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Delocalization of states in two-component superlattices with correlated disorder
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Electron and phonon states in two different models of intentionally disordered superlattices are studied
analytically as well as numerically. The localization length is calculated exactly and we found that it diverges
for particular energies or frequencies, suggesting the existence of delocalized states for both electrons and
phonons. Numerical calculations for the transmission coefficient support the existence of these delocalized
states.

[. INTRODUCTION thickness of the layers will be considered in the paper,
namely (i) the thickness of one of the SL componefis-
Since a remarkable article by Andersbthe problem of ferred to asA layers is fixed and equal tal;, while the
localization of particles in systems with random distribution thickness of the other componer (ayers is randomly dis-
of parameters is still of continuous interest for physicists. Ittributed with probability
was conjectured by Mott and Two8eigorously proved for
some systenfsand then generally argued in Ref. 3 that, in a
case of full randomness of the parameters of the model, all (y)= d’ O<y<d;, 1)
states are localized in one and two dimensions. However, gty '
there exist several exceptions to this rule. These exceptions
are mainly related to the existence of correlations, either in ) ) ) )
disorder or between the quasiparticles of the system, as weliil) Again, the thickness of tha layers is set tal;, while for
as anomalougnonexponentiallocalization found at specific B layers we take a sequence of fixed and randomly distrib-
regions of the energy spectrum. Recently the interest in théted thlcknesseg. In othgr Words:, we take following distribu-
investigations of the conditions for breaking of Andersontion of layersA(fixed)B(fixed)A(fixed)B(random). . ..
localization due to correlations in the disorder has increased [N both cases, conditions on energiasd frequencigsof
substantially. Evidences were found, that in a presence dfelocalized states are found and it is easy to see that they can
internal correlations in disordered systems delocaliged ~ Pe fulfilled. We think that these two types of disorder are
tended states may appe&r?' Due to the lack of experimen- €asy to organize in samples grown by molecular-beam epi-
tal confirmations, there are some controversies around th@xy (MBE) and experimentally check the existence of ex-
importance of these results and their physical applicationdénded states for both electrons and phonons, within the
That is one of the reasons why the experimental evidence ¢iPirit of Ref. 22.
extended states, found in the studies of the electronic prop-
erties of GgAs—AIGaAs superlatticéSL) vv_ith intentional II. TRANSFER MATRIX AND LANDAUER RESISTANCE
correlated disorder by means of photoluminescence and ver-
tical d, resistancé? looks promising. Let us consider a SL consisting of two component mate-
Following this line of work, here we consider two- rials (A andB), grown in thex direction with the thicknesses
component SL’s with particular types of correlated disorderof the layersAx;=x;—x;_,, with i=1,2, ..., N and x;’s
for thickness of the layers. We demonstrate the appearandeeing the coordinate of the boundaries between the layers.
of delocalized states for phonon as well as for electron transWe will investigate the propagation of particles and their
port problems. Following the technique developed in Ref. 23ocalization along the grow direction The wave equation
we find exactly the transfer matrix for scatterers on thefor transversal phonon displacemerfi,y,t) is
boundaries of the layers, and calculate the localization length
and dimensionless Landauer resistance, which allows us to Pu(x,y.1)
determine the energypr frequency of the resonant states for guxy.t
which delocalization occurs. Two types of disorder for the at?

0, otherwise.

—c?Au(x,y,t)=0, 2)
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where the velocity of sound; is defined by the density of The solution of the boundary colditim(ﬁ) allows us to
matterp and modulus of rigidityu asc=u/p. express linearly all amplitudess andc; of scattering modes

Solutions of the wave Eq(2) with frequencyw are a jj the slicei through amplitudes of the initial wavg andc,
superposition of forward- and backward-scattering waves,s follows:
and can be represented as follows:

n
Uzn—1(X,Y,1) = (Cgp_ €K1 X2n-2) Yon= Hl Tip1=Tiy, (6)
- 1=
+Cor e_ikl(x_xzn—z) eiwt’ 3
-t ) @ where we have defined
Uzn(X,Y,1) = (Coneel~Xen-2)+ cype ™l an- D)l c
i .
n:].,...,N, l//i—(a), |—1,2,...,2\l. (7)
where for the wave vectds;, 1=1,2 we have The expression of the transfer matiix
2
w
kP=—. (4) aj P
bl Ti=TyTy-1= B af (8)
Herec;; is the velocity of sound in media quantities with ith
i=1 correspond to those of materialand, in the same way, !
guantities withi=2 correspond to those of materigl In i (kg ok
Egs. (3) 2n (respectively, 2—1) numerates the layei® = —( ! 1+ﬂ) sinky (Xp; 1~ %) 2)
(respectively A). 2\ poky  piky
We should now impose the boundary conditions on the _
solutions (3) for displacementsu,, and u,,_;, as it was +C0SKy (Xgj— 1~ Xgj_2) | e'K2(2i-27%2i-3),
demonstrated in Ref. 23,
AyUsn(Xon—1) = 13 Usn—1(Xon—1), i paky  poka|
M20xUonRon—1) = M10xU2n—1{R2n-1 :E : _ : Slnk1(ij—1_X2j—2)
MoKz 1Ky
U2n(Xan—1) = Uzp-1(X2n-1)N=1,2, .. .N, 5 . o
x @~ ka(Xzj -2 ij—a), 9)

which are nothing but continuity conditions on the displace-
mentsu;(x,y,t) and the forcegu;dyui(x,y,t) at the bound- is easy to obtain performing the product ©f; and Ty,

aries of the layers. matrices

1 [ (pakyt poko)eatei-17x2i-2) - (uok,— puiky) e *al2i-17%2j-2)
sz:ZMzkz (mako— paky) e alai-1xei=2) (kg + poky)e ™ Kalei-1m%j-2) 2
1 [ (ugky+ poky)eetei-27%2-3)  (u ky— poky)e ™ Kel2i—27%2j—3)
T2]71_2:“«1k1 (m1ky— pokp)eelei-27%2i-3) (kg + pokp)e™Melkai-27x-3) | (10

If we now focus on a model where electrons with effec- Analogously, the boundary conditiortS) now will read

tive massm; and potential energy/; at layerA(i=1) or as
B(I=2) impinge on the SL, then it is necessary to change

the equation of motiorf3) for phonons by the Schdinger Uzn(X2n-1) = Uzn-1(X2n-1),

equation for the envelope functiort € 1 andlZL=O hereaf- 1

ten:
) m_zaXUZn(XZH—l):m_laXUZn—l(XZn—l): n=12,...N.
_du(x,t) 1 B o (13
S + z_miA_Vi u(x,)=0, i=12,....A, It is a matter of simple algebra to see from Ed<) and(13)

(11)  that the transfer matrif@) for the electron problem will have
the same form as for phonons in the expresg@nbut re-
but the form of general solutiof8) is valid provided placing pj— 1/m;. _ _
In Ref. 26 the problem of transport of particles in the
) one-dimensional space for a wide class of disordered models
ki=2m;(E—V;). (120 was considered within the transfer-matrix approach and gen-



11434

T. HAKOBYAN et al.

PRB 61

eral results were obtained. It was demonstrated that the tranB-by use of the probability distributioflL). Simple substitu-

fer matrix of one-dimensional problems belongs to SR}2,

tion of expression8) for the transfer matrixT into the for-

group and randomness of media can be exactly taken intmula (16) for A" gives

account for such quantities as the Landauer resist#rités
easy to see that our transfer matrix also belongs to R)(2,
group.

Following Refs. 24—-26 let us now define the dimension-
less Landauer resistance as the ratio of reflection and trans-
mission coefficients

* 1_|T|2

= W = T12T§1

r

T

p= (14

In order to proceed further we should use the relation for the

A'=cog 2k, d] Jcog 2k,db ]
—cosk[ﬁ]sw[Zkzd ]S|r’[2k1d 1
A 2= (cosR #]cog 2k, d} ] — sint?[ 6] sin 2k,d}]
+cosh 9]cog 2k,d)]sin 2k, d} ],
A 3= —i sini{ 9]{cog 2k,d]sin 2k d}]
—cosh 0](1— cog 2k,d! ])sin 2k,db ]},

direct productT® T~ ! presented in Ref. 23:

L L A= —sin 2k,d)]cog 2k, d! ]
a -1\8 _— a B L= B’ v _va .
(T (Tj g =5(8)p(8) g +5 (0¥ AT (), — cosh #]cog 2k,db]sir 2k,d} ],
(15 . _
where A %= (cosH[ ¢]cog 2k,d} ] —sint?[ 6])cog 2k,d}]
1 — cosH #]sin 2k, d! ]sin 2k,db],
AT =STH(TokT o) (16)

AP=i sini 9]{sin 2k, d} ]sin 2k,d}]
is the spin-one part of the direct product. But for Landauer i 1— 2k dl
resistance we need to calculd@e@ T*. It is easy to see from cost#](1-cog Zkydi ]},

Eq. (8) that AJ'=i sin 6]sin 2k, d}],
0'3T 0'3 TT (17)

AP=isini{ 26](1— cog 2k,d}])/2
Therefore by multiplying Eq(15) from the left and right by

o3 we will have A= cosl?[ 6] sini?[ g]cog 2k, d} ], (20
" » 1 r 1 : where ¢ is defined by
(TNa(TN5 =5 (09)5(09) +5 (0 03) L A (0" 03)f. o
(18 cosh 6 (Ml ! M) 21
nol= 2\ puoky  paky @)

It is straightforward now to calculate the Landauer resistance
p by using formulas14)—(18), which seem to depend only andd}=Xxy;_1—X,;_5 anddb=x,;_,—Xy;_5 are the thick-
on (3,3 element of the product of the transfer matrices, = nesses of th¢th pair of layers.
N a3 Now we should fixd} =d; for the componenf and take
1 ( _]:[l Aj) .

the average ovedj2 using the probability distributior{l),
which will give (A)*” defined by the expressiori0), but
This expression is of remarkable interest because it is multi;
plicative in A" (j=1,2,...N), each of which depends

P=3|~ (19

where cof2k,d,] and sir|j2k2djz] are changed by their average
values

only on local parameten&khickness and the other model pa- . sin2d,k,]

rameters of the jth pair of layers. Therefore this expression a=(cog 2k,d}]) = T odk

for the Landauer resistance becomes valid for media with e

arbitrary distribution of the parameters. _ ) sirf[ d,ks]
b=<5|r[2k2d12]>=w. (22)

[II. CONDITIONS FOR THE EXISTENCE

OF EXTENDED STATES Then, for the averaged Landauer resistance we will have

As we see from the expressigh9), due to the multipli-
cative form of the dependence of the Landauer resistance on
local parameters, its average over different type of correlated
disorder can be easily taken. We should simply avergge For large sample sizefN&>1), as it was first argued in
in each layer separately and then take the product of thenRefs. 24 and 27 that the resistance should behave”4s
Now we will consider the two types of correlated disorderwhere the Lyapunov exponentprovides the phonon corre-
mentioned in the Introduction. lation length. Using Eq(23) and the definition of Lyapunov

Let us take fixed thickness for thfelayers of the SL ad;  exponenty=Ilimy_.. In p/N we can find an exact expression
and a random distribution of thicknesses for the componerfor localization length

1
()= 5[~ 1+((A)]. 23



PRB 61 DELOCALIZATION OF STATES IN TWO-COMPONEN . . . 11435

o8l |

06

04

02}

00 D |

1.0 3.0 5.0 0

0 100 200 300 400

N
EN,

FIG. 2. Transmission coefficient as a function of the system
sizeN. The dotted and dashed lines correspond, respectively, to
=7 andn=14 in Eq.(29). The solid line corresponds to an energy
betweem =14 andn=15. Structural parameters are the same as in
the previous figure.

FIG. 1. Transmission coefficientas a function of the reduced
energyE/V,. The arrows show the energies given in E2P). The
height and the nominal width of the barriers are, respectivély,
=0.4 eV andd,=15 A, the width of the wells igl;=200 A,
and the number of periods $=200.

£ l=In\ (24 We will focus our attention on the electr.onic model of dis-

' order we previously referred to as model, and calculate
where\ is the closest to one eigenvalue of the matebé®).  for that kind of disorder the transmission coefficient as a
Excitations are localized or not depending on the behavior ofunction of energy, as well as a function of the system size
£. If at some frequencw, (or energy the localization length When the energy is fixed to one of that given by expression
becomes infinite, we generally have delocalized stimsd ~ (26). The transmission coefficient was numerically computed
the expressiorn24) shows that it will occur whem(w,)  Using the transfer-matrix formalisf:

=1. Therefore we should elucidate whether the mafri} Figure 1 shows the transmission coefficient calculated in
can support unity eigenvalue or not. It is then necessary tg0del(i) as a function of the reduced energ§V, for states
calculate the determinant of the matrix-A), above the barrier. We have chosen a GaAs-AlGaAs SL as a

typical example with the following structural parameters:
2, d;=200 A,d,=15 A,V,=0.4 eV, and\=200. The ar-
) (a“+b°—1), rows are located at the energies predicted by reldg@én It
(25)  turns out that these energies are given by

miky o uoks

MoKy paky

de(1—<A>]=%sin2(d1k1)

from where it follows that the condition to have an extended n2m242
state is E=——, (29
2mydy
sin(dyky) =0. (26 n being an integer number. It is clear that they coincide with
Let us now fix the thickness of the compondnof the SL the sharp resonances in the transmission coefficient that can

asd, and for the componeri take fixed and random thick- °€ 0Pserved in the figure.

nesses in a sequence. Then the extended states can apqea-lro check whether the energies given by the previous re-
when ation (29) correspond to extended states or not, we represent

in Fig. 2 the transmission coefficient for a couple of such
def1—A(A)]=0, (27)  energies as a function of the size of the system, and compare
. it with the case in which the energy of the state lies between
where A is matrix (20) with fixed thickness oB layersd,  two of them. For the energies in E(R9) the transmission
=d,. It turns out that the conditio(27) is equivalent to the  coefficient remains constant as a function of the $iz¢his

equation behavior being expected for an extended state. Meanwhile,
for a state with energy between two resonances the transmis-
1 paky  poka| : sion coefficient decays exponentially.
cosk,d, cosk,d,— = | —— +——sink,d; sink,d,=0.
2\ poky  paky
(28 V. CONCLUSIONS

In summary, we have shown that two particular models of
correlated disordered SL'’s exhibit delocalized states for elec-

In order to validate the results of our previous formalism,trons as well as for phonons. This result has been demon-
we performed some numerical calculations which allow us tcstrated analytically as well as numerically. We have found
show the existence of the extended states discussed abowxactly the energy and frequency for which extended states

IV. NUMERICAL RESULTS
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appear. Notice from Fig. 1 that the resonances of the trangnent of the dc conductance of the sample, as it was actually

mission coefficient around the theoretical valu@$é) are

T. HAKOBYAN et al.
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observed in the case of the so-calletidom dimer SL'$?

rather broad. This suggests that electron and phonon states

close to the values given by E6) should display a rather

large localization length, even larger than the SL length. This
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