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We present a model for alloys of compound semiconductors by introducing a one-dimensional bin-
ary random system where impurities are placed in one sublattice while host atoms lie on the other
sublattice. The source of disorder is the stochastic fluctuation of the impurity energy from site to
site. Although the system is one-dimensional and random, we demonstrate analytically and numeri-
cally the existence of a set of extended states in finite systems, whose energy lies close to that of
host atoms.

1. Introduction

Electron states in random systems have become an active research topic since the gen-
erality of localization phenomena in one dimension (1D) [1]. Although it is well estab-
lished that almost any nonzero disorder causes exponential localization of all eigen-
states in 1D systems, regardless their energy (see, e.g. Ref. [2] and references therein),
there exist several exceptions. It is nowadays well known that extended states may arise
in random systems where disorder exhibits short-range [3 to 18] or long-range correla-
tions [19, 20]. Spatial correlation means that random variables are not independent
within a given correlation length. Suppression of localization by correlations was further
put forward for the explanation of high conductivity of doped polyaniline [7] as well as
transport properties of random semiconductor superlattices [21].

In this paper, we report further progress along the lines in the preceding paragraph.
We turn ourselves to one of the pioneering works in the field, namely the work of
Phillips and Wu on polyaniline (see Ref. [7] and references therein). These authors
showed that polyaniline can be mapped onto a random dimer model that has a set of
extended states, originated by a resonance of a single dimer defect (two neighbor sites
with the same energy). Electron states whose energy is close to this resonance turn out
to be extended (in the sense that their localization length is larger than the system size)
when dimers are placed at random in the 1D system. In this paper, we show that reso-
nances can yield extended states in long-range correlated systems. To this end, we built
up a simple model of semiconductor binary alloy, like ternary III-V compounds. In
these alloys (say Al,Ga;_,As), the cation sublattice is occupied by the same atoms (say
As) while anions (say Al and Ga) are randomly distributed over the other sublattice.
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We model these alloys by considering a 1D random binary alloy with two species, re-
ferred to as A and B atoms hereafter. In order to mimic the disorder present in the
anion sublattice, we further assume that the site energy of A atoms is randomly distrib-
uted from site to site while that of B atoms is the same over the entire cation sublat-
tice. We demonstrate the occurrence of extended states in the vicinity of the site energy
of B atoms in spite of the fact that the system is purely 1D and random. From the study
of the divergence of the localization length and the density of states (DOS) at the site
energy of B atoms we conclude that the number of such extended states scales as the
square root of the number of lattice sites.

2. Model

We consider a 1D binary system where A (B) atoms are placed at odd (even) positions
of the otherwise regular lattice, whose corresponding site energies are ¢, 1 (¢,) with
n=1,2,...N, N being the number of unit cells of the alloy. The Schrodinger equation
for stationary eigenstates ¢, (E) is

(Eien)wn+1/Jn+l+wn—]:07 Vl:1,27...,N7 (1)

where E is the corresponding eigenenergy, ¢, is the site energy and N =2N is the
number of atoms in the system. According to our model, site energy at even positions
is the same and we can set ¢, = 0 without loss of generality. The source of disorder in
this model arises from the stochastic fluctuations of site energy at odd positions. We
assume that {ez,,_l}”N:1 is a set of uncorrelated random Gaussian variables with mean
value v and variance o®. Hereafter o will be referred to as degree of disorder. The joint
distribution function of a realization of disorder is represented by the direct product of
single Gaussians. Thus,

(n-1) = v, (en-16w-1) = (V* + 0%) O - (2)

The Schrodinger equation (1) can be written via the 2 x 2 promotion matrix P, as

follows:
Wn — 0 1 1/),,,1 ) =pP (%1 ) 3
<w"+l> <_1 _E+6"> < Yn - Yn . ( )

By iterating this equation we can relate (y,,v,_,) and (¥, ¥;) with ¢, =0,

<wf$>:}i’°"<$?>EM"($?)v 4)

where M,, is referred to as the transfer matrix. We find most convenient to deal with
the promotion matrix of the (diatomic) unit cell instead of that corresponding to a
single atom (3), namely 7, = P,,P,,_1. For real E and ¢,, the promotion matrix 7}, can
be regarded as an element of the SO(1,2) group, isomorphic to SL(2,R). It can be cast
in the following form via the Pauli matrices o,,:

E
> (E—¢ep1)—1

€n-1

E
T,= I, - ) (E—€em-1) 03

+

o1 +1i (E - 62’;1) 07, (5)
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where Z,, denotes the m x m unit matrix. It is easy to demonstrate the following useful
property T, ! = 0,T}0,. The transfer matrix of the entire system (N unit cells) is ob-
1

tained as My = [] T,. Oseledec’s theorem [22] states that the following limiting matrix
T exists: n=N

r= lim (MLMN)WN, (6)

with eigenvalues e”.

3. Existence of Extended States

In order to find the localization length one should calculate the matrix M;\,M  for large
N. We will perform this task following the technique developed in Ref. [23]. By using
the formula for the decomposition of the product of two spin-1/2 states into the direct
sum of scalar and spin-1 states, we have

g 1 1 y

(T (T =500 (0 + 5 (")l 47 (0" ()

where
v 1 upr—1 v

A =3 T (1077 10%) )

is the spin-1 part. Multiplying the expression (7) by the left and right by o, we have
1 4 1 /
(T (T = 5 (02)f (02)ly +5 (002 A (0" 2)j. 9)

Now we should take into account the disorder and calculate the average of I by
random distribution of ¢,,_; at odd sites

) :%02 D045 (0”02) ® (0"02) (ﬁ(/b)) , (10)
=

where /; is defined by (8). According to Oseledec’s theorem [22], the Lyapunov expo-
nent of the ensemble for an energy value E, which is nothing but the inverse of the
localization length A~', where A is given in units of the length of the unit cell, will be
given by

A7 = log [E(E)], (11)

where £(E) is the closest to unity eigenvalue of (/1;), whose elements are

1
(Al =2 (24 B +4B0 20 — 0 = 4 (02 + 2 —4) E?),

2
(A?) = —% (E“ — 2%+ 0* + P+ (0* +* - 2) Ez) ,
(AP) = —E —v+2E0 — (6> + " —2) E

(A2 :%(E4+4Ev—2ESU—GZ — 4 (0% +* - 2) Ez) :
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(AP) = % (2 FEY 2Bt 4P+ (0P ) E2) ,

(AP = —i (E3 +v—2E%+ (0 +7) E) ,

(A = 2E+E +v—E,

(/1]32) =—i (E3 —v— EZU) ,

(AP) =1-2F" + 2Ev. (12)

Delocalized states have an infinite localization length and, therefore, at some particu-
lar energy E, the matrix (/;) should have an eigenvalue equal to unity. Hence we get
the following condition for obtaining delocalized states:

det [Z5 — (4))] = —20°E* =0. (13)

As we see, there is a delocalized state at £ = (. This result is also supported by the fact
that the state with £ = 0 is the solution of the Schrédinger equation (1) for an infinite
system, for which v,, | +,,_; = 0. Thus, the state with £ = 0 spreads uniformly over
the entire lattice since the probability amplitude [iy,, 4 \2 at odd sites is constant.
Futhermore, the main point of the present method relies in the fact that one can calcu-
late the localization length for any arbitrary state with E # 0. To get some insight into
this result, let us expand (11) around E = 0 to get

—0—2E+0(E2)~ E<0
At={ d ’ ’ (14)

W'\PEV? 4+ O(E*?); E>0,

for v > 0. Notice that the localization length is asymmetric around the energy of the
extended state since it scales as ~ E at the left and ~ E'/2 at the right. The situation is
just the opposite for v < 0. Remarkably, the prefactor at the left depends on the degree
of disorder of the alloy but becomes independent of disorder at the right.

When the degree of disorder
vanishes (0 = 0), the alloy is simply a
diatomic periodic chain with site en-
ergies 0 and v in each unit cell and,
consequently, there are two allowed
bands. The lower band ranges from
v/2 — (1*/4+4)"* up to 0 while the
upper band ranges from v up to

Fig. 1. Inverse of the localization length
as a function of energy when v =1 and
o =0.1, 0.5 and 1.0. Notice that A — oo at
E=0
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v/2 + (V*/4 + 4)]/ % for v > 0. In this case all eigenstates are Bloch functions and spread
over the entire chain. Localization occurs as soon as a small degree of disorder is intro-
duced in the system. But, according to our previous result, the eigenstate with £ =0
remains extended. This is clearly seen in Fig. 1, where the inverse of the localization
length obtained from (11) is plotted against E for v = 1 and different degrees of disor-
der o. In all cases the inverse of the localization length is nonzero except at £ =0,
where A~ = 0. This suggests the occurrence of a delocalized state at E = 0. We leave
the discussion on finite systems for the next section.

4. Numerical Results

To confirm the above analytical results we have also numerically diagonalized the
Schrodinger equation (1). We will mainly focus our attention on the normalized DOS
(DOS per unit length) p(E), and on the degree of localization (inverse participation
ratio, IPR) for the states at energy E. They are defined, respectively, as follows [24]:

p<E>=}V<;(%)e > (15)
oGO e ()

where the angular brackets indicate an average over an ensemble of disordered linear
chains and ay, is the eigenvector of (1) corresponding to the eigenvalue Ej; with
k=1,2,...,N. Here R is the spectral resolution and 6 is the Heaviside step function.
The IPR behaves like 1/N for delocalized states spreading uniformly over the entire
system on increasing A. In particular, the IPR can be exactly computed for the eigen-
states of the periodic lattice. In doing so we obtain the expected behavior for N' — co.
On the contrary, localized states exhibit much higher values. In the extreme case, when
the eigenstate is localized at a single site, the IPR becomes unity.

We have fixed v =1 and studied several values of the degree of disorder o, ranging
from 0.1 up to 1.0. The highest value of the degree of disorder considered in the pre-
sent work means that the typical fluctuations of the site energy are of the order of the
nearest neighbor coupling. The maximum number of atoms in the chain was N = 1000
(500 unit cells) although larger systems were also studied to check that our main results
are independent of the size. The results comprise the average over 100 realizations of
the disorder for each given pair of parameters v and o. The spectral resolution was
R=14x1073.

Let us comment the results we have obtained numerically. Figure 2 shows the DOS
for two different values of the degree of disorder (o0 = 0.1 and 1.0) when the system
size is N =1000 and v =1. The DOS presents the usual U-shape within the bands
when the degree of disorder is small. The singularities at the edge of the allowed bands
are smeared out on increasing the degree of disorder except at E = 0, where the diver-
gence remains even for the largest degree of disorder (¢ = 1.0). This result suggests the
state at £ = 0 is delocalized.

The degree of localization (IPR) presents an overall increase when the degree of
disorder increases, meaning that the larger the degree of disorder, the smaller is the
localization length. This is clearly observed in Fig. 3, where we show the IPR as a func-

R
2 _E-E
5~ | Kl

R
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2 Fig. 2. Density of states as a function of
-——- o=0.1 energy when the lattice size is A/ = 1000,
......... o=1011 1 v=1 and the degree of disorder is
0=0.1 and 1.0. The inset shows an en-
1 larged view close to the top of the lower
band for 0 = 1.0 and the solid line is the

1 V—E fit

tion of the energy for the same param-

eters as in Fig. 1. However, the in-

| crease of the IPR strongly depends

w&:?l"% ! on energy, being more pronounced

i 2 close to the center of both allowed

- 0 2 4  bands. Interestingly, the IPR at £ =0

E becomes independent of the degree

of disorder although depends on the

system size, as expected. This peculiarity manifests the delocalized character of the state

at £ = 0. Finally, notice the good correspondence between Fig. 1 (analytical result) and
Fig. 3 (numerical result).

Some words concerning the relevance of this extended state in transport properties
are now in order. From a rigorous mathematical point of view, Eq. (14) demonstrates
the existence of a single extended state in infinite systems. However, the divergence of
the localization length A at the resonant energy points out that several states present
localization length larger than the system size in finite systems. We can roughly calcu-
late the number of such states from some basic considerations: It is apparent from the
divergence of the normalized DOS at the resonant energy (see Fig. 2) that there exists
a number of states close to the top of the lower band even in the presence of disorder.
We can safely admit that the DOS di-
verges as p(E) ~ 1/v/—E, like peri-
odic systems, close to the top of the
lower band even in disordered sys-
tems (see inset of Fig. 2 for the higher
value of the degree of disorder con-

0.3

0.2 sidered in this work, namely o = 1.0).

From (14) it is clear that the localiza-

@ tion length is larger than the system
3

Fig. 3. Inverse participation ratio for the
same cases as shown in Fig. 1. Notice the
overall increase on increasing the degree
of disorder except at £ =0
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size for those states whose energy lies within the range E = E. = —4v/No? up to
E = 0. The number of such states is then

(f)./\fp(E) dE ~ VN .

Therefore, we are led to the conclusion that the localization length of ~ v/ states is
larger than the system size. Remarkably, a similar scaling was found in the random
dimer model [4].

5. Conclusions

In this paper, we have considered electron dynamics in a one-dimensional model of
binary alloy where disorder lies in one of the two sublattices. Although the system is
one-dimensional and random, we have demonstrated analytically the existence of a de-
localized state in infinite systems at an energy matching that of atoms of the other
sublattice. The relevance of such a state on the transport properties is still an open
question since the advent of the random dimer model [4]. Most important from a prac-
tical point of view, we have obtained a closed expression for the divergence of the
localization length around this particular energy. Numerical results from the evaluation
of the DOS and IPR (degree of localization) strongly suggest that there exist many
(~ VN states close to the resonant energy that remain extended in finite systems, in
the sense that their localization length is larger than the system size.
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