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Delocalization of states in two-component superlattices with correlated disorder
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Electron and phonon states in two different models of intentionally disordered superlattices are studied
analytically as well as numerically. The localization length is calculated exactly and we found that it diverges
for particular energies or frequencies, suggesting the existence of delocalized states for both electrons and
phonons. Numerical calculations for the transmission coefficient support the existence of these delocalized
states.
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I. INTRODUCTION

Since a remarkable article by Anderson,1 the problem of
localization of particles in systems with random distributi
of parameters is still of continuous interest for physicists
was conjectured by Mott and Twose,2 rigorously proved for
some systems4 and then generally argued in Ref. 3 that, in
case of full randomness of the parameters of the model
states are localized in one and two dimensions. Howe
there exist several exceptions to this rule. These except
are mainly related to the existence of correlations, eithe
disorder or between the quasiparticles of the system, as
as anomalous~nonexponential! localization found at specific
regions of the energy spectrum. Recently the interest in
investigations of the conditions for breaking of Anders
localization due to correlations in the disorder has increa
substantially. Evidences were found, that in a presence
internal correlations in disordered systems delocalized~ex-
tended! states may appear.5–21 Due to the lack of experimen
tal confirmations, there are some controversies around
importance of these results and their physical applicatio
That is one of the reasons why the experimental evidenc
extended states, found in the studies of the electronic p
erties of GaAs-AlGaAs superlattice~SL! with intentional
correlated disorder by means of photoluminescence and
tical dc resistance,22 looks promising.

Following this line of work, here we consider two
component SL’s with particular types of correlated disord
for thickness of the layers. We demonstrate the appeara
of delocalized states for phonon as well as for electron tra
port problems. Following the technique developed in Ref.
we find exactly the transfer matrix for scatterers on
boundaries of the layers, and calculate the localization len
and dimensionless Landauer resistance, which allows u
determine the energy~or frequency! of the resonant states fo
which delocalization occurs. Two types of disorder for t
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thickness of the layers will be considered in the pap
namely ~i! the thickness of one of the SL components~re-
ferred to asA layers! is fixed and equal tod1, while the
thickness of the other component (B layers! is randomly dis-
tributed with probability

g~y!5H 1

di
, 0,y,di ,

0, otherwise.

~1!

~ii ! Again, the thickness of theA layers is set tod1, while for
B layers we take a sequence of fixed and randomly dist
uted thicknesses. In other words, we take following distrib
tion of layersA(fixed)B(fixed)A(fixed)B(random). . . .

In both cases, conditions on energies~and frequencies! of
delocalized states are found and it is easy to see that they
be fulfilled. We think that these two types of disorder a
easy to organize in samples grown by molecular-beam
taxy ~MBE! and experimentally check the existence of e
tended states for both electrons and phonons, within
spirit of Ref. 22.

II. TRANSFER MATRIX AND LANDAUER RESISTANCE

Let us consider a SL consisting of two component ma
rials (A andB), grown in thex direction with the thicknesse
of the layersDxi5xi2xi 21, with i 51,2, . . . ,2N and xi ’s
being the coordinate of the boundaries between the lay
We will investigate the propagation of particles and th
localization along the grow directionx. The wave equation
for transversal phonon displacementu(x,y,t) is

]2u~x,y,t !

]t2
2ct

2Du~x,y,t !50, ~2!
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where the velocity of soundct is defined by the density o
matterr and modulus of rigiditym asct

25m/r.
Solutions of the wave Eq.~2! with frequencyv are a

superposition of forward- and backward-scattering wa
and can be represented as follows:

u2n21~x,y,t !5~c2n21eik1(x2x2n22)

1 c̄2n21e2 ik1(x2x2n22)!eiwt, ~3!

u2n~x,y,t !5~c2neik2(x2x2n21)1 c̄2ne2 ik1(x2x2n21)!eiwt,

n51, . . . ,N,

where for the wave vectorki , i 51,2 we have

ki
25

v2

cit
2

. ~4!

Herecit is the velocity of sound in mediai; quantities with
i 51 correspond to those of materialA and, in the same way
quantities withi 52 correspond to those of materialB. In
Eqs. ~3! 2n ~respectively, 2n21) numerates the layersB
~respectively,A).

We should now impose the boundary conditions on
solutions ~3! for displacementsu2n and u2n21, as it was
demonstrated in Ref. 23,

m2]xu2n~x2n21!5m1]xu2n21~x2n21!,

u2n~x2n21!5u2n21~x2n21!n51,2, . . .N, ~5!

which are nothing but continuity conditions on the displac
mentsui(x,y,t) and the forcesm i]xui(x,y,t) at the bound-
aries of the layers.
c

g

s

e

-

The solution of the boundary conditions~5! allows us to
express linearly all amplitudesci and c̄i of scattering modes
in the slicei through amplitudes of the initial wavec1 andc̄1
as follows:

c2n5)
j 51

n

Tjc15Tc1 , ~6!

where we have defined

c i5S ci

c̄i
D , i 51,2, . . . ,2N. ~7!

The expression of the transfer matrixTj

Tj5T2 jT2 j 215S a j b j

b j* a j*
D ~8!

with

a5F i

2 S m1k1

m2k2
1

m2k2

m1k1
D sink1~x2 j 212x2 j 22!

1cosk1~x2 j 212x2 j 22!Geik2(x2 j 222x2 j 23),

b5
i

2 S m1k1

m2k2
2

m2k2

m1k1
D sink1~x2 j 212x2 j 22!

3e2 ik2(x2 j 222x2 j 23), ~9!

is easy to obtain performing the product ofT2 j and T2 j 21
matrices
T2 j5
1

2m2k2
S ~m1k11m2k2!eik1(x2 j 212x2 j 22) ~m2k22m1k1!e2 ik1(x2 j 212x2 j 22)

~m2k22m1k1!eik1(x2 j 212x2 j 22) ~m1k11m2k2!e2 ik1(x2 j 212x2 j 22)D ,

T2 j 215
1

2m1k1
S ~m1k11m2k2!eik2(x2 j 222x2 j 23) ~m1k12m2k2!e2 ik2(x2 j 222x2 j 23)

~m1k12m2k2!eik2(x2 j 222x2 j 23) ~m1k11m2k2!e2 ik2(x2 j 222x2 j 23)D . ~10!
e
dels
en-
If we now focus on a model where electrons with effe
tive massmi and potential energyVi at layer A( i 51) or
B(I 52) impinge on the SL, then it is necessary to chan
the equation of motion~3! for phonons by the Schro¨dinger
equation for the envelope function (\51 andkW'50 hereaf-
ter!:

i
]u~x,t !

]t
1S 1

2mi
D2Vi Du~x,t !50, i 51,2, . . . ,2N,

~11!

but the form of general solution~3! is valid provided

ki
252mi~E2Vi !. ~12!
-

e

Analogously, the boundary conditions~5! now will read
as

u2n~x2n21!5u2n21~x2n21!,

1

m2
]xu2n~x2n21!5

1

m1
]xu2n21~x2n21!, n51,2, . . . ,N.

~13!

It is a matter of simple algebra to see from Eqs.~12! and~13!
that the transfer matrix~8! for the electron problem will have
the same form as for phonons in the expression~8! but re-
placingm i→1/mi .

In Ref. 26 the problem of transport of particles in th
one-dimensional space for a wide class of disordered mo
was considered within the transfer-matrix approach and g
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eral results were obtained. It was demonstrated that the tr
fer matrix of one-dimensional problems belongs to SL(2,R)
group and randomness of media can be exactly taken
account for such quantities as the Landauer resistance.24 It is
easy to see that our transfer matrix also belongs to SL(2R)
group.

Following Refs. 24–26 let us now define the dimensio
less Landauer resistance as the ratio of reflection and tr
mission coefficients

r5U rtU* 5
12utu2

utu2
5T12T21* . ~14!

In order to proceed further we should use the relation for
direct productT^ T21 presented in Ref. 23:

~Tj !a8
a

~Tj
21!b

b85
1

2
~d!b

a~d!a8
b81

1

2
~sm!a8

b8L j
mn~sn!b

a ,

~15!

where

L j
mn5

1

2
Tr~Tjs

mTj
21sn! ~16!

is the spin-one part of the direct product. But for Landau
resistance we need to calculateT^ T1. It is easy to see from
Eq. ~8! that

s3T21s35T†. ~17!

Therefore by multiplying Eq.~15! from the left and right by
s3 we will have

~Tj !a8
a

~Tj
1!b

b85
1

2
~s3!b

a~s3!a8
b81

1

2
~sms3!a8

b8L j
mn~sns3!b

a .

~18!

It is straightforward now to calculate the Landauer resista
r by using formulas~14!–~18!, which seem to depend onl
on ~3,3! element of the product of the transfer matrices,

r5
1

2 F211S )
j 51

N

L j D 33G . ~19!

This expression is of remarkable interest because it is m
plicative in L j

mn ( j 51,2, . . . ,N), each of which depend
only on local parameters~thickness and the other model p
rameters! of the j th pair of layers. Therefore this expressio
for the Landauer resistance becomes valid for media w
arbitrary distribution of the parameters.

III. CONDITIONS FOR THE EXISTENCE
OF EXTENDED STATES

As we see from the expression~19!, due to the multipli-
cative form of the dependence of the Landauer resistanc
local parameters, its average over different type of correla
disorder can be easily taken. We should simply averageL i

mn

in each layer separately and then take the product of th
Now we will consider the two types of correlated disord
mentioned in the Introduction.

Let us take fixed thickness for theA layers of the SL asd1
and a random distribution of thicknesses for the compon
s-

to
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B by use of the probability distribution~1!. Simple substitu-
tion of expression~8! for the transfer matrixT into the for-
mula ~16! for L j

mn gives

L j
115cos@2k1d1

j #cos@2k2d2
j #

2cosh@u#sin@2k2d2
j #sin@2k1d1

j #,

L j
125~cosh2@u#cos@2k1d1

j #2sinh2@u#!sin@2k2d2
j #

1cosh@u#cos@2k2d2
j #sin@2k1d1

j #,

L j
1352 i sinh@u#$cos@2k2d2

j #sin@2k1d1
j #

2cosh@u#~12cos@2k1d1
j # !sin@2k2d2

j #%,

L j
2152sin@2k2d2

j #cos@2k1d1
j #

2cosh@u#cos@2k2d2
j #sin@2k1d1

j #,

L j
225~cosh2@u#cos@2k1d1

j #2sinh2@u#!cos@2k2d2
j #

2cosh@u#sin@2k1d1
j #sin@2k2d2

j #,

L j
235 i sinh@u#$sin@2k1d1

j #sin@2k2d2
j #

1cosh@u#~12cos@2k1d1
j # !%,

L j
315 i sinh@u#sin@2k1d1

j #,

L j
325 i sinh@2u#~12cos@2k1d1

j # !/2,

L j
335cosh2@u#2sinh2@u#cos@2k1d1

j #, ~20!

whereu is defined by

cosh@u#5
1

2 S m1k1

m2k2
1

m2k2

m1k1
D ~21!

and d1
j 5x2 j 212x2 j 22 and d2

j 5x2 j 222x2 j 23 are the thick-
nesses of thej th pair of layers.

Now we should fixd1
j 5d1 for the componentA and take

the average overd2
j using the probability distribution~1!,

which will give ^L&mn defined by the expressions~20!, but
where cos@2k2d2

j # and sin@2k2d2
j # are changed by their averag

values

a5^cos@2k2d2
j #&5

sin@2d2k2#

2d2k2
,

b5^sin@2k2d2
j #&5

sin2@d2k2#

d2k2
. ~22!

Then, for the averaged Landauer resistance we will have

^r&5
1

2
@211~^L&N!33#. ~23!

For large sample sizes (N@1), as it was first argued in
Refs. 24 and 27 that the resistance should behave asegN,
where the Lyapunov exponentg provides the phonon corre
lation length. Using Eq.~23! and the definition of Lyapunov
exponentg5 limN→` ln r/N we can find an exact expressio
for localization length
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j215 ln l, ~24!

wherel is the closest to one eigenvalue of the matrix^L33&.
Excitations are localized or not depending on the behavio
j. If at some frequencyvc ~or energy! the localization length
becomes infinite, we generally have delocalized states28 and
the expression~24! shows that it will occur whenl(vc)
51. Therefore we should elucidate whether the matrix^L&
can support unity eigenvalue or not. It is then necessar
calculate the determinant of the matrix 12^L&,

det@12^L&#5
1

2
sin2~d1k1!S m1k1

m2k2
2

m2k2

m1k1
D 2

~a21b221!,

~25!

from where it follows that the condition to have an extend
state is

sin~d1k1!50. ~26!

Let us now fix the thickness of the componentA of the SL
asd1 and for the componentB take fixed and random thick
nesses in a sequence. Then the extended states can a
when

det@12L^L&#50, ~27!

whereL is matrix ~20! with fixed thickness ofB layersd2
j

5d2. It turns out that the condition~27! is equivalent to the
equation

cosk1d1 cosk2d22
1

2 S m1k1

m2k2
1

m2k2

m1k1
D sink1d1 sink2d250.

~28!

IV. NUMERICAL RESULTS

In order to validate the results of our previous formalis
we performed some numerical calculations which allow us
show the existence of the extended states discussed a

FIG. 1. Transmission coefficientt as a function of the reduce
energyE/V2. The arrows show the energies given in Eq.~29!. The
height and the nominal width of the barriers are, respectively,V2

50.4 eV andd2515 Å , the width of the wells isd15200 Å ,
and the number of periods isN5200.
f
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We will focus our attention on the electronic model of di
order we previously referred to as model~i!, and calculate
for that kind of disorder the transmission coefficient as
function of energy, as well as a function of the system s
when the energy is fixed to one of that given by express
~26!. The transmission coefficient was numerically compu
using the transfer-matrix formalism.29,30

Figure 1 shows the transmission coefficient calculated
model~i! as a function of the reduced energyE/V2 for states
above the barrier. We have chosen a GaAs-AlGaAs SL a
typical example with the following structural paramete
d15200 Å , d2515 Å , V250.4 eV, andN5200. The ar-
rows are located at the energies predicted by relation~26!. It
turns out that these energies are given by

E5
n2p2\2

2m1d1
2

, ~29!

n being an integer number. It is clear that they coincide w
the sharp resonances in the transmission coefficient that
be observed in the figure.

To check whether the energies given by the previous
lation ~29! correspond to extended states or not, we repres
in Fig. 2 the transmission coefficient for a couple of su
energies as a function of the size of the system, and com
it with the case in which the energy of the state lies betwe
two of them. For the energies in Eq.~29! the transmission
coefficient remains constant as a function of the sizeN, this
behavior being expected for an extended state. Meanw
for a state with energy between two resonances the trans
sion coefficient decays exponentially.

V. CONCLUSIONS

In summary, we have shown that two particular models
correlated disordered SL’s exhibit delocalized states for e
trons as well as for phonons. This result has been dem
strated analytically as well as numerically. We have fou
exactly the energy and frequency for which extended sta

FIG. 2. Transmission coefficientt as a function of the system
sizeN. The dotted and dashed lines correspond, respectively,n
57 andn514 in Eq.~29!. The solid line corresponds to an energ
betweenn514 andn515. Structural parameters are the same as
the previous figure.
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appear. Notice from Fig. 1 that the resonances of the tra
mission coefficient around the theoretical values~26! are
rather broad. This suggests that electron and phonon s
close to the values given by Eq.~26! should display a rather
large localization length, even larger than the SL length. T
is relevant for transport measurements provided the Fe
level ~in the case of electrons! are located close to one o
these maxima. In such a case, one would expect an enha
s-

tes

is
i

ce-

ment of the dc conductance of the sample, as it was actu
observed in the case of the so-calledrandom dimer SL’s.22
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