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A system of arrays of nanowires side-coupled to a quantum wire is studied. Transport through the
quantum wire is investigated by using a noninteracting-electron Anderson tunneling Hamiltonian. An
analytical expression of the conductance at zero temperature is given, showing a band with alternating
forbidden and allowed minibands due to the discrete structure of the nanowires. The conductance is
found to exhibit a forbidden miniband in the center of the band for an odd number of sites in the
nanowires, while shows an allowed band for an even number.
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1 Introduction

Quantum effects in these nanowires (NWs) are potentially useful in nanotechnology, since coupling to
the continuum states shows an even-odd parity effect in the conductance when the Fermi energy is
pinned at the center of the energy band [1, 2]. In this context, we have recently considered a new
quantum device based on a quantum wire (QW) coupled to a NW [3], and to a nanoring [4] which
acts as scatterer for electron transmission through the QW. In this work we report further progress
along the lines indicated above. In particular, we study theoretically the transport properties of a set of
side-coupled NWs attached to a perfect QW. We find an analytic expression for the conductance at
zero temperature, which shows a band with alternating forbidden and allowed energy intervals (for
short referred to as minibands hereafter). We also find a general even-odd parity effect when the
Fermi energy is located at the center of the band.

2 Model

The system consists of a QW connected to a number N of side-attached NWs with M sites of one
energy level (see Fig. 1). The system, assumed in equilibrium, is modeled by a noninteracting-electron
Anderson tunneling Hamiltonian that can be written as H ¼ HQW þ HNW þ HQW�NW; where

HQW ¼ v
P
i
ðcyi ciþ1 þ cyiþ1ciÞ ; ð1aÞ

describes the dynamics of the QW, v being the hopping between neighbor sites of the QW, and cyi (ci)
creates (annihilates) an electron at the i th site. HNW, given by

HNW ¼
PN
j¼1

PM
l¼1

ej;ld
y
j;ldj;l þ Vc

PN
j¼1

PM�1

l¼1
ðdyj;ldj;lþ1 þ h:c:Þ ; ð1bÞ
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is the Hamiltonian for the N side-attached NWs, where dj;l (d
y
j;l) is the annihilation (creation) operator

of an electron in the quantum dot l of the j th NW, ej;l is the corresponding single level energy, and Vc

the tunneling coupling between sites in the NWs, assumed all equal. The coupling of the QW with the
side-attached NWs is described by the Hamiltonian

HQW�NW ¼ V0
PN
j¼1

�
dyj;1cj þ cyj dj;1

�
; ð1cÞ

where V0 is the hopping between the QW and the NWs.
The Hamiltonian for the QW, HQW, corresponds to the free-particle Hamiltonian on a lattice with

spacing unity, whose dispersion relation is e ¼ 2v cos k. Consequently, the Hamiltonian supports an
energy band from �2v to þ2v. We assume that the electrons are described by a plane wave incident
from the far left with unity amplitude and a reflection amplitude r, and at the far right by a transmis-
sion amplitude t. We then obtain the following expression

t ¼ 2i e�iNk e�ik DN þ 2DN�1 þ eik DN�2
� ��1

sin k ; ð2aÞ
where

DN ¼

sin ½ðN þ 1Þq�
sin q

; jðe� ~eeÞ=2vj � 1 ;

sin ½ðN þ 1Þj�
sin j

; otherwise:

8>><
>>:

ð2bÞ

For the sake of simplicity we have defined cos q ¼ ðe� ~eeÞ=2v and cosh j ¼ jðe� ~eeÞ=2vj, where
~ee ¼ ðV2

0=VcÞ sin ½ðM þ 1Þq�=sin Mq and cos q ¼ ðe� e0Þ=2Vc.

3 Results

The linear dimensionless conductance g at the Fermi energy e is given by the one-channel Landauer
formula at zero temperature, gðeÞ ¼ tj j2. If je� ~eej � 2v, we get

g ¼ 1

cos2 ðNqÞ þ
�
sin ðNqÞð1þ cos q cos kÞ=ðsin q sin kÞ

�2 ; ð3aÞ

that is, g oscillates as a function of N and q. On the contrary, when je� ~eej > 2v we get

g ¼ 1

cosh2 ðNjÞ þ
�
sinh ðNjÞ ð1þ cosh j cos kÞ=ðsinh j sin kÞ

�2 : ð3bÞ

Thus, g vanishes exponentially when N is large, as a function of the product Nj, g � e�2Nj.
The conductance is found to exhibit forbidden minibands (minigaps) that depend on the number of

sites of the attached NWs. To illustrate this behavior, let us consider first the simplest cases with
M ¼ 1 and M ¼ 2, that is, one and two sites in the side-attached arrays, respectively. Figure 2 shows
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Fig. 1 Schematic view of the QW with the side-attached
NWs.
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the conductance versus e for M ¼ 1 and different values of the number of arrays N. For N sufficiently
large, g vanishes within a range ½�G ;G �, with G ¼ V2

0=2v, and the system shows a minigap of width
2G . Figure 3 displays the conductance for M ¼ 2. Now the minigaps take place around the bonding
(e� ¼ �Vc) and the antibonding (eþ ¼ Vc) energies of the attached NWs. Moreover, an allowed mini-
band develops around the center of the band.

For larger M and fixed N, the system develops a set of alternating forbidden and allowed minibands
in the range ½�2Vc; 2Vc� . It is found that the number of forbidden minibands matches exactly the
number of sites in the attached NWs, M, and the number of the allowed bands equals M � 1. Further-
more, the minigaps open around the energies in the spectrum of the isolated NW. In fact, from
Eq. (3b) we can conclude that the conductance vanishes when j ! 1, i.e., jðe� ~eeÞ=2vj ! 1. This
condition is satisfied if q ¼ mp=M with m ¼ 1; . . . ;M and the respective energies are
e ¼ e0 þ 2Vc cos ½mp=ðM þ 1Þ�. These energies correspond to the spectrum of an isolated NW. On the
other hand, it follows from Eq. (3a) that, within each allowed miniband, the condition of maximum
transmission is reached when sin ðNqÞ ¼ 0, i.e, q ¼ np=N with n ¼ 1 . . .N. Then, each allowed mini-
band of the conductance has N maxima. Additionally, an interesting property arises in relation to the
single attached NW, namely the odd-even parity effect [3]. If the number M is odd, a forbidden band
develops around center of the band while an allowed one arise for M even.

4 Summary

In this work we studied the conductance at zero temperature through a QW with a set of arrays of
side-attached NWs. We found that the conductance at zero temperature displays an oscillating pattern
with forbidden and allowed minibands, due to constructive and destructive interference in the ballistic
channel, respectively. For uniform NW arrays of M sites, M minigaps and M � 1 allowed minibands
arise. The minigaps develop around the electronic level of an isolate NW. It should be stressed that
the particular setup we suggested allows us to control the energy and the width of the minibands in an
independent fashion. Moreover, the system shows an odd-even parity behavior of the conductance
when the Fermi energy lies at the center of the band. If the number of sites in the NWs is even, an
allowed miniband is developed. On the contrary, a minigap is formed when this number is odd. This
property arises from the intrinsic electronic properties of the NWs.
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Fig. 2 Dimensionless conductance versus Fermi
energy, in units of G , for M ¼ 1 and a) N ¼ 2, b)
N ¼ 3, c) N ¼ 5 and d) N ¼ 7 when Vc ¼ G and
e0 ¼ 0.

Fig. 3 Dimensionless conductance versus Fermi en-
ergy, in units of G , for M ¼ 2, a) N ¼ 1, b) N ¼ 3,
c) N ¼ 5, and d) N ¼ 7 NWs, with Vc ¼ G and
e0 ¼ 0.
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