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Abstract

We theoretically study electronic states in graded-gap junctions of IV-VI compounds with band inversion. Using a two-band
model within the k - p approximation and assuming that the gap and the gap centre present linear profiles, we demonstrate
the existence of a set of localized states along the growth direction with a discrete energy spectrum. The envelope functions
are found to be a combination of harmonic oscillator eigenfunctions, and the corresponding cniergy levels are proportional (o
the square root of the guantum number. The level spacing can be directly controlled by varying the structure thickncss.

Narrow-gap IV-VI compounds like Pby_,Sn,Te
and Pb;_,5n,Se present band inversion under com-
positional variation. In a band-inverted heterojunction
the fundamental gap has opposite signs on each side
| 1]. For instance, Pb; _,Sn,Se undergoes band inver-
sion as the Sn molar fraction is increased: At x = 0.14
the gap vanishes whereas the negative one reaches
the magnitude of the PbSe gap at x = 0.28. Recently,
such heterojunctions have received much attention
because subbands of electron-like and hole-like lo-
calized interface states are formed with the cnergy
lying within the fundamental gap [2-5], a particular
feature not found in most common -V heterojunc-
tions. In those compounds the electronic states near
the gap are properly described by means of a two-
band model using the cifective k - p approximation
[2], where a quite strong coupling of host bands in
the semiconductor occurs. The equation governing
conduction- and valence-band cnvelope-functions in
a simple two-band model, neglecting far-band corree-
tions, is a Dirac-like equation. In vicw of the analogy
existing between the two-band model and the Dirac

equation, the exact solution can be found since one
can use elaborated technigues like those related to
Supersymmetric quantum mechanics [6].

In this paper we exploit further such a formal simi-
larity to demonstrate for the first time the existence of
a new type of localized electronic states whose enve-
lope functions resemble those of the harmonic oscil-
lator but, unlike the case of the well-known parabolic
quantum wells, there are no classical turning points. In
the present structure, the confining potential leading to
localized states enters in the equation of motion as a
position-dependent mass term, whereas in the case of
parabolic quantum wells the conduction-band modula-
tion appears as an electrostatic-like intcraction within
the framework of a one-band model Hamiltonian. In
our approach, we require a graded-gap structure with
band inversion. An appropriate graded doping may
create a modulation of both conduction- and valence-
band with lincar profiles, which manifest themselves
through the occurrence of a linear scalar potential in
the Dirac-like Hamiltonian. For our present purposes,
we then take advantage of a number of lincar potentials
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for which the Dirac equation reduces to Schrodinger-
like harmonic oscillator equations [ 7], and then exact
solutions can be found in a closed form.

The two-band model Hamiltonian in the absence of
external fields is of the form
H=au,‘Llpi+ava3_p;-I—;:BES(.Z'), (n
where the 7 axis ts perpendicular to the heterojunction
(it is assumed that the growth dircction is | 111]),
E,(z) stands for the position dependent gap, o, a;
and B are the usual 4 x 4 Dirac matrices, v and
v. have dimensions of velocity and they are related
to the Kane matrix elements. As usual, it is assumed
that these matrix elements are constant through the
whole heterostructure. Since the gap and the gap centre
depend only upon z, the transversal momentum is a
constant of motion and we can set the v axis parallel to
this component. In a graded-gap structure of thickness
L with band inversion we have E (7} = Kz, where
K= (EgR — EgL)/L. Here EgR >0 (EgL < ) 1s the
magnitude ot the gap at 7 (—21.) with L = zp + 71,
and Egl{/Egl, = “-ZR/ZL-

In the two-band model there are four envelope-
functions including spin, and we arrange them in a
four component spinor F(r), whose upper and lower
components give the cocfficients of the L, and L}
parts of the wave function. This spinor satisfies the
equation

HE(r) =1E-V(2)] F(r), (2)

where V(z) gives the position of the gap centre. The
way V() changes from one material to another is not
well understood, thus it is often considered that the
misalignment follows the same profile of E;(z) [3].
Therefore V(z) = (3A)Ey(z) where 34 = (W —
W)/ (Esr—Egr), W and Vi, being the gap centre at zg
and —z;_, respectively. We shall see below that the exis-
tence of localized states requires that |A| < 1, namely
the gaps must overlap (type [ heterojunctions). The
same condition is found for the existence of inlerface
states in band inverted junctions [2]. As we have al-
ready mentioned, the momentum perpendicular to the
interface is conserved, and therelore we look for so-
lutions of the form F(r) = F()exp(ir, - p /H)
o Eq. (2). The function F{z) satisfies the lollowing
gquation,

lasvipl + a o, p, + 5BE,(2) — E+ V{(2)}F(z)
=0, (3)

A simple way to solve this equation is the Feynman—
Gell-Mann ansalz | ¥ ]

F(z) =[eyvips + a.v.p; + 5BE(2)
+E-V(z)]x(z). 4)

After a lillle algebra we have
d'Z
(&=

+M)X(z) ~0, (s)

1 3, ’2 ‘2
+ W{m(:)z— [E—V()]*+vipl}

where the 4 x 4 constant matrix M ts given by M =
—i(K/2he e (B — A), whose eigenvalues tu =
£(K/2h0; )V 1 — A? are real since we take [A| < 1.
Setting y(z) = fi{(z)¢y, wherc ¢4 arc the eigen-
veetors corresponding to the eigenvalues +u, we ob-
tain

d? , Ak
( dZZ +IJ‘2Z-+ f]) gh)f:t(z.)

B2 22
= (+ﬂ$#)fi(z), (6)

o?
o

which clearly reduces to a nonrelativisiic oscillator
equation by carrying out a suitable translation of the
origin of coordinates (recall that x* > (). Thus, in-
verting the various (ransforms necessary to arrive at
(6}, it is not difficult to demonstrate that cnvelope
functions are simply combinations of Hermite poly-
nomials times a decreasing exponential [actor similar
to that of the harmonic oscillator, provided that f(z)
vanishes at [z| — o¢ in a suitable way. The corre-
sponding bound levels can also be found in a simple
fashion, and they are given by

EE=(1— A%y (nfiv,K\/1 = 22+ 63 ph), (7)

n being a positive integer. Nolice that the energy levels
increase as the square root of K and a, thus being
no longer equally spaced. This behaviour is usually
obtained in “relativistic-like” oscillator equations [9].
As an example, let us consider the case of selenides
with symmetric band inversion, te., —Ey = Fr =
E, and W, = W (A =0). Typical paramcters are £y =
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0.15eV, v, =276 eV. For L = 2z5 = 2z, = 600
A and p1 = 0 we obtain four bound state levels with
energy less than %Eg: Ey =372 meV, E; = 32 5meV,
E3 =64.3 meV and E; = 74.3 meV. Hence the level
spacings are £y — E; = 15.3 meV, £3 — E; = 11.8
meV, Ey — E3 = 10.0 meV, showing that the levels are
not equally spaced but deviation from that behaviour
is actually small.

To summarize, we have discussed in some detail
the electronic structure of graded-gap heterojunctions
of IV-VI compounds presenting band inversion. The
theoretical analysis is based on the two-band model
arising in the k - p approach which, neglecting far-
band couplings, hecomes completely analogous to a
Dirac-like equation with linearly rising scalar- and
electrostatic-like potentials. The Dirac Hamiltonian
for linear potentials is exactly solvable, leading to en-
velope functions that can be expressed as a sum of
harmonic oscillator functions. Therefore, carriers are
spatially localized close to z = 0, i.e., the plane where
band inversion occurs. However, notice that the max-
imum value of the envelope functions is located at
= —2AE/KV'1 — A? since Eq. (6) is a harmonic
oscillator equation centered at zg. This is to be com-
pared with interface states lying within the fundamen-
tal gap which, in absence of external fields, are cen-
tered at the crossing point of the L, and L bands
[2]. In addition, we have found that the energy levels
increase as the square root of the effective coupling
K and the quantum number . Let us stress that the
level spacing and the spatial extend of the envelope
functions depend on the value of K and, as a conse-
quence, they can be controlled by varying the values
of £y, and Egr as well as the thickness of the struc-
ture L. Finally, some words concerning the validity of
the present model ure in order. It is known that Hamil-
tonian (1) has limitations sincc it neglects far-band
corrections. Those effects can be evaluated by means

of the standard second-order perturbation theory [3],
although we do not attempt to carry out such a compu-
tation here. However, we can confidently expect that
our results are valid, at least qualitatively, since in most
sclenides such corrections only cause small deviations
of the results predicted from (1). In fact, interface
states lying within the fundamental gap remain even if
far-band terms are included in the Hamiltonian, while
only minor modifications of the dispersion relation are
observed [3]. We hope that our results may encour-
age experimental effort in this field for two reasons.
First, to validate or discard the existence of localized
states in actual band-inverted junctions other than in-
terface states. Second, the (cature of having oscillator-
like states along with their associated discrete spec-
trum may be the basis for designing new devices and
applications.
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