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We focus on tight-binding Hamiltonians on a regular one-dimensional lattice with non-random long-
range inter-site coupling Jmn ¼ J=jm� njm and random uncorrelated site energies. Within the model the
localization-delocalization transition occurs at one of the energy band edges provided 1 < m < 3=2.
Using the model we demonstrate that the ratio of the first two momenta of the participation number
distribution for the critical states is a size invariant parameter at some value of the disorder magnitude
Dc. We claim that the invariance manifests the transition. We find that Dc 6¼ 0 at 1 < m < 3=2, suggest-
ing that the system undergoes the localization-delocalization transition with respect to disorder magni-
tude. At m � 3=2, all states are localized.
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1 Introduction

Since the seminal paper by Anderson forty six years ago [1], the localization-delocalization transition
(LDT) of non-interacting quasiparticles in random media has been a topic of extensive studies. For
many years the single-parameter scaling theory of localization (STL) was retaining the general belief
that all single-particle eigenstates were exponentially localized in one (1D) and two (2D) dimensions
[2], and the LDT could occur only in three-dimensional (3D) geometry. Despite the STL does not as-
sume any restriction on the character of disorder, it works well in application to a variety of materials.

Because of recent advances in nanotechnology, researchers have renewed their interest in the LDT
in low-dimensional systems, where the interplay between quantum interference and disorder results in
peculiarities of the Anderson localization that are not observed in 3D systems. Unexpectedly, at the
end of the eighties and beginning of the nineties, several theoretical works [3–6] raised doubts about
the generality of the STL conclusions. These works provided clear evidence that short-range correla-
tions in diagonal disorder could cause delocalization of quasiparticles states even in 1D geometry.
This fact was put forward to explain the high conductivity of doped polyaniline [5] as well as the
transport properties of random semiconductor superlattices [7]. However, it was realized that extended
states formed a set of zero measure in the thermodynamic limit, and no signatures of the LDT were
found.

Further, it was demonstrated that long-range correlations in diagonal disorder could also act towards
delocalization of 1D quasiparticle states [8]. Thus, the spectrum of the 1D Hamiltonians with long-
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range correlated disorder revealed two mobility edges separating extended and localized states [8, 9].
Remarkably, quasiparticles undergo Bloch-like oscillations between these two mobility edges after
applying a uniform electric field [10].

Recently, it was argued, both numerically [11] and by making use of the supersymmetric method
for disorder averaging combined with the renormalization group approach [12], that a LDT could
occur within 1D and 2D models with uncorrelated diagonal disorder and non-random inter-site cou-
pling which falls according to a power law (see also Ref. [13]). Apart from the importance of this
finding from a general point of view, the model is relevant for several physical systems. As an exam-
ple, let us mention dipolar Frenkel excitons on 2D regular lattices where molecules are subjected to
randomness due to a disordered environment [14–16]. Some biological light-harvesting antenna sys-
tems can be described by the model [17, 18]. Magnons in 2D disordered spin systems provide one
more example of interest [19].

In this paper, we present further progress in the characterization of the LDT in 1D systems sub-
jected to diagonal disorder and non-random long-range inter-site interaction. The outline of the paper
is as follows. In Sec. 2 we present the model and discuss magnitudes relevant to monitor the LDT.
These are the two first momenta of the participation number distribution: the mean and the standard
deviation. The results of numerical analysis of size and disorder scaling of these two magnitudes are
presented in Sec. 3. The numerical study demonstrates that the ratio of the two momenta is invariant
at the transition. We conclude with a brief discussion of the relevance of the results in Sec. 4.

2 Model Hamiltonian

We consider the Anderson Hamiltonian on a 1D regular lattice with N sites

H ¼
P
n
enjni hnj þ

P
nm

Jmnjmi hnj : ð1Þ

The coupling between lattice sites m and n is set in the form Jmn ¼ J=jm� njm, where J > 0 without
loss of generality, Jnn � 0, and the lattice constant is set to unity. We stress that the hopping integrals
do not fluctuate, while the on-site energies fengNn¼1 are random variables. They are assumed to be
uncorrelated for different sites and distributed symmetrically around zero, thus having zero mean,
heni ¼ 0. Here h. . .i indicates average over disorder realizations. For performing numerical simula-
tions, we use a box distribution for en with a width D and standard deviation s � he2ni

1=2 ¼ D=
ffiffiffiffiffi
12

p
.

Within this class of Hamiltonians, the LDT (with respect to the disorder magnitude D) occurs at the
upper energy band edge provided 1 < m < 3=2 [11, 12].

Often the participation number (PN) or its inverse, known as the inverse participation ratio (IPR), is
considered to examine the character of eigenfunctions (localized or extended). The PN is defined as
follows

Pn ¼
"PN
n¼1

jwnnj
4

#�1

; ð2Þ

where wnn denotes the n th component of the n-th normalized eigenstate of the Hamiltonian (1),

jYni ¼
PN
n¼1

wnnjni, with n ¼ 1; . . . ; N. For a localized state, the PN depends on the localization length

and does not depend on the system size, provided the latter is large compared to the localization
length. For an extended state, the PN shows scaling with the system size, which is usually put forward
as a signature of delocalization. It should be noticed, however, that the statement that a particular
eigenstate is indeed delocalized, is physically meaningful only in the thermodynamic limit (N ! 1).
Otherwise, one cannot distinguish a truly extended eigenstate from the one with a localization length
larger than the system size. In other words, a simple inspection of an eigenstate does not suffice to
uncover its nature. Consequently, a study of the size scaling of relevant physical quantities is re-
quired.
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One of such quantities is the PN (or IPR) distribution function (see, for instance, Refs. [20, 21]).
We show numerically in Sec. 3 that at some value of disorder Dc, the ratio of the standard deviation
of the PN (SDPN) to the mean PN (MPN) is size invariant; the family of SDPN/MPN disorder-scaling
curves parametrized by the system sizes reveals a common intersection point at Dc. A similar feature
of the distribution function of the IPR was found analytically for a critical ensemble of power-law
random banded matrices in Refs. [20, 21]. This analogy allows us to interpret Dc as the critical point.

3 Numerical results

The LDT in the present model occurs at the top of the energy band (for J > 0). Therefore, to monitor
the LDT only the uppermost eigenstate of the Hamiltonian (1) is considered hereafter. For doing this,
we took advantage of the Lanczos method [22], enabling one to calculate a single eigenstate of the
Hamiltonian (1), and computed the uppermost eigenstate for relatively large system sizes (up to about
6� 104 sites). Open chains were used in all simulations.

Figure 1 demonstrates the driving effect of the exponent m of the inter-site coupling on the charac-
ter of the uppermost eigenstate. The simulations were performed for m ¼ 4=3 < 3=2 and
m ¼ 9=5 > 3=2 and a moderate magnitude of disorder D ¼ 5J. The system size was set to N ¼ 2048.
As is seen, the eigenstates differ drastically from each other, spreading over the entire lattice for m
smaller than 3=2, while being localized in the opposite case.

In Fig. 2 we show the results of a study of the disorder scaling of the ratio SDPN/MPN for differ-
ent system sizes. The value m ¼ 4=3 is chosen as an example. From this figure it follows that the
relative PN fluctuation is indeed size-invariant at some value of the disorder magnitude; all curves
plotted versus disorder have a joint intersection point. In this particular case, it is Dc ¼ 10:2� 10:6 J
(slight size dependence of the intersection point is a finite size effect and is discussed below). This is
the transition point. The figure demonstrate as well that both the MPN and the SDPN are of the same
order of magnitude at the intersection for any system size, as was suggested in Refs. [20, 21] for the
model of power-law random banded matrices. Remarkably, the disorder scaling of SDPN plotted sepa-
rately shows a maximum in the vicinity of the transition (see Fig. 3), confirming the conjecture that
the PN at transition is characterized by large fluctuations, the mean and the standard deviation of
which of the same order of magnitude.

Contrary to the standard Anderson model with nearest-neighbor coupling, the contribution of long-
range coupling terms to the spectrum of the Hamiltonian (1) converges very slowly upon increasing
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Fig. 1 Uppermost eigenstate for a) m ¼ 4=3 and b)
m ¼ 9=5 and a moderate magnitude of disorder
D ¼ 5J. The set of random site energies feng is the
same in both cases.

Fig. 2 Disorder scaling of the ratio SDPN/MPN for
m ¼ 4=3 in the vicinity of the joint intersection point at
D ¼ 10:2� 10:6 J. The curves are calculated for differ-
ent system sizes N and averaged over more than
5� 103 � ð65536=NÞ disorder realizations.
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the system size. The convergence is dramatically slow for m ! 1. This results in a corresponding
increase of the energy band width (actually, the upper band edge energy). Under cyclic boundary
conditions the upper edge energy of the bare energy band depends on the system size N (at N � 1) as
follows:

EðNÞ ¼ 2 zðmÞ � CðmÞ
Nm�1

þ O
1
Nm

� �
; ð3Þ

where zðmÞ is the Riemann z-function, CðmÞ ¼ 2Gð2� mÞ cos ½p ðm� 1Þ=2 �=ðm� 1Þ, and GðzÞ is the
G-function. For an open chain, no analytical expression for the upper band edge EðNÞ can be ob-
tained. Nevertheless, its size scaling is close to Eq. (3) and the leading non-zero power of N in the
expansion is also 1� m. The increase of the energy band width with the system size means that
disorder of the same magnitude is effectively stronger for smaller systems. This finite size effect
introduces regular dependence of the critical disorder magnitude (that can be obtained by numerical
analysis) on the system size. The contribution of other finite size effects, such as influence of bound-
ary regions, can be expected to be weaker for larger systems due to very slow convergence of the
upper band edge energy (/ N1�m). Our calculations of the relative PN fluctuation scaling confirm this
conjecture. Accounting for the contribution of the the band edge size dependence, we obtained that
the critical magnitude of disorder for m ¼ 4=3 is Dc ¼ ð10:9� 0:2Þ J in the thermodynamic limit
(N ! 1) [23].

Using the same technique we analyzed the localization properties of the model in the marginal case
(m ¼ 3=2), where the states are expected to be weakly localized [12]. Figure 4 shows the SDPN/MPN
scaling curves of the uppermost state in the vicinity of the only joint intersection point that appears to
be trivial: Dc ¼ 0. Thus, no signatures of the LDT are observed in the marginal case, indicating that
all states are localized.

4 Conclusions

In summary, we demonstrated numerically that random Hamiltonians on 1D regular lattices with diag-
onal disorder and non-random long-range inter-site coupling, Jmn ¼ J=jm� njm (J > 0), revealed criti-
cal behavior at the top of the energy band provided 1 < m < 3=2. To be specific, the system under-
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Fig. 3 SDPN of the uppermost state as a function of
the degree of disorder D=J for m ¼ 4=3 and different
system sizes N. Notice the shift of the maximum to
higher degree of disorder on increasing the system size.

Fig. 4 Disorder scaling of the ratio SDPN/MPN for
m ¼ 3=2 in the vicinity of the joint intersection point
at Dc ¼ 0. The curves are calculated for two different
system sizes (N ¼ 8192 and N ¼ 65536) and averaged
over more than 5� 103 and 105 disorder realizations,
respectively. The inset shows a blow up of the cross-
ing point at the origin.
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goes a LDT on increasing the magnitude of disorder D. In order to prove this, we studied the disorder
scaling of the ratio SDPN/MPN at different system sizes. We found that the ratio is a size-invariant
parameter at some magnitude of disorder Dc, indicating the transition point. This finding suggests the
usage of this invariance to monitor a LDT. In particular, for m ¼ 4=3 the critical magnitude of disor-
der is at Dc ¼ ð10:9� 0:2Þ J (in the thermodynamic limit). Thus, the one-parameter scaling theory of
localization does not apply to this class of Hamiltonians.

In the marginal case (m ¼ 3=2), the band edge states are expected to be weakly localized [12].
Studying the disorder scaling of SDPN/MPN for m ¼ 3=2, we found that the critical point is trivial:
Dc ¼ 0, which indicates that all states are localized in the marginal case at whatever finite disorder.
To the best of our knowledge, this is the first direct numerical proof of state localization in the weak
localization limit, without using the single-parameter scaling hypothesis.
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