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The electronic transport of two quantum dots side-coupled to a quantum wire is studied by means of the 

two impurity Anderson Hamiltonian. The conductance is found to be a superposition of a Fano and a 

Breit–Wigner resonances as a function of the Fermi energy, provided the gate voltages of the quantum 

dots are slightly different. 
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1 Introduction 

Recent progress in nanofabrication of quantum devices enables to study electron transport through quan-

tum dots (QDs) in a very controllable way. QDs are very promising systems due to their physical proper-

ties as well as their potential application in electronic devices. These structures are small semiconductor 

or metal structures in which electrons are confined in all spatial dimensions. As a consequence, discrete-

ness of energy and charge arise. For this reason QDs are often referred as artificial atoms. Two or more 

QDs can be coupled to form an artificial molecule sharing electrons. This analogy opens the way to look 

for new electronic effects that might resemble quantum optics. In this way, it has been recently demon-

strated that coupled QDs shows the electronic counterpart of Fano and Dicke effects that can be con-

troled via a magnetic flux [1].  

 In this work we study electron transport properties of a double QD side attached to a quantum wire 

(QW). We examine the linear conductance at zero temperature and obtain the associated density of states 

when the gate voltages of the QDs are slightly different. The density of states is the sum of two Lor-

entzians, namely a narrow one and a wide one. Thus, these states can be viewed as long- and short-living 

states. We have found that these resonant states have marked effects on the electron transport accross the 

QW, thus allowing for a fine control of the conductance.  

2 Model 

The system under consideration is formed by two QDs connected to a QW, as shown schematically in 

Fig. 1. The dots are composed of two atomic sites connected by tunneling coupling. The entire system is 

modeled by a two impurity Anderson Hamiltonian, that can be written as 
W D WD

H H H H= + +  where  

 † †

W ( )i j i j

i j

H v c c c c
σ σ σ σ

σ· π Ò

= - + ,Â Â  
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H d d U n n
α ασ ασ αα

α σ α

ε Ø≠
= , = ,

= + ,Â Â Â  (1) 

 † †

WD 0 0 0

1 2

( )H V d c c d
ασ σ σ ασ

α σ= ,

= - + .Â Â  

Here σ = ≠, Ø denotes the spin index. †

i
c
σ
 and 

i
c
σ
 are the electron creation and annihilation operators at 

site i of the QW with spin σ , respectively. Correspondingly, †
d
ασ
 and d

ασ
 creates and annihilates an elec-

tron at the QD 1 2α = ,  with spin σ . Moreover, †
n d d
ασ ασ ασ

∫  and U is the Hubbard energy. The site-

energy at the QW is assumed to be zero and the hopping in the QW is denoted by v, whereas 
0

V  couples 

site 0 of the QW to both QDs.  

3 Zero temperature conductance 

Hereafter we will neglect the Hubbard term U and the spin index, so we will be dealing with a one-

electron problem. Therefore, the reduced Hamiltonian  

 † † † † †

0 0 0

1 2 1 2

( ) ( )i j i j

i j

H v c c c c d d V d c c d
α α α α α

α α

ε

· π Ò = , = ,

= - + + - +Â Â Â  (2) 

corresponds to the simplified system depicted in Fig. 1.  

 The linear conductance can be obtained from Landauer formula at zero temperature [2]  

 
2

F

2
( )

e
T

h
ω ε= = ,G  (3) 

where 
F

ε  is the Fermi energy and ( )T ω  is the transmission probability, given by  

 L R

0

L R

2 ( ) ( )
( ) Im [ ]

( ) ( )

W
T G

Γ ω Γ ω
ω

Γ ω Γ ω
= .

+

 (4) 

Here 
0

W
G  is the Green’s function at site 0 of the QW (see Fig. 2), L(R)Γ  is the coupling of this site to the 

left (right) side of the QW.  

 By using a Dyson equation we calculate the Green’s function at site 0 of the QW coupled to the QDs, 

obtaining the following expression  

 
0

1 2

1

2 sin 1 ( )

W i
G

v k i g gγ
= ,

- +
 (5) 

 

Fig. 1 Schematic view of the two quantum dots attached to quantum 

wire. Current passing from the source (S) to the drain (D) is controled 

by the gate voltages V 1

G
 and V 2

G
. 
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where 2

0
π /2 sinV v kγ =  with arccos ( 2 )k vω= - / . g

α
 is given by the following equation: 

 
1

, 1 2g
α

α

α

ω ε

= = , .

-

 (6) 

By considering symmetric couplings 
L R

( ) 2 sinv kΓ Γ Γ ω= = =  we can obtain the linear conductance at 

zero temperature  
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4 Density of states 

The density of states (DOS) can give us a better understanding of the transport properties of the system. 

To obtain it, we calculate the diagonal elements of the Green’s functions of the QDs, G
α

 with 1 2α = , ,  

 
2

1 2

| |

1 ( )

i g
G g

i g g

α

α α

γ

γ
= + .

- +

 (8) 

First we require the local density of states at each QD, 
α

ρ , from the imaginary part of G
α
, and then we 

obtain the DOS summing over α ,  

 
2

2 2 2

1 2 1 2 1 2

( )
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    Setting the sites energies as 
1 0

Vε ε= + D  and 
2 0

Vε ε= - D  and taking V γD � , the DOS reduces to  

 
2

2 2 2 2 2

0 0

1 2 1 2

π ( ) 4 π ( ) ( /2 )

V

V

γ γ
ρ

ω ε γ ω ε γ

D /
ª + .

- + - + D
 (10) 

The DOS is found to be the sum of two Lorentzian with widths 2Γ γ
+
=  and 2

/2VΓ γ
-

= D , as shown in 

Fig. 3. This behavior resembles the Dicke effect in optics, which takes place in the spontaneous emission 

of a pair of atoms radiating a photon with a wave length much larger than the separation between 

them [3]. The luminescence spectrum is characterized by a narrow and a broad peak, associated with 

long and short-lived states, respectively. The former state, weakly coupled to the electromagnetic field, is 

called subradiant, and the latter, strongly coupled, superradiant state. Our results indicate that the anal-

ogy between the electron device and the optical system could be ultimately exploited to uncover new 

effects in quantum electronics. 

 

 

Fig. 2 Simplified model of the quantum dots at-

tached to a quantum wire shown in Fig. 1. 
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 On the other hand, from Eq. (7) the conductance can be written as  

 

F

2 2 2 2

2 2 2 2 2

0 0

2 ( /2 )
.
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e V

h V
ω ε
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G  (11) 

The conductance is the superposition of a Fano line shape and a Breit–Wigner line shape, as depicted in 

Fig. 3.  

 In the limit 0VD Æ  a bound state arises at an energy 
0
ε ,  

 
02 2

0

1 2
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π ( ) 4

γ
ρ ω ε

ω ε γ
= + -

- +

 (12) 

Correspondingly, the conductance is reduced to a Fano line shape  
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=

- +

G  (13) 

The appearance of the bound state is due to that both QDs are coupled indirectly through the QW, yield-

ing a level mixing of both QDs and forming collective states.  

5 Conclusion 

Two QDs with slightly different gate voltages and attached to a QW allow for the control of the conduc-

tance. By using a two impurity Anderson Hamiltonian we have found closed analytical expresions for 

both the conductance and the density of states. The conductance is the superposition of a Fano line shape 

and a Breit–Wigner line shape. In addition, the density of states is the sum of two Lorentzian of different 

widths. It resembles the Dicke effect in optics, which opens the possibility of new quantum electron 

devices based on physical effects that are usually encountered in quantum optics.  

Acknowledgements Work at Antofagasta was supported by Milenio ICM P02-054-F and FONDECYT under 

Grants 1020269 and 7020269. Work at Madrid was supported by DGI-MCyT (Project MAT2003-01533).  

References 

[1] P. A. Orellana, M. L. Ladrón de Guevara, and F. Claro, Phys. Rev. B 70, 233315 (2005).  

[2] R. Landauer, IBM J. Res. Dev. 1, 223 (1957).  

[3] R. H. Dicke, Phys. Rev. 89, 472 (1953). 

Fig. 3 Sketch of the density of states as a 

function of energy, obtained as a sum of two 

Lorentzian functions of very different widths. 

Fig. 4 Sketch of the conductance as a function 

of the Fermi energy, obtained as a sum of a 

Fano and a Breit–Wigner line shapes. 


