to show that analytical solutions
can be obtained even if the QW is subjected to an intense laser
field. To this end we consider the laser effects on both Coulomb
potential (replaced by a NLP) and QW confinement potential [10].

We consider an electron–hole pair in a QW, oriented along the
Z axis, subjected to a laser field of frequency Ω , whose vector
potential is given by A(t) = A0̂ex cosΩt . Here êx is the unit vector
along the X axis. Following Refs. [10–12], in the high frequency
limit, the Hamiltonian of the interacting electron–hole pair is given
by

H =
∑

i=e,h

[
p2

i

2mi
+ V d

i (ri,α0)

]
+ V d

C (re − rh,α0), (1)

with α0 = α0̂ex , where α0 = (8π/Ωc)2
√

Ie/m, m being the
reduced effective mass and I the laser intensity. The dressed
parabolic confinement potential and Coulomb potential are defined
as follows

V d
i (ri,α0) = 1

4
miω

2[(ri − α0)
2 + (ri + α0)

2],
V d

C (re − rh,α0) = − e2

2ε

[
1

|re − rh − α0| + 1

|re − rh + α0|
]
. (2)

In the present problem it is convenient to separate the problem
into center of mass and relative coordinates, defined by r = re − rh
and R = (mere + mhrh)/M , where the total and reduced effectives
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masses are M = me + mh and m = memh/M , respectively. The total
Hamiltonian (1) can be expressed as H = HCM + Hr with

HCM = P 2

2M
+ 1

2
Mω2(X2 + Y 2 + α2

0

)
, (3a)

Hr = p2

2m
+ 1

2
mω2ρ2 − e2

2ε

[
1

|r + α0| + 1

|r − α0|
]
. (3b)

where ρ = (x, y), and P and p are the conjugate momenta of the
coordinates R and r. From Eq. (3b) it becomes apparent that the
relative dynamics is equivalent to a single particle in a two-center
Coulomb field. The separation between the two centers is 2α0, be-
ing proportional to

√
I .

Notice that the center-of-mass problem is exactly solvable since
HCM corresponds to a two-dimensional oscillator Hamiltonian.
Thus, we will focus on the relative Hamiltonian Hr in what fol-
lows. The corresponding eigenfunctions of Hr cannot be expressed
in terms of elementary functions. Aiming to introduce a solvable
model, we replace the Coulomb potentials in (3b) by a sum of NLPs
to obtain the envelope-function |χ 〉 from the effective-mass equa-
tion [8,9]

Hr |χ〉 −→ (H0 + O P )|χ〉 = E|χ〉, (4)

with H0 = p2/2m + mω2ρ2/2. The projective operator is defined
as

O P ≡ − g0h̄2

4m

[|v+〉〈v+| + |v−〉〈v−|]. (5)

v± will be referred to as shape functions and it will be specified
later, and g0 is named coupling constant. Eq. (4) can be solved
exactly for any arbitrary NLP, provided the eigenstates of the H0
are known. To compute the envelope-function |χ 〉, we consider the
resolvent of the Hamiltonian H0 as follows

|χ〉 = −(H0 − E)−1 V NL|χ〉
= g0h̄2

4m

∑
μ

∑
s=±

|μ〉〈μ|
Eμ − E

|vs〉〈vs|χ〉, (6)

where |μ〉 denotes the eigenstates of H0 with eigenvalues Eμ .
Projecting onto the kets |v±〉 and setting the determinant of the
resulting matrix to vanish we arrive at[

S+(E) − 1
][

S−(E) − 1
] = ∣∣C(E)

∣∣2
, (7)

where for brevity we have introduced the following definitions

S±(E) = g0h̄2

4m

∑
ν

1

Eν − E

∣∣〈v±|μ〉∣∣2
,

C(E) = g0h̄2

4m

∑
ν

1

Eν − E
〈v+|μ〉〈μ|v−〉. (8)

This transcendental equation provides the exciton energy E in the
nanostructure in the presence of the laser field, for any arbitrary
shape functions v± and coupling constant g0.

Before we proceed further we show how the value of the cou-
pling constant can be determined. To calculate g0 we consider the
free-exciton case, when there is no confinement due to the QW
(ω → 0) and the laser field is switched off (Ω → 0 and α0 → 0).
In this limiting case the exciton energy E becomes −Ry∗ , where
Ry∗ = me4/2ε2h̄2 is the effective exciton Rydberg in the bulk semi-
conductor. The resulting value of the coupling constant depends on
the shape functions chosen. Hereafter we take Gaussian NLPs of
the form

v±(r) =
(

1√
)3

exp

(
− (r ± α0)

2

2

)
. (9)
πa a
Following the procedure discussed in Ref. [9], the corresponding
coupling constant is found to be

2π

g0
= π

a

[√
π

2
− π

2

√
δ exp(δ/2)erfc

(√
δ/2

)]
. (10)

where erfc(z) is the complementary error function [13]. For brevity
we have defined δ = (a/a∗)2, where a∗ is the effective Bohr radius
of the exciton in three dimensions.

After having obtained the coupling constant, we now turn to
the normalized eigenfunctions of H0, which are required to obtain
the exciton energy in the QW when the laser field is switched on.
The eigenfunctions can be factorized in cylindrical coordinates as
follows

ϕn�kz (r) = Rn�(ρ)
ei�θ

√
2π

eikz z

√
2π

, (11a)

with quantum numbers � = 0,±1,±2 . . . , n = 0,1,2, . . . and kz .
The axial function corresponding to a two-dimensional harmonic
oscillator described by H0 is given by (see, e.g., Ref. [14])

Rn�(ρ) =
√

2n!
(n + |�|)!

ρ|�|

L|�|+1
e−ρ2/2L2

L|�|
n

(
ρ2/L2), (11b)

where L = √
h̄/mω is the QW radius and L|�|

n denotes the gen-
eralized Laguerre polynomial [13]. The eigenenergies of the two-
dimensional oscillator are En� = h̄ω(2n + |�| + 1).

From Eq. (8) one finds that S+(E) = S−(E) ≡ S(E) and C(E)

becomes real. Using (7) the ground state energy of the exciton is
obtained by solving the equation S(E) + C(E) = 1, which leads to

2π

g0
= 1

(1 + μ)2 L
exp

(
− 2γ 2β

1 + μ

)∑
n�

2n![1 + (−1)|�|]
(n + |�|)!

×
(

γ
√

2β

1 + μ

)2|�|(1 − μ

1 + μ

)2n exp(μεn�)√
εn�

erfc
(√

μεn�

)
×

[
L|�|

n

(
2γ 2β

1 − μ2

)]2

, (12)

where 2π/g0 is given by (10). For brevity we have introduced the
notation μ = a2/2L2, γ = α0/a∗ , β = (a∗/

√
2L)2 and εn� = 2(2n +

|�| + 1 − E/h̄ω).
Fig. 1 shows the exciton energy, in units of the effective Ry-

dberg, as a function of the parameter γ , for several values of
the QW radius, parameterized by β . We have taken δ = 0.01 but
we have checked that the results remain almost unchanged when
δ = 0.005. The inset shows that the exciton energy approaches the
value in a bulk semiconductor (E → −Ry∗) in wide QWs (L � a∗),
as expected when the laser field is absent. The inset also shows
that the energy increases when the radius of the QW decreases,
indicating strong confinements effects. The effects of the intense
laser field are similar, in the sense that the increase of the inten-
sity is accompanied by a remarkable increase of the exciton energy.
This effect is more pronounced for smaller QWs. Nevertheless, the
exciton energy seems to reach a saturation value beyond a thresh-
old laser intensity. The threshold intensity increases on decreasing
the QW radius, as seen from Fig. 1.

Once the exciton energy has been calculated, we now focus on
HH1 → E1 excitonic transitions due to the laser irradiation. To this
end, we use the method introduced in Refs. [10,15]. The linear ab-
sorption coefficient due to HH1 → E1 excitonic transitions can be
cast in the form

A(h̄ωP ) ∝
∑
η

∣∣βη(0)
∣∣2

δ(Eη − h̄ωP ), (13)

where the index η runs over the exciton states and βη(r) labels
the exciton eigenfunction. Therefore, the term |βη(0)|2 gives the
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Fig. 1. Exciton energy as a function of the parameter γ = α0/a∗ . Several values of
the QW radius are considered, the radius being parameterized by β = (a∗/

√
2L)2.

The inset shows the exciton energy when the laser field is switched off.

Fig. 2. Normalized absorption coefficient in GaAs QWs as a function of the photon
energy and γ = α0/L.

probability of finding the electron and the hole in the ηth exci-
tonic state at zero distance from each other. Only excitons with
nonzero amplitude at r = 0 can absorb the light. The omitted pref-
actor gives rise to the standard selection rules within the dipolar
approximation (the optical transitions are vertical in momentum
space). Keeping only the lowest exciton state and replacing the δ-
function by a Lorentzian of width Γ we obtain

A(h̄ωP ) ∝ 1

(E g + 2h̄ω + Mω2α2
0/2 + E − h̄ωP )2 + Γ 2

, (14)

where we have used that Eη = Ee
h + E , with Ee

h = E g + 2h̄ω +
Mω2α2

0/2 being the effective gap in the QW due to the dressed
parabolic confinement potential and E is the solution of Eq. (12).
Fig. 2 shows the normalized absorption coefficient in GaAs QWs
with L = a∗ , as a function of the photon energy and γ = α0/a∗ .
The values of the physical parameters used in our calculations are
E g = 1.424 eV, Γ = 2 meV, me = 0.067m0, mh = 0.45m0, where m0
is the free electron mass. At low laser intensity (i.e. small γ ) the
absorption peak is strongly blue-shifted. Nevertheless, this shift is
less pronounced at large γ , in agreement with the saturation ef-
fects discussed above (see Fig. 1).

In summary, we have presented a solvable model of excitons
in QWs under laser irradiation. This model is based on the NLP
approach, in which the dressed Coulomb interaction between the
electron and the hole is replaced by a projective operator. This sub-
stitution is exact provided the appropriate shape functions v±(r)

are used. The exciton energy can be obtained for arbitrary shape
functions. Once the solution is obtained, one can choose a poten-
tial shape function that reproduces the observed energy values.
In this regard, we previously found that Gaussian shape functions
provide accurate results in the absence of laser field [9]. When
the laser field is switched on, we found an increase of the exci-
ton energy on increasing the laser intensity. The exciton energy
reaches a saturation regime at very high laser intensity, the sat-
uration value being larger for small QW radius. We also proved
that this effect can be detected in the linear optical spectrum of
the QW.
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