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During the last few vears, graded-gap superlatlices have been the subject of very detailed
investigations as interesting malterials for device applications [1, 2]. The graded doping
creales a modulation of both conduction and valence bands, which may be approximated
by a sawtooth potential. The miniband structure can be obtained within the envelope-
function approximation [3], the system being usually described by a scalar Hamiltonian
(Schrodinger-like} corresponding to decoupled bands. However, this approach cannot
adequately describe those graded-gap superlattices whose band modulation is comparable
to the magnitude of the gap, and a more realistic band structure 1s ¢ssential to properly
describe the electronic structure. [n this note we calculate the miniband structurc of
graded-gap superlattices within a two-band model, which is known to be valid in a large
variety of semiconductor superlattices where the coupling of bands is not negligible, as
occurs In some narrow-gap [II-V compounds (InAs, InSh, GaSbh).

We obtain the miniband structure in the superlattice by means of the clfective-mass k - p
approximation. There are two coupled envelope [unctions deseribing the conduction band
and valence band states of the semiconductor, subject to an effective 2 x 2 Dirac-like equation
along the growth direction z,

(—ihve, 0 + L E(2) 0. — E) ('f‘:(‘)) -0, (1)
f£A2)
where O = d/dz, ¢, and 7, are Pauli matrices, and E_(z) stands for the position-dependent
gap in the two-band semiconductor superlattice. The spatial periodicity of the lattice implies
that E (z + L) = E,(z), L being the period of the superlattice. We assume that the centre
of the gap remains unchanged when doping; this simplifies calculations and is a good
approximation in several cases (for instance, in GaAs—Ga, Al As the centre of the gap
varies only 10% of the gap difference in both materials). The velocity v = (E/2m*)"? is
almost constant in direct gap [1I-V semiconductors, and we will assume this constancy
hereafter. In graded-gap structures the gap varics linearly with position so that we can write

E,z) = E,p + (Ey — ) (]:) = E,, + AE, (;) (2)

where E , = E,(0) and E,, = E (L) for 0 < z < L. Notc that E(z) is equivalent to a
relativistic scalar-like potential in the Dirac theory, that is to say, (1) is analogous to the
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Dirac equation for a relativistic particle with a position-dependent mass. We exploit this
analogy to find the cxact solutions of (1) for the graded-gap (2). It is well-known that the
Dirac equation for linear scalar-like potentials admits exact solutions (see [4, 5] and references
therein) and we can use a similar method to solve (1).Therefore, we deline

(f?(z)) — (—ihvo,d + Y E(z) o, + E) (’(p(z)), (3)
1.(2) ¢(z)
and inserting (3) in (1) one obtains the equation for the function ¢(z) as
, 1 hv AE
|: h2p? 8% + I El(z) — E* — ( i g):| ¢(zy=0. 4

Equation (4) may be reduced to a standard form, the equation of the parabolic cylinder,
by making the change of parameters according Lo

I z
C = |/7 E.. +AE - ), 5a
* v AE, ( 80 s L) (>2)

B EL (5b)
" waE,
On making these substitutions one gets
d2p(x) ( x? 1
+| - —+n+ —]okx)=0, 6
0 PR @(x) \ (6)

whose two independent solutions are parabolic cylinder functions D, (x) and D, (- x). Using
(3) we find that envelope functions in the conduction and valence bands can be cast in the
matrix form

(i:z;) — D[x(z)] (’;); O<z<L, (7)

where A and Barc arbitrary constants and the 2 x 2 matrix D[x(z)] is written out explicitly

Dlx(2)] = |:—f (D,(x) = /4D, (x)}  — i{D,(—%) + Vﬁpﬂ_l(x)}]
x(z (x) + /4D, 1 (%) D=x) = /aD,- (=x) |

Once the general solution of the Dirac equation (1) is obtained, appropriate boundary
conditions should be used to [ind cigencnergics. We assume the continuity of the envelope
functions al the interfuce z = I, namely,

(fc(L:)) _ (ff(a))’ ©)
SALT) S(LT)

along with the Bloch condition in the growth direction

.r;(L)) _ (ﬂ(O)) 0
(f;,(m P D 4 o) 10

(8)
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where k denotes the component of the momentum along the growth direction z. By means

of the general solution (7) we can find the dispersion relation as
cos kL = § Tr (D™ '(x,) D(x,)),

where for brevity we have defined

oL

gl

hw AE,

(11)

Finally, using the relationship between parabolic cylinder functions and the confluent
hypergeometric functions M(x, f3;1) it is straightforward although somewhat tedious to

demonstrate that the dispersion relation can be expressed as

—{xé+xi),’4 1 2 1 — 1 2
coskL = © M _117;@ M —W~—;E
2 2 2 2 2 22
2 2 2 2 22
1 — : 3 x}
bopxogx, | M| — W’i’xo M 1711_;&:
2 22 2 2 2
2 22 22 2

(13)

Whenever the absolute value of the right-hand side of this equation is less than unity, a
real value of & is found and hence the dispersion relation inside zllowed minibands is
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Fig. 1. Miniband structure of a graded-gap superlattice within the two-band model, as a function of
the superlattice period. Encrgics are measured from the bottom of the conduction band at z = 0.

Shaded areas correspond to allowed minibands in the superlattice
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obtlained. Conversely, il the absolute value is larger than unity, the energy corresponds to
a minigap of the superlattice.

As a specific cxample we have considered graded structures with £, = 0.18 eV (corre-
sponding to InSb), E,, = 0.27 ¢V, hs = 0.70 eV nm, and superlattice periods £ ranging from
5nm up to 40 nm. Results of the allowed minibands and minigaps as a function of the
lattice period are shown in Fig. 1. Note that allowed minibands shrink on increasing the
superlattice period due to the reduction of the overlap of neighbouring cells.

In conclusion, we have described theoretically the miniband structure in graded-gap
superlattices within a two-band semiconductor model, that is, we have taken into account
the coupling between the conduction and valence bands in the host semiconductor. Assuming
that the gap increases linearly with position, we are able 1o solve exactly the 2x2
Dirac-like equation of the model. The dispersion relation inside allowed minibands may
be cxpressed in a closed form in terms of the confluent hypergeometric functions,
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