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Abstract

We have numerically computed the reflectivity of X-rays incident noermally onto Fibonacci multitayers, and compared the
results with those obtained in perodic approximant multilayers. The constituent layers are of low and high refractive indices
with the same thickness, Whereas the reflectivity of periodic approximant multilayers changes only slightly with increasing
the number of layers, Fibonacci multilayers present a completely different behaviour. In particular, we have found a highly
fragmented and self-similar reflectivity pattern in Fibonacci systems. The behaviour of the fragmentation pattern on increasing
the number of layers is quantitatively described using multifractal techniques. We end with a brief discussion on possible
practical applications of our results in the design of new X-ray devices.

1. Introduction

The realization of well-controlled quasiperiodic su-
perlattices [1,2] has led to a widespread theoretical
interest in the study of one-dimensional quasiperiodic
systems [3-3]. From the very beginning, most re-
searchers have considered the Fibonacci sequence as
the archetype of a quasiperiodic system {6,7]. This
point of view is firmly established by X-ray diffrac-
tion analyses, which clearly reveal the quasiperiodic
nature of Fibonacci superlattices, even if moderately
large growth fluctuations during seguential deposi-
tion are present [ 1,3]. It is by now well known that
Fibonacci lattices exhibit highly-fragmented energy
spectra with a hierarchy of splitting subbands dis-
playing self-similar patterns [8-10]. These novel fea-
tures are directly related to the peculiar topological
order displayed by the underlying structure, namely
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its quasiperiodic order [11]. But it is most impor-
tant to stress that new and striking phenomena are
not only found in the case of electron dynamics. In
fact, harmonic vibrations in quasiperiodic lattices also
present highly-fragmented and self-similar frequency
spectra [ 12]. In addition, theoretical studies on inco-
herent [14] and Frenkel [15] excitons in Fibonacci
systems have revealed a very different dynamics com-
pared with that shown in both random and periodic
lattices.

In this Letter we consider the X-ray reflectivity of
a multilayered system where the refractive indices of
the layers are arranged according to the Fibonacci se-
quence. The aim of this paper is twofold. In the first
place, we carry out a theoretical investigation of Fi-
bonaccian systems from a different perspective to shed
more light onto the role played by quasiperiodic or-
der in their physical properties. In the second place,
our present study suggests new practical applications
of Fibonacci systems. In particular, we shall demon-
stratc that Fibonacci multilayers can be used as selec-

0375-9601/95/509.50 © 1995 Elsevier Science BV, All rights reserved

SSDI0375-9601(95)00170-0



0 F. Dominguez-Adame, E. Macid / Physics Letters A 200 (1995) 69-72

tive filters for solt X-rays, allowing for a fine tuning
of different narrow lines. This may be compared with
recent results reported on multilayers with randomly
varying thicknesses, which have been proposed as a
broad bandwidth X-ray mirror [16].

The system we study in this work is a Fibonacci
multilayer (FM) consisting of two different kinds of
layers of the same thickness 4. Layers A (B) have
low (high) refractive indices ns (ng). For the sake
of simplicity we neglect the absorption of X-ray in-
cident normally onto the sample surtace, so that the
refractive indices are real paramcters. Finally, we as-
sume that the whole system is placed in vacuum. In
general, a Fibonacci system of order [ is generated
from two basic units A and B by successive applica-
tions of the inflation rule A — AB and B — A, This
sequence comprises Fy_i elements A and Fj_; cle-
ments B, F; being the /th Fibonacei number given by
the recurrence law F; = Fi_; + F;_, with the initial
values Fy = F| = 1. As [ increases the ratio Fj_o/F;_|
converges toward the so-called inverse golden mean
7=2(v/5—1) ~ 0.618. ... The reflectivity of the
FM structure is then easily computed numerically us-
ing Rouard’s method (sce, e.g., Ref. [16]). To facil-
itate direct comparison with previous studies of Yoo
and Cue in random multilayers [ 16|, we have taken
the same physical parameters, namely d = 50 A np =
0.9200 and ng = 0.9995. In this way we can scparate
those featurcs of the reflectivity spectrum stemming
from the underlying quasiperiodic order in a straight-
forward manner.

In periodic multilayers arranged according to the
refractive indices sequence narphafy . . .. the reflec-
tivity shows a pronounced peak centered at 184 A,
with a bandwidth of about 11 A [16]. Note that in
this case the ratio ¢ between the number of high and
low refractive index layers is ¢ = ]i This value is not
close to 7, so that it is difficult to carry out a direct
comparison with the reflectivity obtained in EMs. In-
stead, it becomes more appropriate to consider peri-
odic approximants to the quasiperiodic FM. To this
end we have constructed periodic structures by a rep-
ctition of blocks of the form ABAAB (¢ = 0.667), or
ABAABABA (c = 0.600), or ABAABABAABAAB
fc = 0.625), namely the fourth, {ilth and sixth or-
der approximants to the FM. The number of blocks is
repeated in any realization until the total number of
layers N roughly equals the desired Fibenacci num-
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Fig. 1. X-ray reflectivity of N-multilayer structures with two basic
layers of refractive indices na = 0.9200 and rg = 0.9595, each
layer thickness being d = 50 A. Results for periodic approximants
of (a) fourth order with N =235, (b) fifth order with N =232,
(c) sixth order with N = 236, and (d) quasiperiodic FM with
N = F|o =233 are shown.

ber. Fig. | shows the reflectivity R(A) corresponding
to these periedic approximants (1a, 1b and 1c¢} and
to the quasiperiodic N = Fjz = 233 M (1d). In all
cases, two major reflection peaks are clearly observed
at about A = 150 A and A = 250 A, whose bandwidths
are 4 A and 11 A respectively, and a less pronounced
peak close to A = 125 A. The position at which these
major peaks are centered varies slightly depending on
the order of the approximant considered. In addition to
those major peaks, a sct of subsidiary peaks display-
ing high reflectivity arises in periodic approximants,
the number of them being increasingly large as the
order of the approximant increases and, consequently,
the envelope of R(A) is less uniform.

The origin of these subsidiary peaks can be eas-
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Fig. 2. Self-similarity of X-ray reflectivity of quasiperiodic FM
with the same physical parameters na, ng and  as in Fig, |, The
number of layers is (a) N =g =89 and (b) N = Fj3 =377,

ily visualized from a closer inspection iF Fig, 1. Let
us start by noting that no subsidiary peaks appear be-
tween the two major peaks in the reflectivity pattern
corresponding to the fourth order approximant (la).
As soon as we increase by one step the order of the ap-
proximant considered, one prominent subsidiary peak
arises between them (1b). By increasing the order of
the approximant two steps, twe subsidiary peaks ap-
pear; instead meanwhilec one minor subsidiary peak
develops between the major peaks centered at about
A=150 A and A2 = 250 A (1c). By further increasing
the order of the approximant, an increasing number of
subsidiary peaks progressively appear ( this number is
F,_2 — |, n = 3 being the order of the considered
approximant), until we obtain the reflectivity pattern
of the quasiperiodic FM (1d). The resulting pattern
forms a dense set of sharp and narrow peaks, some of
them presenting a reflectivity larger than 50%.
Self-similarity and multifractal properties are both
characteristic features of quasiperiodic orderings.
Then it lollows in a nalural way that one looks for
such properties in the reflectivity of FMs. In Fig. 2 we
compare the reflectivity pattern of a FM containing
F1g = 89 layers with the central portion of the reflec-
tivity pattern of a FM containing Fi3 = 377 layers.
This figure clearly shows the self-similar characteris-
tics of the reflectivity peaks, that is to say, a given in-
terval of wavelengths of a short FM is mapped onto a

small interval of a larger FM. The rescaling procedure
relates FMs with F; and Fy 4 layers, in an analogous
fashion to self-similar electronic spectra [17].

In view of this result, we believe that it is important
1o get a quantitative estimate of the fragmentation as
N increases. To be specific, it is clear thal reflectivity
of periodic approximants of any order changes very
little on increasing the number of layers, whercas a hi-
erarchical fragmentation process occurs in FMs, This
is similar, although not identical, to what is found in
the case of electronic properties {energy spectra and
wave functions} in Fibonacei lattices. Following this
analogy, we make use of multifractal analysis to get
insight into the fragmentation of the reflectivity pat-
tern. In particular, the participation ratio as defined, for
instance, in Ref. | 18], has been successfully used to
describe the spatial nature (extended or localized) of
electron wave functions. This method is readily gen-
eralized to the case of any positive measure defined in
the system. Particularly, we can apply the same con-
cepts to R({A) since it is a posilive-defined quantity.
Thus we introduce the participation ratio for the re-
flectivity as P(N) = [ [ R(A) dA)?/ [ R*(A) dA. The
value of P{N) gives an estimate of the overall reflec-
tivity ol the sample as a function of the number of lay-
ers: The higher its valuc the higher the whole reflec-
tivity. It is worth mentioning that performing the nu-
merical integration requires very tiny integration steps
since R(A) presents a morc and more detailed struc-
ture on increasing N due to the hierarchical fragmen-
tation scheme previously discussed. Thus one must
repeat numerical integration with smaller and smaller
integration steps until convergence is reached. Typi-
cally, 1.6 x 10* grid points are needed for a maximum
number of layers of Fig = 4181. Fig. 3 shows the re-
sults obtained for both the fourth order approximant
and the quastperiodic FM as a function ol the num-
ber of layers. Notice that periodic multilayers present
an almost constant value of £ for different numbers
of layers, in agreement with the fact that the enve-
lope of R(A) remains almost unchanged on increasing
N in those systems. On the contrary, the value of P
in FMs increases monolonically with & and, in addi-
tion, it is always larger than the corresponding value
for periodic approximants of the same size. Therefore,
we can conclude that the characteristic fragmentation
process observed in quasiperiodic multilayers leads to
an overall increase of their X-ray reflectivity. This in-
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Fig. 3. Participation ratio P in units of d as a function of he

number of layers N in periodic approximants (dashed line} and
quasipertodic FMs (solid line).

teresting property can be directly related to the self-
similarity displayed by the reflectivity pattern. In fact,
both the total number and the average height of sub-
sidiary peaks progressively increase and new peaks
appear after inflating the multilayer structure.

To summarize, we have numerically evaluated X-
ray teflectivity of Fibonacci multilayers and compared
it with that corresponding to periodic approximants,
The main result is that both systems present a very
different X-ray reflectivity incident normally onto the
surface. Whereas reflectivity of periodic multilayers
changes only slightly on increasing the naumber of
layers, quasiperiodic multilayers present a completely
difterent trend. We have observed a highly fragmented
reflectivity pattern as a function of the incident wave-
length. Whenever the order { of the FM increases (i.e.,
the inflation rule is applied), the subsidiary peaks in-
crease their heights and new peaks arise. These new
peaks also increase reflectivity on further increasing
the system size. These conclusions have been cstab-
lished quantitatively by means of multifractal analysis
and, in particular, using the participation ratio P. The
value ol P in periodic approximants remains constant
on increasing N whereas in quasiperiodic systems it
increases monotenically. Moreover, P is always higher
in the later systems. Hence the overall reflectivity is
larger in this case. Finally, some comments regard-
ing multilayers with random thicknesses are in order.
Yoo and Cue have recently demonstrated that random

multilayers present a broad reflectivity peak, whose
bandwidth broadens as fluctuations are stronger { 16].
Hence, random multilayers increase the whole reflec-
tivity on increasing fluctuations, and the system acts
as a broad bandwidth mirror. We have found that Fi-
bonacci mullilayers also behave as a mirror but, unlike
random systems, they should be regarded as X-ray se-
lective filters instead. Notice that the position of sub-
sidiary peaks can be changed by varying the refractive
indices of the two constituent layers and/or the corre-
sponding thicknesses. Thercefore, Fibonacci multilay-
ers open new possibilities in the engineering of soft
X-ray devices.

This work has becn supported by UCM under
project PR161/93-4811.
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