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Narrow-gap semiconductor compounds like Pb, _,Sn,Te and Hg, - .Cd,Te present band 
inversion under compositional variation. In a band-inverted heterojunction the fundamental 
gap, defined as the difference between r6 and Ts energies, has opposite signs on each side 
[l]. Type 111 superlattices with band inversion of CdTe/HgTe and PbTe/SnTe have been 
successfully grown in the past [2, 31. One of the most conspicuous characteristics of 
band-inverted heterojunctions is the existence of interface states lying within the fundamental 
gap, provided that the two gaps overlap [4 to 81. In IV-VI compounds those interface 
states are properly described by means of a two-band model using the effective k ' p  
approximation. On the contrary, the analysis is more complex in 11-VI compounds due 
to mixing with heavy-hole states since non-centrosymmetry effects are not negligible in this 
case. The equation governing conduction- and valence-band envelope functions in a simple 
two-band model, neglecting far-band corrections, is a Dirac-like equation. Exact solutions 
can then be found in view of this analogy because one can use elaborated techniques like 
those related to supersymmetric quantum mechanics [7]. The aim of this note is to present 
an alternative way of solution based on the so-called point interaction potentials [9, 101 (any 
arbitrary sharply peaked potential approaching the &function limit) along with a Green 
function method. We believe that our treatment gives a very intuitive explanation of the 
origin of interface states, while other approaches may obscure the way how those states 
arise. Moreover, the effects of external electric and magnetic fields can be included in a 
straightforward fashion, as we will show later. 

In the effective-mass approximation the electronic wave function is a sum of products of 
Bloch functions at the band edge with slowly varying envelope functions. The two-band 
model Hamiltonian in the absence of external fields is of the form 

where the Z-axis is perpendicular to the heterojunction, EG(z)  stands for the position 
dependent gap, cty, a,, and f l  are the usual 4 x 4  Dirac matrices, uL and u, are interband 
matrix elements having dimensions of velocity. As usual, it is assumed that these matrix 
elements are constant through the whole heterostructure due to the similarity of the zone 
centre in both semiconductors. Since the gap depends only upon z ,  the transverse momentum 
is a constant of motion and we can set the Y-axis parallel to this component. In the two-band 
case there are four envelope functions including spin and we arrange them in a four- 
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component vector F(u) .  This vector satisfies the equation 

H F ( r )  = [ E  - V(Z)]  F ( v ) ,  (2) 

where V ( z )  gives the position of the gap centre. It is understood that the growth direction 
is [Ill]. The way V ( z )  changes from one layer to another is not well understood but, 
assuming that the interface states spread over distances much larger than the interface 
region, we can confidently consider it as a step-like function. Accordingly we take 

E G ( Z )  = E G L ~ ( - z )  f EGRe(z), 

V ( z )  = Y-e( -z )  + VRe(z), 

(3 a) 

(3 b) 

(3 being the Heaviside step function. Here, the subscripts L and R mean left and right sides 
of the heterojunction, respectively. 

As we have already mentioned above, the momentum perpendicular to the interface is 
conserved, and therefore we look for solutions of the form 

F(u) = F ( z )  exp (' ui .pL) (4) 

to (2). The function F ( z )  satisfies the following equation: 

( E y " l p 1  f %,",p, + 4 fiEG(z) - E + v ( z ) )  F ( z )  = 0 .  

F ( z )  = (Ey"1PL + E P Z P Z  + + PEG(Z) + E - v(4) x ( z ) .  

( 5 )  

A simple way to solve this equation is the Feynman-Gell-Mann ansatz [l 11 

(6) 

After a little algebra we obtain 

(7) 
For brevity we have defined 

and we have used the relationships de(fz)/dz = +6(z). Note that in the case of a 
band-inverted heterojunction EGREGL < 0. 

It is worth mentioning that (7) is nothing but a Klein-Gordon equation with scalar-like 
and electrostatic-like terms depending on position (like a relativistic spinless particle with 
a position-dependent mass in an electric field as occurs in QED) plus a point interaction 
potential arising from the discontinuity of the gap and the gap centre. The occurrence of 
this short-range potential makes possible the existence of bound states deep in the gap. In 
order to find the bound states we use a Green function formalism, similar to that previously 
used in the case of the Dirac equation with point interaction potentials [12]. To this end, 
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let us consider the Green function associated to (7) without the point interaction potential, 

E;(z) - [ E  - V(z)12 + ~ : p :  G(z ,  z‘; E )  = 1,6(z - z’) , 

(9) 
11 

where I ,  stands for the 4 x 4 unity matrix. Since we are interested in bound state levels, 
the boundary conditions read 

lim 
121% Iz’ l+ a 

G(z ,  z’; E )  = 0 .  

The Green function is a 4 x 4 matrix which permits the factorization G(z ,  z’; E )  = g(z ,  z’; E )  I,, 
where g(z ,  z‘; E )  is a scalar function since the operator on the left-hand side of (9) is scalar. 

The solution of (7) is then simply written as follows: 

m 

~ ( z )  = iAa,(P - L) dz‘ G(z ,  z’; E )  6(z’) ~ ( z ’ ) ,  
- m  

= ida,(P - 2) g(z ,  0;  E )  X(0). (11) 

It is assumed that the envelope functions are continuous at  the heterojunction so that the 
value ~ ( 0 )  is defined without ambiguities; this is completely different from what is found 
in the Dirac equation for point interaction potentials (see [9] and references therein). Once 
the Green function is known, the 4-vector ~ ( z )  can be obtained and using (4) and (6) the 
envelope functions are finally determined. Bound state levels can be computed taking the 
limit z + 0 in (1 1). To  obtain nontrivial solutions we require the 4 x 4 determinant to vanish. 
Thus, using the definitions of A and i given in (8) we obtain 

At this point we would like to stress that we just require the value of the Green function 
at the origin of the ( X ,  X ’ )  plane if only the bound state levels are needed. In the absence 
of external fields, as we are considering here, this value is actually not difficult to obtain. 
Let u+ and u -  be two independent, scalar solutions of the Sturm-Liouville problem (7) 
(dropping the point interaction term), vanishing at  + GO and - co, respectively. Therefore, 
we can write 

where W[u+,  u - ]  is the Wronskian of the two solutions. Defining two real parameters 
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the two independent solutions are u+ = exp ( -K,z) and u -  = exp (KLz) so that g(0,O; E) 
= 2/(& + KL). Using (12) one finally obtains 

K ,  and K ,  should be real for obtaining exponentially decreasing envelope functions as 
IzI -+ co and then the gaps must overlap, i.e. (EGR - EGL)2/4 > (VR - VL)2. This solution 
agrees with that previously proposed by Korenman and Drew [5].  The reader is referred 
to [5] for a full discussion of its physical implications. Here we stress the main advantages 
of using our method. First of all, we have restricted ourselves to the case of no external 
potentials. Nevertheless, it is clear that applied electric or magnetic fields can be easily 
handled with minor modifications of the equations. Note that the crucial point is that one 
assumes that the Klein-Gordon equation without the point interaction potential arising 
from the abrupt interface can be solved exactly and the corresponding Green function is 
explicitly written out. This is so for a large variety of electric and magnetic field configurations, 
as pointed out in [13]. Thus, for instance, it is possible to investigate Landau levels in 
band-inverted heterojunctions in a rather simple way, instead of using more elaborated 
mathematical treatments, as those recently carried out by Aggasi [14]. In addition, it is also 
possible to study the confined Stark effect, a topic which remains open in the literature. 
The second aspect we remark is the fact that there is no need to use an abrupt hetero-junction 
model, simulated by a step potential. The only requirement is that KR1 and K L 1  must be 
much larger than the interface itself, an implicit assumption when using the envelope- 
function formalism. Qualitatively the profile of the heterojunction is soliton-like [7] 
and, as a consequence, its derivative is a sharply peaked function. Thus the integral 
equation (1 1) can be solved by a limiting process, in analogous way to the Dirac equation 
for sharply peaked functions approaching the &function limit [ 121. To conclude, we 
feel that the approach we developed holds valid in a large variety of cases of practical 
interest and it may help in a better understanding of interface states in band-inverted 
heterojunctions. 
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