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Electron spectrum of magnetic interface structures based on narrow-gap semiconductors
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In this work we deal with magnetic junction structures in which a homogeneous narrow-gap semiconductor
is subjected to an inhomogeneous magnetic field. The aim of the paper is to elucidate magnetic field effects on
the electron energy spectrum of narrow-gap semiconductors in inhomogeneous magnetic fields. The two-band
Dirac model is used as a model Hamiltonian. Spectra and wave functions for the magnetic junction are
obtained. Wave functions for the lowest quasi Landau levels are strongly localized near the interface plane
showing the characteristic properties of snake orbits. The spin properties of the quasi Landau levels are studied.
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[. INTRODUCTION field. A quasiclassical treatment of the problem results in
considering states that are referred to as snake states due to
Recent experimental techniques have opened up the wake characteristic shape of the classical analog trajectories.
to experiments in inhomogeneus magnetic fields with period#iller'! seems to have been the first to give a quantum-
in the nanometer regichThis kind of field has been realized mechanical treatment for the snake states in a constant-
with the fabrication of magnetic dots, patterning of ferro- gradient field. In the presence of a uniform magnetic field,
magnetic materials, and deposition of superconducting mateelectrons of an infinitely large 2DEG are well known to be
rials on conventional heterostructures. Increased interest ilocalized on cyclotron orbits? Conduction is zero in the
studying a two-dimensional electron g2DEG) subjected absence of scattering and sample boundaries. A spatially
to inhomogeneous magnetic fields is mainly caused by theonuniform magnetic field can result in extendeshake
special tunneling and kinetic properties of magnetic strucstates. Snake orbits in semiconductor devices have been con
tures. In contrast with tunneling through electric barriers, thesidered in detail theoretically in a recent wdfkExperimen-
tunneling probability of the magnetic structures depends notal proof of the existence of snake states propagating along
only on the electron momentum perpendicular to the tunnellines of zero magnetic field has been obtained from electron
ing barrier but also on its momentum parallel to the barriertransport perpendicular to the interface in Refs. 1 and 6.
This renders the tunneling an inherently two-dimensional In their very nature the unusual tunneling and kinetic
process where magnetic barriers possess wave-vector filtgproperties of the magnetic structures result from the rear-
ing propertie€. Related to this subject is the effect of a local rangement of the band spectrum under inhomogeneous mag-
magnetic field on the tunneling current through a thick po-netic fields. To our knowledge, theoretical works relevant to
tential barrier considered in Ref. 3. A magnetic field strictly the electron transport problem of magnetic structures have
localized within a potential barrier was shown to lead totreated a single-band model to describe the energy spectrum,
resonances centered within the barrier. A number of paper@ny spin properties of the band structure being neglected. As
have considered quantum transport of a 2DEG in a weak matter of fact this approximation is valid for semiconduc-
magnetic field modulation. Magnetoresistance commensurders like GaAs because in this case for the magnetic fields
bility oscillations (so-called Wiess oscillationsn these sys- between 0.1 ah1 T used in experiments the forbidden gap
tems were first theoretically predicfednd then observed in is larger than the cyclotron energy. But the situation will
experimental studies of 2DEG'’s in periodically modulatedchange for the narrow-gap semiconductors of type IlI-V, V-
magnetic fields. The reason for the oscillations is the com- VI, and II-VI. For example, for InSb the cyclotron energy
mensurability between the classical cyclotron diameter anavill already be larger than the value of the gapBat1 T.
the period of the modulationlt is worth noting, as well, the Two-band effects are even more evident for the IV-VI and
observation of the very large, low-field magnetoresistance ofi-VI narrow-gap semiconductors or their solid solutions in
a 2DEG subjected to a periodic magnetic field that alternatewhich a gapless state can be reached. Obviously, if a mag-
in sign® netic field is applied to the system of a narrow-gap semicon-
Moreover, the interest in electron properties of the 2DEGductor, the single-band model can lead to an inadequate de-
in alternating magnetic fields is motivated by the relevancescription of transport effects.
of the problem to the composite-fermion description of a In this work we are concerned with magnetic structures in
half-filled Landau level as a classical analog of the fractionalwhich a homogeneous narrow-gap semiconductor is sub-
quantum Hall effecf:® As a matter of fact, for a density jected to an inhomogeneous magnetic field. Our aim is to
modulated 2DEG, which is supposed to be in the fractionaprovide a clear picture of alternating magnetic field effects
quantum Hall regimé&° the problem reduces to the ballistic on the electron energy spectrum of narrow-gap semiconduc-
motion of composite fermions moving in a periodic magnetictors. For the magnetic structures considered, the magnetic
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field is taken to be directed along tkeaxis, being homoge- 1
neous along thg axis and varying along theaxis. As a first u= 31— o/ V= >
step in studying the inhomogeneous magnetic field, we do ¢

not take into account a realistic prOfile of the Changing of thq-|ere a new dimensionless variable is introduced ggy
magnetic field and consider the simplest situation of a step= /2 (x,+x)/1,,, xo= Goky'ﬁ is the center of the Landau or-
like interface. The reason for this approximation is the fo"bits, @¢=sgn@,)=*1 is the orientation of the magnetic
lowing. As showrt, by the proper choice of the experimental fig|q (¢=1 corresponds to a field pointing along the positive

parameters it is possible to realize such a sharp magnetic ..o | — 7 c/elB is the maanetic length. an
interface that its width is less than the characteristic magnetic | K ),ang§=z/IH |aré| the dimensignlessmon?en,tum iﬁd
lengthlyy (which for values of the magnetic field up 0 10 T coordzinate. The functiond ,(* &) are the parabolic cylinder

caq_not bdgﬁ!ess ihan 10 ?.m unci fruct id functions. They constitute two independent, nonorthogonal
Wwo dirierent magnetc junction Structures aré consit-qq)tions of the harmonic-oscillator equation

ered. The first one is a so-called inverted magnetic junction

1+¢ 1-¢

1+

1
= . 4

whereB,B_<0 [B.=B,(x=*%)]. The second structure 2 2 1
is a normal magnetic junction wheg_ B, >0. ( ——+ = |Dy(&)=| p+5|Dy(&), (5)
This paper is organized as follows. In Sec. Il we describe dez2 4 2

our theoretical model. The band spectrum and wave func- ) _ ) .
tions for the inverted and normal magnetic junctions are ob@nd the corresponding bulk dispersion relation is
tained. In Sec. lll spin properties of the electron states are |
studied. Section IV concludes the paper with a brief sum- 24 op=| -1
XeTeP=155

2
, [(E-V)?—A?], (6)
mary of the main results.

wherep is determined from the boundary conditions.
The spinor coefficients in Ed3) are given by

The simplest theoretical approach for the narrow-gap - -

Il. TWO-BAND MODEL

semiconductors is known to be a two-band mddethich in 1
the first approximation of thd-p perturbation theory re- Cy 1
duces to the following Dirac Hamiltonian: +—
Ca| \/B
Mo \itwok  —a+v || W Ca L
. . . -V+ p —
HereA is determined as the half band gdps Ey/2; Vis the E-v+a = \/B

so-called work function, describing the shift of the gap
middles; k is the momentum operatok=—iV; v is the ~ wherek, = (1) (=i(1-p)/V2,=(1+p)/V2,x,).
interband matrix element of the velocity operatos; Starting from the Schidinger equation determined by the
=(ox,0y,0,) is the vector whose components are the PaulHamiltonian(1) with the replacement2), we look for a so-
matrices. In the simplest form this two-band Dirac Hamil- lution as a linear combination of eigenfunctio(®. For a
tonian defines two nearby conduction and valence bands aseplike magnetic interface with a sharp change of the mag-
two Kramers conjugate states. Therefore, the Hamiltoniametic field atx= 0, boundary conditions need to be applied to
(1) takes into account spin properties of the wave functionsthe eigenvalue problem. Assuming the wave function to be
called eigenspinors in this case. continuous at the interface and integrating the Sdimger

In this work we neglect the Zeeman term in the Hamil- equation across the interface boundary, we obtain the bound-
tonian in the presence of a magnetic field. Thus, a statiary conditions reduced just to the demand for wave function
magnetic field is incorporated ifi{y just by the standard continuity. Moreover, we should take into account that the
substitution two solutionsD(+§) present different asymptotic behav-
iors at ¢(x)— * . Since the solution must decay far away
from the interface the wave function is allowed to include
only ¥* functions forx>0. Meanwhile, only¥ ~ functions

are allowed forx<0.
For the magnetic fiel®=(0,0B,) the electromagnetic vec-

tor potential A is chosen in the Landau gauge Agr)

=(0xB,,0). Following the results of Ref. 15 we write the

four bulk eigenfunctions for Eq.l) in the form For the inverted magnetic junctioB, =—B_=B, the
dispersion relation reads

e
k—>k+%A(r). (2

A. Inverted magnetic junction

C1Dp-_1(FEu+coDy(EEv , ,
C3Dp_1(F U+ Dp(E &V’ Dp(&0) —pPDy-1(£0) =0, )

3 . : . .
© where &g= \/EkyIH is the dimensionlesz coordinate of the
where the columns vectorsandv are defined by Landau orbit center. This equation defines for every energy

P (r)=e (ytxed)
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5

interface. These states are characterized by nonzero velocity
vy and have snake orbits going back and forth around the
interface through th& , andB_ regions. The velocity , of
these states increases wikj.

As was noted in this consideration the Zeeman term is
neglected. Each quasi Landau level is doubly degenerate and
described by two wave functions. The squared modulus of
one of the normalized wave functions on each side of the
interface reads

~

1
W |2= (upr,(erDs_l(rg)

NAM

_ A 2 2
+m[Dp_1(r§>—1/pr<t§>]]. ©)

Here W*=W(x>0), ¥ =W (x<0), *&=(2/14)(Xo

N . *Xx), and
FIG. 1. Energy spectrum of the symmetrical inverted magnetic
junction. w 1
l=f Dj_1(y)+=D2(y)|dy.
the allowed values of the momentuky related to the loca- ‘o P
tion of the Landau orbit centers. The analytical expression for the probability density function

The numerical solution of this dispersion relation is
shown in Fig. 1 where the allowed valuespmére shown as
a function of&,. Taking into account the dependencebof
onp[Eq.(6)] we can consider this figure as a band spectrum
The case of a quasiclassical magnetic field when
=4howy (e is the Fermi energywy is the cyclotron fre-

of the spin conjugate stat# is written in the same form
with a sign change in the second term in E9).

The probability density functions for the four lowest quasi
Landau levels aty,=—2,0,2 are shown in Fig. 2. Here the
probability density functions for the different levels are
h ) : shifted upward with respect to each other and ordered by
quen.cy is studied. The following parameters haye bee heir corresponding energy. It can be seen that the value of
used:ep=A=0.1 eV. In the case of the 2DE@hat is, x, &, determines not only the location of the cyclotron orbit
=0), Eq.(6) implies that €—V)/A=yp+1. . centers but also the extension of the quasi Landau states,

We note that the energy spectrum of the inverted maghamely, the larger the value g§ the more the wave function

netic junction consists of successive b{inds tha@ are the re )ecomes localized. This fact is well understood from the
nants of the Landau levels showing a time-reversal

asymmetry! The energy spectrum shown in Fig. 1 has a nalysis of the profile of the effective potential. As follows
) ) . . ' . from Fig. 2a), at ;= —2 when the electrons experience the
direct analogy with the single-band motfeand can be in- 9. 2a), at & b

terpreted in the same way. For the 2DEG under a step maggouble-well effective potential, the wave function for the ex-
: i i ical =0 [Fig.
netic field the single-band problem is reduced to solving th lted states is not symmetrical, but&=0 [Fig. 2b)] and

e . . )
. . L . £,=2 [Fig. 2c)] the electrons experience a symmetrical
one-dimensional Schdinger equation coupled effective potential; as a result their wave function

becomes symmetrical.

L& Vi (X)+E|¢(x)=0
— X X)=
2m dx? ky v B. Normal magnetic junction
with the effective potential For the normal magnetic junction the magnetic field just
changes its absolute value at the interface boundary. The
B. 2 solution of the boundary value problem leads to the follow-
ka(x)=[ky—x 1-11- B—) 6(x) ] , ing dispersion relation:

which depends ork,. We analyze the energy spectrum of 14Dg-1(= & )Dp(ngme(_fO )Dpfl(fg)zo-

the inverted magnetic junctio(see Fig. 1 in terms of the (10
effective potentiah/ky. Fork,<0 the potential has the form Herel/, andl, are the values of the magnetic length for
of two decoupled parabolic wells. Thus, we obtain the Lan->0 and x<0, respectively, Ja/p=I}/l;, and &
dau statesr(+ 1/2)hwy, as a solution; they are twofold de- — 2k, I} are again the dimensionlegscoordinates of the

generate because of the identity of the states in both par@gandau orbit centers on different sides of the interface
bolic wells. These states have zero velocity,  poundary.

=(1/7)(9En K,/ ky) along they axis. The numerical solution of Eq10) is presented in Fig. 3.
With increasingk, the parabolic wells become coupled. The calculations were performed for two different values of
As a result the wave function becomes localized near théhe parameteg=1,,/l;,, namely, 3=0.5 in Fig. 3a) and
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2 . . . (the slope of the dispersion curyedepends on the value of
AN N B. The largerB, the smaller is the electron velocity. A&
15— AN A N — —1 the electron velocity vanishes and consequently snake
= = states disappear.
|\11*|2 P N N We can analyze this spectrum as coming from the effec-
tive potential again. The velocity of the snake orbits is
SR (- S strongly reduced now, and it is going to zerokge>0 and
05 r 1 ky<0 for all quasi Landau levels. The probability density
functions for the lowest quasi Landau levels @+ 0.5 are
0 ' ' ' shown in Fig. 4 at;=2 and¢,=0. We can see an expected
2 ' ' ' result: in both cases the electrons are in snake states localized
SN o TN near the interface boundary, being more localizedqat 0
15 -—————- e than atéy,=2.
+2 SN - //\\
¥ L B e Il. SPIN
o5 [ T T o] From this two-band model, in which the spin properties of
the wave functions are directly characterized by the eigen-
0 , , . states, we can find the average value of the spin vector
2 . . .
i (S())=(W |2 W), (11)
[ T T T where Y, is the spin operator. After simple calculations we
I‘Pilz ; TN e obtain that the three components of the average spin vector
””””” ) T for each value ok, do not vanish, even in the case of a
e ] symmetrical inverted magnetic junction. Of course, the di-
0.5 r @) T rection of these vectors for each of the two spin-conjugate
A states is opposite to each other. For the 2D@@t is, y,
0 1

10 5 =0) in the case of the inverted magnetic junction, we obtain
(S(x))=(0,05,(¢)),
FIG. 2. Wave functions of the symmetrical inverted magnetic
junction for the lowest quasi Landau levels at the poi@sé,  Where
=-2,(b) 0, and(c) 2.

B=0.9 in Fig. 3b). The energy spectrum now is qualita- S, (&)= N +5D;2J(if)_Drz>*l(i§)
tively different from the previous case. First, we note that the :

k, states are no longer degeneraté&a€0 (but they are still ) )

doubly spin degenerateSecond, fok,>0 the energy levels - m[Dpfl( &)+ 1pDy(= 0]
approach the Landau levels for states in a uniform magnetic

field B, . Third, the electron velocity along thedirection  After integrating along« we have

5

FIG. 3. Energy spectrum of the normal mag-
netic junction for(a) 4=0.5 and(b) 0.9.
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FIG. 4. Wave function of the normal magnetic junction fer . ) L .
=0.5 at the point¢a) &,=0 and(b) &=2. FIG. 5. Average spin of the inverted magnetic junction as a

function of x at the pointga) ¢£,=0 and(b) 2.

<5z>:_m- (12 tail. A two-band Dirac Hamiltonian has been used as a

) ) ~_ model. For a homogeneous magnetic field, the degenerate
It follows that, despite the fact that in the symmetrical in- | andau levels have been shown to be transformed into bands
verted magnetic junction the number of electrons with spingf finjte width in the case of a steplike magnetic field. The

up and down should be the same, the spin of each of thgispersion of these quasi Landau bands reveals time-reversal
spin-conjugate states happens to be a nonzero vector. Morgsymmetry.

over, the absolute value of this vector changes for different |n the symmetrical inverted magnetic junction the elec-
values of&y. The spin value as a function affor the in- tron states ak,>0 travel freely along the interface resulting
verted magnetic junction &,=0 and atf,=2 is shown in  jn an increase of the conductivity in the direction of the

Fig. 5. As follows from this figure the spin of the snake jnterface. In the case of the normal magnetic junction the
stategwhich are the states &,=0 and&,=2) is a function

localized near the magnetic interface boundary. Obviously, 14
the other spin-conjugate stafe has the opposite spin direc-
tion, resulting in a zero value of the spin sum. Figure 6 L

shows the average along thedirection of the spin as a .
function of & for the two spin-conjugate stateS,) ll [ —

=A/(E—V) corresponding to the first quasi Landau level.

We note that the average spin of the delocalized stdtgs ( <5
<0) tends to+1 for the two degenerate states and it de- ozl
creases slowly up te-*0 for the snake statesk{>0).

When the Zeeman term is included the spin degeneracy will 06t ]
be removed. As a result, each of the quasi Landau levels of —/
the magnetic junction will be characterized by a nonzero -1 1

value of the average spin, which will be localized near the
interface boundary for the snake states. 4 ) = 0 p 2 3

02 r

V. SUMMARY FIG. 6. Spin averaged alongdirection of the inverted magnetic

The electron energy spectrum of magnetic junctions basejtinction as a function o, for the ¥ (solid line) and¥ (dashed
on narrow-gap semiconductors has been studied in some diie) spin degenerate states.
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electron velocity along the junction dependsl@il,; going  in this way spin-dependent transport can be observed. But
to zero ask,— * . this effect demands a thorough study, which will be the sub-
The average spin of the quasi Landau levels of the magiect of our next publication.

netic junctions is a nonzero vector, being a function localized We conclude that the band spectrum of the magnetic junc-
near the interface boundary for the snake states. In this wajon based on a narrow-gap semiconductor, which was ob-
snake states can be considered as a quasi-one-dimensioteihed in the framework of the two-band model, can be
spin system. When the Zeeman term was included, we werelearly interpreted from the shape of the effective potential.
unable to find an analytical solution in the common case, buThe energy spectrum and wave functions do not change dra-
a calculation can be quite easily performed for the 2DEGmatically in comparison with the single-band model. This
(x¢=0). Itis obvious that the twofold degenerate levels splitprovides the proof of the close connection between these
by the energy~# w, , removing their degeneracy. The spec- models and makes us confident that the spin properties of
trum will consist of a set of successive levels with oppositemagnetic interface structures that follow directly from the
spin directions. As a result, given the enekgy, the snake two-band model will find theoretical and experimental evi-
states localized near the interface boundary will follow onedence in resonance splitting, magnetoresistance oscillation
after another, alternating the spin direction. We suppose thateaks, and tunneling transmission coefficients.
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