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Donor-bound electrons in quantum rings under magnetic fields
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We theoretically study donor-bound electron states in two-dimensional quantum rings of finite width. A
strong magnetic field is applied perpendicular to the plane of the quantum ring. The resulting electronic states
are obtained within the effective-mass approximation. For on-center donors, the radial Hamiltonian for the
envelope function is exactly diagonalized, and the corresponding energy levels for different angular momenta
are studied as a function of the applied magnetic field. Confinement properties change rapidly with the external
magnetic field. An abrupt change of the localization properties appears at a critical magnetic field, since the
electron is mainly localized around the impurity. This transition gives rise to well-defined anticrossing of levels
as a function of the magnetic field. Intraband transitions are found to carry relevant information of these

confining properties of the rings.
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I. INTRODUCTION

Recent advances in nanofabrication of quantum devices
enable the study of the electronic properties of quantum rings
(QRs) in a very controllable way.'~> QRs are small semicon-
ductor ring-shape structures in which electrons are confined
in all spatial dimensions. As a consequence, discreteness of
energy and charge arises, such as in atomic systems. In con-
trast to real atoms, different regimes can be studied by con-
tinuously changing the applied external potential, which can
compete with the quantum confinement. As a consequence,
QRs are very promising systems due to their physical prop-
erties as well as their potential application in electronic de-
vices. Currently, researchers are investigating a variety of
magnetic QRs, with or without impurities, due to their po-
tential uses in high-density memory devices and spintronics
(see Ref. 4 and references therein). In magnetic QRs, elec-
tronic quantum confinement is achieved solely by inhomoge-
neous magnetic fields, giving rise to a parabolic potential
across the width of the ring. Parabolic confining potentials
are amenable of analytical calculations since the center-of-
mass motion of excitons can be separated from the relative
electron-hole motion.>® In contrast, band-edge offsets give
rise to the confining potential in QRs based on semiconduc-
tor heterostructures.” In this case, calculation of the effects of
the Coulomb interaction is more complex.

In this work, we consider on-center donors in a two-
dimensional (2D) QR made of two different III-V semicon-
ductors. The conduction-band-edge offset at the heterojunc-
tions confines the electrons and gives rise to finite-size
effects since the QR is assumed to be of finite width. Donor
binding energies are also modified due to the presence of a
QR as compared to bulk semiconductors. Therefore, binding
energy carries information about the confinement properties
of electrons in QRs. In addition, a strong magnetic field is
applied perpendicular to the plane of the QR. The binding
energy of a single electron bound to an on-center donor is
obtained by exact diagonalization of the radial Hamiltonian.
As a major result, we find a strong dependence of the con-
fining properties of the QR on the magnetic field. In particu-
lar, an abrupt transition of the localization properties of the
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electronic envelope function is observed at a critical mag-
netic field. Consequently, spectroscopy studies of donor-
bound electrons provide a unique tool to characterize the
confining properties of QRs.

II. THEORETICAL MODEL

We will focus on electron states close to the bottom of the
conduction band and neglect nonparabolicity effects hereaf-
ter. Then, a one-band effective mass Hamiltonian suffices to
obtain accurate results. For simplicity, we assume the same
effective mass m" at the I’ valley in both semiconductors,
namely, inside and outside the QR.

For the moment, we will neglect the Coulomb potential
due to the presence of an ionized donor. As mentioned
above, a magnetic field of magnitude B is applied normally
to the plane of the QR. Within these assumptions, and due to
the axial symmetry of the system, the envelope function is
factorized as’

oitd
X(p. ) =—=R(p), (1)
N2

where p is the in-plane radial coordinate, ¢ is the polar
angle, and €=0,x1,+2,... is the quantum number deter-
mining the angular momentum ¢7.

The radial function R(p) in Eq. (1) satisfies the following
effective-mass equation:
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= (E_ ghwc)R(p), (2)

where the cyclotron frequency is w.=eB/m"c and V(p) has
two contributions, V(p)=Vg(p)+Vc(p). The conduction-
band-edge profile contribution along the radial direction of
the QR is given by
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Vy, otherwise,

with V,>0. Here, p, and p, are the inner and outer radii of
the QR, respectively. The contribution of a single ionized
donor at the center of the QR (which does not break the axial
symmetry) could be described in terms of a Coulomb term of
the form

2

vam=—f;, (4)

€, being the relative dielectric constant of the semiconduc-
tors. Solution of Eq. (2) without impurity (V-=0) is given in
Ref. 7 and, for brevity, is not quoted here.

Since no analytical solution of the resulting equation is
found, we solved it numerically. To this end, we introduce a
dimensionless coordinate z=p/a”, where a =€ h%/e’m” is
the effective Bohr radius. We set an integration interval 0
<7<z, with the condition z,> p,/a”. Then, we take an in-
tegration step s=z,/N, where N is a positive integer, and
define the grid points z;=sk with k=0, ... ,N. Using a stan-
dard finite-difference approach, the resulting discrete equa-
tion is found to be

(1+L>R (1 i)R + €—2+<a—*>44k2 2>
2% ) u)/ T e, k

v, E a'\?
+s2—f}Rk= {sz—*—2—s2€<—) }Rk, (5)
R, R, I,
where k=1,...,N—1. Here, [,=\h/m w, is the magnetic

length, Rj:ﬁz/ 2m"a"? is the effective Rydberg, R,=R(z,a"),
and V,=V(z;a”). Boundary conditions read R(p)~ p® for p
—0 and R(p)=0 for p—ce. Notice that the resulting matrix
is tridiagonal but nonsymmetric, although their eigenvalues
are real.

In our next step, we calculate the optical absorption spec-
trum of the QR in the midinfrared due to bound-to-bound
intraband transitions. Hereafter, we neglect bound-to-
continuum absorption since it is usually 3 orders of magni-
tude smaller in zero-dimensional structures.® We focus on
transitions from the ground state of the QR, |1,0), to higher
bound states, |n,{). Therefore, the absorption coefficient is
calculated as

a(w)~2€ (1,0

e pln, O SE, - E\n-hw), (6a)

where the unit vector e indicates the direction of polarization
of light. For in-plane polarization, the so-called normal inci-
dence, the transition matrix element is

oo

1
n,€>=2—(6x+iey)5|e|,1 f dpp’R1o(p)R,(p).
w 0

(1,0

e-p
(6b)

which yields the selection rule €==1.
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FIG. 1. Lowest energy levels with €=0 as a function of the
applied magnetic field. Solid lines correspond to an on-center donor
in a QR. Dashed lines correspond to an isolated 2D donor.

III. NUMERICAL RESULTS

We have performed numerical calculations in order to
study the effect of the ionized donor on the electronic levels
of the QR. Hereafter, we will focus on GaAs-In,,GajgAs
QRs and assume a constant effective mass m" =0.0576 in
units of the free-electron mass. The inner and outer radii are
set py=10 nm and p,=26 nm, respectively.> The effective
Bohr radius is found to be_a*=10 nm, and the magnetic
length is given by [,,=(26/B) nm, where B is expressed in
tesla. The effective Rydberg is R$=5.4 meV in this material
system. The conduction-band offset is V=148 meV. As we
are interested in bound electrons, the value z, was set in such
a way that [R(z4a”)| < 107! nm~!. We have diagonalized the
matrix Hamiltonian arising in Eq. (5) with s=0.01 and N
=1000, corresponding to electronic states of on-center donor-
bound electrons. This value of the grid size is enough to get
accurate results.

Figure 1 shows the lowest energy levels with €=0 as a
function of the applied magnetic field. Energy is measured
from the bottom of the potential well. Results are compared
to the energy levels of an isolated 2D donor. The obtained
binding energy of the ground state in the latter case is 4R;
=21.6 meV for B=0, within the numerical uncertainty (recall
that the potential energy at large distances is nonvanishing,
Vp=148 meV; see the tick mark on the vertical axis in Fig.
1). This value is in perfect agreement with the analytic solu-
tion of the 2D Coulomb problem.’ Increasing the magnetic
field yields an increase of the energy, as expected (see dashed
lines in Fig. 1).

When the donor is placed at the center of the QR, the
confining properties of the ground state at low fields are
mainly determined by the conduction-band-edge offset,
while the effects of the Coulomb interaction are negligible.
The explanation lies in the fact that the potential well due to
the QR is rather wide (p,—p;=16nm) and deep (V,
=148 meV). Therefore, the electron localizes at the well of
the QR, with an energy much lower than that of the isolated
2D donor (see Fig. 1).
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FIG. 2. (Color online) Envelope function of the (a) ground and
(b) first excited states as a function of the applied magnetic field

(€=0).

Increasing the magnetic field also yields a steeper increase
of the energy (see solid lines in Fig. 1), as compared to the
isolated 2D donor (see dashed lines in Fig. 1). This is to be
expected since the spatial extent of the envelope function is
larger in the former case, and the effects of the harmonic
confining potential due the magnetic field are stronger. How-
ever, a careful inspection of Fig. 1 reveals a change of trend
at some critical fields (B;=13 T and B,=21 T). We argue
that anticrossing of levels of the donor and the potential well
of the QR arises at these critical fields.

To provide support to this claim, in Fig. 2, we plot the
radial envelope function R(p) of the two low-lying states
with £ =0, for different values of the applied magnetic field.
At low fields, the electron is localized within the potential
well of the QR (p; < p < p,). However, the electron localizes
at the donor as the magnetic field is larger than B,=21 T for
the ground state [Fig. 2(a)] and B; =13 T for the first excited
state [Fig. 2(b)], respectively.

Absorption spectrum for in-plane polarization due to in-
traband bound-to-bound transitions is calculated as described
earlier. The & function in Eq. (6a) will be replaced by a
Lorentzian of width I'=4 meV. For the sake of clarity, we
will focus on the transitions |1,0)— |2, + 1) hereafter. Figure

FIG. 3. Absorption spectra for in-plane polarization due to in-
traband |1,0)— |2, 1) transitions as a function of the applied mag-
netic field, without on-center donor.

3 shows the evolution of the absorption coefficient as a func-
tion of the applied magnetic field, when no impurities are
present in the QR. At zero magnetic field, both transitions are
degenerated, as expected. Therefore, only one line arises in
the absorption spectrum at zero applied field. The magnetic
field splits the line into two peaks, one located at the low-
energy side of the spectrum (corresponding to the transition
1,0)—|2,1)) and the other at higher energy (corresponding
to the transition |1,0)—|2,-1)). The energy of the former
line presents a minimum as a function of the magnetic field,
while the latter one shifts superlinearly in the range of mag-
netic fields studied in this work, as shown in Fig. 4.

The radial part of the envelope function R(p) is distorted
when an on-center donor is present in the system. To ascer-
tain whether midinfrared absorption is sensitive to those
changes, we have calculated the oscillator strength of the
transition |1,0)— |2, 1) as a function of the applied magnetic
field. The oscillator strength is
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FIG. 4. Energy of the main lines in Fig. 3 as a function of the
applied magnetic field.
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FIG. 5. Oscillator strength of the |1,0)—2,1) transition as a
function of the applied magnetic field when an on-center donor is
present. The insets show pR(p) corresponding to the ground (solid
lined) and excited (dashed lines) states at three different values of
the magnetic field.

pI2, D*(Ey - E)p), ™)

2m

Fp= h_20|<1’0

m being the free-electron mass. Notice that the oscillator
strength is proportional to the square of the overlap integral
of the two functions pR(p) and pR,;(p) given in Eq. (6b).
Figure 5 shows the oscillator strength as a function of the
applied magnetic field when an ionized donor is located at
the center of the QR. This magnitude changes noticeably
upon minor distortions of radial envelope function. The in-
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sets show pR(p) of the ground and excited states at maxima
and minimum of the oscillator strength. The latter state is not
much distorted on increasing the magnetic field, as compared
to the ground state. Consequently, the main contribution to
the changes of the oscillator strength arises from distortions
of the ground state which, however, are not too large. There-
fore, we conclude that small changes in the ground state lead
to large variations of the oscillator strength. Therefore, opti-
cal absorption is a reliable tool to detect those changes.

IV. CONCLUSIONS

We investigated the electronic states of a 2D QR with a
perpendicular magnetic field under the influence of an ion-
ized donor. Calculations were developed within a one-band
envelope-function framework, which is suitable for wide gap
semiconductors like those studied in this work. Finite-size
effects of the QR were fully taken into account in the calcu-
lations.

The electron envelope functions of the lowest states are
mainly localized at the well of the QR at low fields. An
abrupt change of the localization properties appears at a criti-
cal magnetic field, since the electron is then mainly localized
around the impurity. This transition gives rise to well-defined
anticrossing of levels as a function of the magnetic field.
Numerical results of the absorption spectrum in the midin-
frared are sensitive to minor changes in the envelope func-
tion when an ionized donor is located at the center of the QR.
We conclude that optical techniques are suitable for charac-
terizing the effects of ionized donors on the electron enve-
lope functions.
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