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Recent advances in laser technology make it possible to drive semiconductor su-
perlattices with intense ac-dc fields, opening the possibility to study new effects
that depend in a crucial way on the spatio—temporal coherence of eiectronic
states. Coherent oscillations in semiconductor superlattices present finite life-
time and tend to disappear. This article gives a brief review of the effects
of unintentional disorder appearing during growth on coherent phenomena in

semiconductor superlattices, aiming to highlight the relevance of unintentional
disorder in coherent transport phenomena as a dephasing mechanism.

1. INTRODUCTION

The starting point of the history of semi-
conductor superlattices (SLs) was a short pa-
per by Leo Esaki and Ray Tsu, appeared in
the IBM Journal of Research and Develop-
ment in 1970 {1]. Three decades after, semi-
conductor hetetostructures represent about
50% of the efforts in semiconductor physics
worldwide. In their seminal paper, the au-
thors speculated that a periodic modulation
of the composition or doping of a semicon-
ductor at a length scale smaller than the
electron mean free path would result in the
occurrence of minibands, showing strong en-

ergy dispersion effects and leading to nega-
tive differential conductance mechanisms.
Earlier attempts to growth high-quality
SLs used the chemical vapor deposition tech-
nique in GaAs-GaAs;_ P, materials sys-
tem [2]. The relatively large lattice-constant
mismatch caused difficulties and results were
somewhat disappointing. Subsenquenly, re-
searchers devoted their attention to GaAs-
Ga;_. Al As materials system since the
lattice-constant mismatch is rather small —
less than 0.1%— in this case [3,4]. Quantum
confinement was demonstrated through the
observation of negative differential resistance
in SLs [5]. It was then realized that new phys-
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ical effects might occur in SLs, thus opening
the possibility to growth synthetic matcrials
with the desired electrical and optical prop-
erties. Technological advances in semicon-
ductor microfabrication based on molecular-
beam epitaxy, pioneered in the late 1960s
by Chao and Arthur at AT&T Bell Labora-
tories, now makes it possible to growth ul-
trathin layers, on the order of few atomic
monolayers, with sharp interfaces. Moreover,
SLs are not restricted to GaAs-Ga;_,. Al As
materials system but other III-V and II-VI
compound semiconductors are used in nano-
electronic modeling. However, since GaAs-
Ga;_,Al,As heterojunctions are by far the
most throughly mmvestigated system, we will
mainly focus our attention on type I SLs,
where electrons and holes are confined in the
same semiconductor layer.

Theory of ideal SLs electronic strucéture
and optical properties is based on solid
grounds. There already exist a number of re-
views [6] and text books {7] dealing with elec-
tronic structure of SLs with different energy-
band lineups, strain conditions, growth orien-
tations and applied electromagnetic fields. In
most cas2s of interest, the envelope-function
method (EFM) within the one-band approx-
imation provides a reasonable description of
the electronic states near the zone-center of
type I SLs made of wide gap semiconduc-
tors {8]. This approach assumes that the elec-
tron wave function is the product of a zone-
center Bloch function and a slowly varying
envelope-function. Bloch functions of III-V
compounds are very similar close to the zone-
center s0 that each semiconductor layer is
characterized only by the effective mass of
electrons and holes, whereas the heterojunc-
tion is usually modeled as a step-like poten-

tial whose height is given by the conduction-
or valence-band offset.

Figure 1 shows the spatial modulation
of both conduction- and valence-band edges
at the I’ valley of a generic type [ SL —
canonical example is GaAs-Ga;_ Al As—,
where GaAs acts as a potential well for both
electrons and holes. The effective mass and
the band offset at GaAs-Ga,.. Al As inter-
faces depend on the Al fraction. They are
given by m*/mqo = 0.067 + 0.083x (here my,
denotes the free electron mass) and AE, =
l.lzeV for 0 < z < 0.45 [9).
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FF1G. 1. Conduction-band and valence-band
edges profiles in type 1 SLs.

In spite of the recent advances in semi-
conductor growth techniques [10,11], the
fabrication of abrupt interfaces with per-
fect atomic arrangement cannot be achieved
and some amount of disorder is unavoid-
able. With the structural characterization
techniques now available, it has become ap- -
parent that not only semiconductor inter-
faces are almost never ideal, but that the
occurrence of unintentional disorder due to
growth imperfections has profound effects on
spectroscopy [12-14] and transport proper-
ties {15-17] of semiconductor structures.

Possible conflicts between experiments and
theoretical models based on the assumption
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of abrupt interfaces are often settled by ad-
justing fitting parameters (effective mass and
band offset). However, this approach cannot
explain the rich phenomenology of disordered
heterostructures, like electron localization at
imperfect interfaces [18]. More general mod-
els including unintentional discrder would
then be more adequate for studying electron
dynamics in actual SLs. In this paper we
review recent theoretical efforts toward this
goal. We will be concerned ourselves with
time-dependent envelope function method in
unintentionally disordered SLs subjected to
dc and ac applied fields.

The review is organized as follows. In Sec-
tion 2 we describe the model devised to take
into account the effects of nonideal interfaces
on electron dynamics. We will discuss in
some detail the approaches commonly used
to include randomness in the effective-mass
theory while keeping the model as simple as
possible. Section 3 deals with imperfect SLs
in the absence of external fields; in particu-
lar, we will discuss the steady state regime
and also wave packet dynamics. In Section 4
we will review the so called Bloch oscilia-
tions and dynamical localization, observed in
SLs under dc applied electric fields. As main
point, we claim that disorder plays a ma-
jor role in the decay of coherent oscillations.
Electron dynamics in SLs subject to ac fields
due to strong high-frequency laser is studied
in Section 5. We will point out that Rabi
oscillations between minibands could be de-
tected in SLs under ac fields, in close analogy
with two-level atoms. Section 6 presents a
nonlinear effective-mass model, aiming to in-
clude other important interactions {electron-
electron and electron-phonon) not considered
in previous sections. The interplay between

disorder and nonlinearity is discussed in some
extend. Finally, in Section 7 we will summa-
rize and draw some conclusgions.

2. MODEL OF DISORDERED
SUPERLATTICES

2.1. Unintentional disorder

There exist several techniques, like scan-
ning tunneling microscopy [10,19,20] and X-
ray scattering [11], which have been applied
in recent years to quantitatively determine
structural properties of multilayers and SLs.
Precise information about the nature and ex-
tend of defects at interfaces is now avail-
able. Following Méder et al [21], disorder
in a SL can be classified into two categories,
namely lateral and vertical. Lateral disor-
der occurs whenever one semiconductor pro-
trudes into the other, forming chemically in-
termixed interfaces, steps and islands. As
a consequence, the interface is not flat and
translational symmetry in the plane perpen-
dicular to the growth direction is broken. On
the other side, vertical disorder is observed
whenever layer thicknesses fluctuate around
their nominal values. In such a case, transla-
tional symmetry along the growth direction is
broken and electrons moving in this direction
are reasonably well described by a Kronig-
Penney model [22] with wells and barriers of
random widths and heights. Compositional
disorder due to different Al concentration in
each Ga;_,Al,As layer can be also viewed as
vertical disorder for AE, takes random val-
ues over the whole SL. Unintentional disorder
is likely to consists of both types of disor-
der [23,24].
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Unintentional disorder appearing during
growth in actual SLs depends critically on
the growth conditions. Therefore, it seems to
be extremely difficult to describe all possible
experimental scenarios within the EFM. At
first glance, one might use three-dimensional
band-structure theories, but unfortunately
large computational facilities are required to
simulate the absence of periodicity. This
shortcoming is even worse in the case of time
dependent phenomena since equations are to
be solved in space and time. Therefore, re-
searchers usually assume some reasonable ap-
proximations in order to make models as sim-
ple as possible. In view of the theoretical sim-
plicity of EFM, lateral imperfections are sim-
ulated by continuous potential profiles corre-
sponding to averages in the planes perpen-
dicular to the growth direction [25-30]. In
what follows, we describe local excess or de~
fect of monolayers by allowing the quantum
well widths to fluctuate uniformly around
their nominal values; this can be seen as
substituting the nominal sharp width by an
average along the parallel plane of the in-
terface imperfections. Therefore, transla-
tional symmetry in the planes perpendicular
to the growth direction is restored, this effec-
tive model being quasi-one-dimensional. Our
approximation is valid whenever the mean
free path of electrons is much smaller than
the in-plane average size of protrusions as
clectrons only see micro-quantum-wells with
small area and uniform thickness. Moreover,
vertical disorder can also bd described in this
way. Therefore, in the following, we will take
the width of the nth quantum well to be
d® = a(l + We,), where W is a positive
parameter measuring the maximum fluctu-
ation, a is the nominal quantum well width,

and €,’s are uncorrelated random numbers
distributed according to a uniferm probabil-
ity distribution

1, if |es| < 1/2,
0, otherwise.

Plen) = { 1
Therefore, each quantum well presents a
slightly different value of its thickness and
resonant coupling between electronic states
of neighboring wells decreases. To keep the
number of parameters to a minimum, we fur-
ther assume that neither the barrier widths
nor their heights fluctuate and then take
dp = b and AF, constant over the whole SL.

2.2. Envelope-function method

We focus now on electron states close to
the bandgap. Since disorder is restricted
along the growth direction in the above
model, the eigenvalue k| of the momentum
perpendicular to this direction is constant of
motion. Here 2 and y denote the coordinates
in the plane perpendicular to the growth di-
rection, z. The electron wave function is the
product of a band-edge orbital (crystal Bloch
function) with a slowly varying function. The
latter can be factorized as exp(tky -ry }¥(z),
with r) = (z,y). After inserting this ansatz
into the Schridinger equation, we arrive at
the effective-mass equation for the envelope-
function ¥(z). For k; = 0 (nonzero val-
ues can be easily included in the calcula-
tions), the effective-mass equation for elec-
trons takes the form

-G S 5 Ve v = B,
@
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The dependence of the effective-mass m*(z)
upon the coordinate along the growth direc-
tion in GaAs-Ga;_,Al; As SLs is given as fol-
lows

my, il |z —z,| < b/2,
my, if |z — z,| > b/2,

m*(z) = { (3)
for zpn—1 + 8/2 < z < zZny1 — b/2, where
m; = (0.067 + 0.083x)mg, m}, = 0.067my,
Mg is the free-electron mass, and z is the Al
fraction in the Ga,_,Al, As layer whose cen-
tre is located at z, (here the index n runs
over every barrier). Similarly, the SL poten-
tial can be written as

Var(z) = 3 V(z - za), (4)

where we have defined

AE,, if {z — 24| < b/2,

V=)= { 0, iffs—zl>b2 O

Notice that the energy is measured from
the bottom of the conduction-band in
(GaAs. Figure 2 presents the conduction-
band edge profile Vsr(z) in a disordered
GaAs-Ga)_,Al; As SL. Let us comment that
holes can be treated in a similar fashion.

FIG. 2. Conduction-band edge profile in a dis-
ordered GaAs-Ga;_; Al As SL. Barriers are as-
sumed to have the same thickness b and height
AE,. The coordinate of the centre of the nth
barrier is denoted by 2z,.

3. ELECTRON TRANSMISSION
ACROSS A DISORDERED
SUPERLATTICE

3.1. Transfer matrix formalism

There exist at present simple, accurate and
fast algorithms for numerically solving the
EFM equations. In the absence of applied
electric and magnetic fields, the SL poten-
tial is piecewise constant, corresponding to
the various layers of different semiconduc-
tors. Since the local solution of the EFM
equation is known, one can relate solutions
at neighboring layers via appropriate bound-
ary conditions [31]. Let us consider states
below the barrier {0 < E < AE,), which
are the most interesting ones to study quan-
tum confinement effects. The corresponding
envelope-function in the quantum well be-
tween the barriers centered at z, and zn4.1
is

’lj):f(z) = pze""(“zn—bfz) + q’t:re—i‘r(z—z..waz)

(6)

for z, + /2 < z < 241 ~ bf2. Here 4? =
2my,E/h®, p¥ and ¢ are two constants to
be determined later. Inside the nth barrier
the envelope-function can be written

Vh(z) = phe ™ + gle™, (7)

for 2z, —b/2 < z < z, + b/2 and now we have
defined % = 2m}(AE, — E)/h%. Here p?, and
¢> are also constants.
Since ¥(z) and [m"(z)]~1dy(z)/dz are con-
tinuous at the interfaces (see e.g. [32]), we can
elate the corresponding envelope-function
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values at both sides of the nth barrier via
the 2 x 2 transfer-matrix M (n)

(&)-mo (1) e

mw=(g k), @

whose elements are given by

t fym; 1mg
apn = | cosh{nb +—(———-)
123 [ ( ) 2 J”:” :

with

X sinh(nb)] exp[iy(zn — 25—1 — b)], (8c)

1 fymy
= —— | ——2 4 sinh(nb
A 2 (ﬂm:., 'rma) (76)

X exp[—iy(2za — 2n_1 — b))}, (8d)

a), and ) being the complex conjugate of
an and By, respectively. Letting N be the
total number of barriers, the transfer-matrix
T(N} of the SL is obtained as the product

1(N) = HM( )_(A” B”)- (9)

The element Ax can be easily calculated re-
cursively from the relationship [33)

A, = (an +ay_, ﬁﬁ ) An—1
ﬂ—

- ( B )A,._g, (10)

ﬁﬂ-l

supplemented by the initial conditions Ag =
1, Ay = ay. The knowledge of Ay en-
ables us to obtain relevant quantities like
the transmission coefficient at a given energy

E, 7{E) = 1/|JAN|*. Notice that these ex-
pressions are valid for any arbitrary value of
quantum wells thicknesses and, consequently,
they can be used in perfect as well as in im-
perfect disordered SLs within the one-band
framework in the absence of applied fields.

3.2. Time-dependent effective-mass

method

We are also interested in the quantum dif-
fusioni of wave packets in unintentional dis-
ordered SLs. The equation which rules the
evolution of the wave packet is the time-
dependent effective-mass equation

O¥(z,t)

h—5

= H(z)¥(z,1), (11)

where #(2) is the single-electron Hamilto-
nian given in (2). Different initial states are
employed in order to expjore the effect of
the SL potential and energy components of
the initial states [34]. Linear combinations
of several Wannier functions are thought to
represent initial wave functions that seem to
arise in experiments [35-37]. In addition,
traveling Gaussian initial wave functions are
also studied, showing a reasonable descrip-
tion of the dynamical phenomena observed
in experiments [38]. Thus, we will study
the quantum dynamics of an initial Gaussian
wave packet

¥(z,0) = (—1-27) ¢ exp [ikoz —(z- z0)2]’

2o 402

(12)

impinging on the SL, where the mean kinetic
energy is (E) = K*k}/2#M* and o measures
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the width of the initial electron wave packet.
For simplicity we take a constant effective-
mass, although more general situations can
also be handled. The solution of Eq. (11) is
given by

B(z,t) = exp (—%H(z)t) ¥(z,0). (13)

The finite difference representation of the ex-
ponential [39]

1- fﬁ H(z)dt

! , (14)
1+ o H(z)dt

exp (~%’H(z)6t) =

where 4t is the time step, provides a power-
ful and high-accurate numerical method [the
roundoff error is (6¢)®]. In addition, it en-
sures probability conservation {34] which can
be used at every time step as a first test of
the accuracy of results. Boundary conditions
read ¥{oc,t) = ¥(—o00,t) = 0 and we have
chosen the SL sufficiently large to be sure
that the wave packet never comes close to
the boundaries,

3.3. Tunneling {imes and other
dynamical tools

The subject of tunneling times is rich in
contradictory definitions and results [40-42].
When we measure the lransmission time
ir, we are trying to measure the time that
a transmitted particle spends in the SI, of
length £. The transmission time is straight-
forwardly obtained in the WKB limit for a
ballistic electron,

L .
tWKB(E) = f0 1/2@%—5 Xol2)dz

L m*
+/0 \[ 5E xp(2) dz, (15)

where x3(z) and x,,(z) are the characteris-
tic functions of the barriers and the wells,
respectively. The mean dwell time £3,, is

oo L
tawlE) = [0 dt fo [®(: 0P dz,  (16)

and measures the average time spent by a
wave packet in a given region of space. This
time does not distinguish between particles
transmitted or reflected, and hence the mean
dwell time becomes the transmission time of
a transmitted particle when most of the wave
packet is transmitted, as was pointed out by
Biittiker and Landauer [40] Numerically, it
is simple to measure £z, and physically is
a powerful tool to measure the density of
states, since it can be shown that [42]

PE) = - tau(E). (17)

According to Ref. [42], this relationship is
only valid for symmetrical one-dimensional
structures. For non-symmetrical struc-
tures it should be replaced by p(E) =
gir [the(E) + t4,(E)], where the super-
script refers to electrons coming from the
right (superscript r) or from the left (su-
perscript {). However, we have found no
differences between ¢5,,(E) and ¢, (E) with
the parameters used is most commons GaAs-
Gaj-,Al;As SLs.

Nevertheless, as Fiq. (15) is only valid in a
perfect ballistic regime and the mean dwelt
time i8 only the transmission time in a ide-
alized limit, we need to develop a method to
measure ¢p7. This method is based on the
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probability Pr that at time ¢ the particle is
found to have crossed the SL,

oC

Prw= [ leeopa a9
L

or the probability Pr that the particle is

found to have been reflected back by the SL

0
Pr(t) :/ |¥(z, t)]? dz. (19)
— 00
To get an estimation of the spreading of
the wave packet as a function of time we will
use the time-dependent inverse participation
ratio (IPR), defined as,

o0
IPR(t) = / iz, 0 dz.  (20)
In addition, we will study the centroid of the
probability distribution

o0
Z(t) = / 2| 0(z,t)|* dz. (21)
—-00

Usually the IPR is a good estimation of the
spatial extent of electronic states. Delocal-
ized states are expected to present small IPR
(for long times IPR ~ 1/L), while localized
states have larger IPR.

4. SUPERLATTICES UNDER dc
FIELDS

4.1. Electron transmission under dc
electric fields

The transfer matrix method is based on
the local solution of the effective-mass equa-
tion (2). The solution can he expressed in

terms of plane waves in the absence of ap-
plied electric fields, as shown above in Sec-
tion 3. However, as soon as some voltage is
applied to the sample, the SL potential might
include the potential due to the electric field
VsL(z) + V(2). The electric potential field,
V(z), is to be calculated self-consistently by
solving the Poisson and effective-mass equa-
tions {43,44]. As a first approximation, it
is usually assumed that the potential drop
across the SL is linear, namely V(z} = —eFz,
where —e is the electron charge and F' is the
electric field. Local solutions of the EFM
equation are combinations of Airy functions
and the transfer matrix method can be ap-
plied [45]. However, such an approach does
not hold when the Poisson and effective-mass
equations might be solved self-consistently
gince the electric potential is not linear. To
overcome this shortcoming one must restore
on numerical solutions. Below we show n de-
tail a numerical method which is valid under
broad general circumstances.

The transmission probability 7(E,V) at a
given bias V = FL is obtained by discretiz-
ing the effective-mass equation (2) for the
SL potential Va1,(2} plus the linear potential
—eVz/L due to the applied electric field [46].
The electric field is assumed to be applied
only on the SL whereas it vanishes at the con-
tacts. We divide the interval [0, £] in a grid of
points {zx = ks}, where s is the integration
step. The discretized form of the effective-
mass equation (2) may be cast in the ma-
trix form (assuming constant effective-mass
for simplicity)

()= ()
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where we have defined

Pi= (’“1* "01 ) , (22b)
and
2m*s? v
Be =2+ ";28 [VSL(?-t) - ;k —E] )
(22¢)

for brevity. This form is suitable for a
transfer-matrix approach to solve the scatter-
ing problem. In fact, iterating this equation
one obtains

(') =moa () o

T(N,) = Pn, --- Po is the global transfer
matrix and N, is the number of grid points
in the SL. T'(N,) is real and relates the wave
function at both edges of the structure. The
solutiun of the wave equation is the field-free

region is given by

Y(z) = { :;:::- rete! : ; ?&" (24)
where
_ [2m*Es?
@ = i
and

_ ‘/2m'(E +eV)a?
= hg

for amall s. Using (23) and (24), we find that
the transmission coefficient is given by

4sinqgsingc

"EV = ToEy

(25a)

with
DEV)=STH +Th+T3 +Th
+ 2(T1 112 + T T2a) cosqo
— 2(T11 T2 + ThoT22) cos g
— 2(Ty1 T2g + T12T21) cos go coBgc
+ 2singpsinge (25b})

where the dependence of T;; on N, has been
omitted for brevity. Taking into account that
T(k) = P, T{k — 1) and T(0) = P we find
the following recurrence relationships

Ti(k) = mTu(k— 1) = Tu(k-2),

Ti2(k) = uaTha(k — 1) — Th2(k - 2),

T (k) = Tu(k - 1),

Taa(k) = Tha(k - 1), k=1,2---N,. (26)

In order to determine the transmission coeffi-
cient, these equations must be supplemented
with the initial conditions Ty(-1) = dij,
Tll(o) = Hg, T]_g(O) = -1', Tgl(ﬂ) = 1 and
Ty(0) = 0.

Once the transmission coefficient has been
determined, some relevant magnitudes can
be readily determined. For example, the
j-V characteristic is a physical magnitude
amenable of experimental verification. The
current density at a given temperature T
for a SL subject to a uniform electric field
can be calculated within the stationary-state
model [47] (see also Ref. [48] for further de-
tails)
m*ekgT

V) =
i) 272K’

f ” N(B,V)r(E,V)dE,
0
(27)

where V is the applied bias and kg the Boltz-
mann constant. N(E, V') accounts for the oc-
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cupation of states in both sides of the device,
according to the Fermi distribution function.
and it is given by

(Ep—E)/knT
N(E,V)=ln( 1+e ~ )

1+ elBr—E—eV)/kaT
(28)

Eyp being the Fermi level, which will be as-
sumed to be located at the conduction-band
edge of GaAs in what follows. The transmis-
sion probability 7(F, V') at a given bias V is
obtained by means of Eq. (25).

10000 : . —
——— ODRsivdored SL{W=0.1)
8000 LR
J’ \
! 1
N L ~TTK
r;lA 6000 | . "\
5
i 1
& s .
1 ‘l
!"‘ “
2000 + ;
g
'n" P S
000 0.02 0.04 006 008 o1
) ’ Applied bias (V)

FIG. 3. j—l_‘f_ characteristic of ordered (dashed
lines) and unintentionally disordered {solid lines)
.GaAsAl;Ga; - As SLs at 77K.

Figure 3 shows the j-V characteristic at
77K for both ordered and unintentionally
disordered (W = 0.1) SLs with 11 barriers
of width 15A and 10 wells of width 9CA.
The effective-mass is assumed to be con-
- gtant over the whole SL {(m* = 0.067my) and
AFE, = 0.25eV. We observe the occurrence of
negative differential resistance in both SLs,
but the corresponding peak-to-valley ratios

arc quite different. Ia particular, the disor-
dered SL displays pcak-to-valley ratios two
times smaller than the ordered one. It 13
important to mention that these results are
based on the assumption of purely ballistic
current regime across the SL. In a recent pa-
per, Rauch et al. [49] have found that the co-
herence length in uniform GaAs-Al;Ga;_,As
is about 150 nm, namely larger than the SL
length we have studied (110nm). Thercfore,
we can confidently admit coherent transport
across the SL.

4.2. Semiclassical theory of Bloch
oscillations

Morc than seventy years ago, Bloch started
with the investigation of the motion of an
electror wave packet with narrow distribu-
tion of moments in a periodic potential sub-
ject to an external applied electric field [50].
Work by Bloch was further clarified and elab-
orated by Zener [51]. It was suggested that
the electron gains energy from the field, and
moves in k and rcal spaces. This motion is
determined by the acceleration theorem and
the dispersion relation E(k}. For a nearest-
neighbor tight-binding Hamiltonian in the
one-band approximation, the dispersion re-
lation is given by

E(k) =Ey —- % cos({kL}, (29)

where Eg is the energy of the center of the
band of width A. The momentum of the elec-
tron should change according to the following
equation [50]

dk-
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Since the band structure is periodic in k,
Zener pointed out that an electron which is
not subject to scattering processes will per-
form an oscillatory motion in k space. This
motion is accompanied by a periodic motion
in real space, the so-called Bloch oscillations
(BOs}.

vk

7B . 8

FIG. 4. Bloch oscillations in the semiclassical
picture. An electron initially at k = 0 oscillates

between the edges of the zone boundaries (ZB). .

An illustration of BOs in k space in pre-
sented in Ref. [52] and it is shown in Fig. 4.
The electron initially at & = 0 acceler-
ates according to the acceleration theorem
(30). The real space velocity (group veloc-
ity) v(k) = AE(k)/Ok vanishes at the edges
of the Brillouin zone, the electron undergoes
a Bragg reflection and reverts its real space
velocity, thus performing an osciliatory mo-
tion of period (Bloch period)

(31

where L is the spacing of the underlying lat-
tice, an real space amplitude [53]

A
T 2eF’
the coherent carrier motion being restricted

Ap {32)

to a region of length 24p. The values of
the period and the amplitude are rather inde-
pendent of the particular details of the band
structure.

The above semiclassical description of
wave packet motion evolution cannot be
naively applied in SLs for the wave packet
created in experiments do not meet the semi-
classical smoothness of its Fourier transform.
Excitonic effects could also be important and
the one-particle description might be incor-
rect [53]. The semiclassical results are im-
proved by directly solving the effective-mass
equation for the SL subject to a uniform
electric field [53,54]. However, SLs are far
from being ideal, as we mentioned in the In-
troduction; different scattering mechanisms
(surface roughness, impurities) and many-
body effects (electron-electron and electron-
phonon interactions) might be included in
the models, which turn out to be rather com-
plex to allow for analytical solutions. Thus,
numerical results may help to understand ex-
perimental results.

4.3. Observation of Bloch oscillations

The relaxation time 7g of carriers should
be larger than 7 if BOs are to be detected
in an experiment. Therefore, from Eq. (31) it
becomes clear that the applied electric field
F might then satisfy the condition

h

F> etrl’

(33)

This condition requires extremely nigh values
of the electric field in bulk materials. For-
tunately, SLs have both much larger lattice



F. Dominguez-Adame ef al.

period L and relaxation times 7g than bulk
materials. '

Several years ago, von Plessen and Thomas
proposed a method for observing BOs in the
time domain {55]. These author suggested an
experimental method that consists of mea-
suring the spontaneous photon-echo signal
in a time-resolved four-wave mixing experi-
ment. The first experiment observing BOs
by optical excitation was reported by Feld-
mann et ol. {35]. Later experiments showed
clear oscillations in the four-wave mixing sig-
nal [36]. A rather detailed study of BOs and
their dependence on the applied field, mini-
band width, lattice temperature, and excita-
tion conditions was carried out by Leisching
et al. [52]. Moreover, it has been possible
to show that the amplitude of photogener-
ated wave packets can be controlled between
true Bloch oscillations —with center-of-mass
motion— and symmetric breathing modes
—with no center-of-mass motion but width
fluctuation— in semiconductor SLs [56]. An-
other remarkable example of recent advances
has been given by Lyssenko et al. [57): The
oscillating Bloch wave packet creates a small
dipole field which can be detected by means
of the field shift of the Wannier-Stark ladder
transitions. The absolute spatial displace-
ment of Bloch-oscillating electrons is then
measured. These authors found that the elec-
tron wave packet performs a sinusoidal oscil-
lation whose amplitude is very close to the
theoretical prediction including excitonic ef-
fects [53]. See Ref. [58] for a recent review on
interband optical investigation and related
experimental topics of BOs in SLs.

4.4. Dephasing induced by weak disorder

Inelastic scattering by phonons, deviations

from SLs perfect periodicity due to uninten-
tional imperfections, intraband scattering,
interminiband transitions, and scattering by
impurities severely reduce the quantum co-
herence required for the observation of BOs.
The periodic motion of wave packet under
BOs conditions persists until Bloch electron
loses energy gained from the field through
scattering processes. However, even in the
most favorable experimental conditions, T
is not much larger than g and thus only a
few BOs are usually observed.

The origin of such loss of quantum coher-
ence in actual devices is far from being un-
derstood and, at present, there is much de-
bate about the role played by different scat-
tering mechanisms in those processes. Iu this
regard, Plessen et al. [69)] found that quan-
tum coherence is lost after a few BOs in 30 A
GaAs/30A Gagy-Alg3As SLs, a fact which
was attributed to scattering by LO phonons.
On the other hand, theoretical studies point
out that under most experimental conditions
interminiband transitions are negligible and,
consequently, cannot be responsible for the
signal decay [60]. Furthermore, Plessen et
al. {59] conclude from their experimental re-
sults that the threshold electric field is higher
for SLs with A larger than the energy of LO
phonons, Ero = 36 meV. They explain this
dependence by assuming that LO phonon
emission is excluded when A < Epg. On the
contrary, Leisching et al. [52] detected up to
six BOs but they did not observe any sign
of a phonon threshold in SLs with A ranging
from 13 up to 46 meV. These authors argued
that the reduced sample quality of Ref. [59]
could be the responsible for the threshold.

From the above discussions, it becomes
clear that understanding the interplay be-
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tween the electric field and the imperfections
of the SLs is crucial to elucidate the discrep-
ancies among different groups, either to pin-
point its relevance or to exclude it [38,61].
Here we present a complete study of the ef-
fects of interface roughness on the BOs. We
study the dynamical behavior of intentionally
disordered SLs subject to a dc electric field
by measuring the time-dependent IPR. (20)
and the position of the centroid of the wave
packet (21). These quantities will allow us to
conclude that the assumption of weak disor-
der is enough to explain all the available ex-
perimental data, thus firmly connecting the
dephasing of BOs to the quality of the sam-
pie.

We have considered the same SLs as those
ones used in previous experiments [52,59].
In particular, we present here results for
the first one of these SLs, i.e., 100 periods
of 30A GaAs and 30A GaprAlo3As [59]
In this case, the conduction-band offset is
AE,. = 0.25eV. Samples are labeled accord-
ing to their nominal period length L = a -+ b,
namely 60A SL. Similar results are obtained
with the other SLs like the 84, 97, or 128 A
(b = 17A, a = 67, 80 and 1114, respec-
tively), i.e., the ones reported by Leisching
et al. [52], although we do not present here
these results for brevity. We have straightfor-
wardly calculated the miniband-width for the
60A SL obtaining A = 90 meV, being larger
than Evo.

We study applied electric fields in the
range from 5 up to 20kV/ecm. The fluctu-
ation parameter runs from W = 0 (ordered
SL) up to W = 0.20 (strongly disordered SL).
Figure 5 displays the centroid position of the
wave packet in the 60 A SL for F = 10kV/cm
and different values of the unintentional dis-
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FIG. 5. Centroid of an initial Gaussian wave
packet with ko = 0 and o = 300 A as a function
of time in 60 A SLs. The applied electric field is

F = 10kV/cm. From top to bottom (a) W =0,
(b) 0.01, (c) 0.03, (d) 0.05, (e) 0.10, and {f) 0.20.

order. The initial Gaussian wave packet is
located in the centermost quantum well with
o = 300A. In Fig. 5(a), for an ordered SL,
we observe the occurrence of very well defined
BOs with amplitude 24 = 900 A and period
rp = 0.7ps, in excellent. agreement with the

‘semiclassical predictions 24p = 900 A and

g = 0.69ps.
Notice, however, that the perfect oscxllar
tory pattern detécted in ordered SLs (up-

per panel) is progressively destroyed upon

increasing the degree of disorder ‘as seen in



150

the rest of panels in Fig. 5, for W = 0.01,
0.03, 0.05, 0.10, and 0.20. It is most im-
portant to mention here that the results do
not depend on the particular realization of
disorder. We note that those values corre-
spond, if we assume that a monolayer width
of this type of SLs is about 3A, to a maxi-
mum excess of defect of less than one mono-
layer (W = 0.01 and 0.03), one monolayer
(W = 0.05), two monolayers (W = 0.10} and
four monolayers (W = 0.20). The disorder
induces a decrease of the amplitude of the os-
cillations and, besides, it produces a progres-
sive dephasing comparing with the ordered
case. In the strong disorder case no signs of
BOs are found. This fact can he explained
by the absence of translational invariance at
flatband and, consequently, by scattering of
electrons with the random potential. Similar
results are obtained with the SLs reported by
Leisching et al. {52].

We can achieve better resolution of the
BOs period and the influence of the disor-
der by means of the IPR. The upper panel
of Fig. 6 presents the results for the IPR of
the ordered 60 A SL when the initial Gaus-
sian wave packet is located in the centermost
quantum-well with ¢ = 20 A. The electric
field is F = 10kV/cm. In the absence of im-
perfections, the IPR displays a periodic pat-

_tern with marked peaks at times i, = n7p,
where n is any arbitrary, nonnegative inte-
ger and 75 = 0. 7ps.. This means that the
initial localized state is recovered after this
time. Results corresponding to disordered

~ SLs with the same initial conditions as before
are shown i in the rema.mmg panels of Fig. 6,

. conﬁrmlng that BOs progressively disappear

on increasing the degree of disorder.

From the above results we are led to the
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FIG. 6. IPR as a function of time for an initial
Gaussian wave packet with o = 20 A, subject to
an electric field F = 10kV/cm in 60 A SLs. From
top to bottom W = 0, 0.01, 0.03, 0.05, 0.10, and
0.20. For clarity, curves are progessively shifted

-0.01 A upwards.

conclusion that there exists a characteristic
scattering time rq;s after which BOs are de-
stroyed even by weak disorder. Moreover,
it is readily observed in Fig. 6 that 45, de-
creases upon increasing the degree of disor-
der. However, the above results have been
obtained for a fixed value of the electric field,
but clearly a meaningful definition of the
scattering time should be independent of the
value of the electric field: To check the valid-
ity of the introduced 74;s we have studied the
IPR for different values of the applied elec-
tric field at a given degree of disorder. Rep-
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FIG. 7. IPR as a function of time for an ini-
tial Gaussian wave packet with the same param-
eters as in Fig. 6, placed in a 60 A SLs with
W = 0.03. From top to bottom F = 5, 10,
15, and 20kVY/cm. For clarity, curves are pro-
gessively shifted 0.01 A upwards.

resentative results are presented in Fig. 7 for
W = 0.03 (on average less than one mono-
layer) and F = 5, 10, 15 and 20kV /cm.
From this plot we can roughly estimate
that 74 ~ 2.5ps for all values of the elec-
tric field. Thus, this scattering time plays
the same role as the scattering time arising
from inelastic interactions, in the sense that
% must be kept smaller than 74;; to observe
BOs. Interestingly, this value is the same as
that obtained in the experiments of Plessen et
al. [69]. The scattering time increases when
the minibandwidth deéreases, for the same
amount of disorder, and values obiained with
our model turn ont to be perfectly consistent
with all the experimental data [35,52,62].

5. SUPERLATTICES UNDER TIME
DEPENDENT ELECTRIC FIELDS

5.1. Theory of Rabi oscillations

The oscillations of a two level system be-
tween the ground and excited states in the
presence of a strong resonant driving field,
called Rabi oscillation (RQO), are discussed in
textbooks [63] as a topic of time-dependent
perturbation theory. It was first treated by
Rabi [64] in the context of molecular beam
magnetic resonance experiments [65]. This
author considered a two state system with
ground state energy Eo and excited state
Ey in the presence of a harmonic pertur-
bation. If the frequency of the perturba-
tion matches roughly the spacing between the
two levels, the system undergoes oscillations
with a frequency g which is much smaller
than the excitation frequency wse. The so
called Rabi frequency depends on the mis-
match dw = (E) — Ep)}/h — wae between the
level spacing and the excitation frequency,
and on the matrix element Fio of the pertur-
bation 25 = {6w? + |Fio[?/452)"/". If the
system is initially in the ground state, tran-
sitions between the ground and the excited
state will occur with a period T = 27 /(g
as time evolves. _

Rabi oscillations were observed in mag-
netic resonance experiments in bulk materi-
als [66]. More recently, related phenomena
were detected in semiconductor heterdstn;c-
tures. By examining the interaction of two

. copropagating ulirafast optical pulses in a

semiconductor multiple quantum well, Cun-
diff et al..[67] have experimentally deter-

- muned ,the__,teml:_goral" dependence of the in-

duced polarization and conclyded that the
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optically induced density went through a
maximum. These authors claimed that such
phenomena are a manifestation of Rabi flop-
ping [68] in semiconductors. Martin and
Berman have proposed a switching nano-
device based on Rabi cscillation [69]. Res-
onant photon-assisted tunneling through a
double quantum dot has been theoretically
studied using the Keldysh nonequilibrium
Green function technique by Stafford and
Wingreen [70]. When driven on resonance,
the system was shown to function as an ef-
ficient electron pump due to Rabi oscillation
between the dots.

Therefore, the following question arises: is
this naive description valid for a real SL? SLs
present Bloch minibands with several states
each one. Thus, it is not clear whether transi-
tions between two minbands can be correctly
described as a a pure two state system.

5.2. Rabi oscillations in superlattices

Recently, Zhao et al. have analytically in-
vestigated a tight-binding model of a two-
band system in time-dependent ac-dc field
in the weak coupling limit [71]. They iden-
tified ROs between Bloch bands under reso-
nant conditions, which reveal the existence of
quasi-energy bands and fractional Wannier-
Stark ladders. However, the tight-binding
approximation presents some limitations to
describe actual SLs when the coupling be-
tween neighbor sites is not weak. Thus, in
order to experimentally access the validity of
theoretical predictions, we shall use a more

realistic model based on the time-dependent

effective-mass method [72]. We start with

5 o¥(z,t)

2
o = [— Ld) + Var(2)

Ime dz?
— eFz sm(w,ct)] ¥(z,0), (34)

where F and w,. are the strength and the
frequency of the ac field.

The band structure at F' = 0 is computed
using the finite-element method {73]. The
eigenstate j of the miniband ¢ (i = 0, 1 .2
with eigenenergy E{’} is denoted as 1/1 (z)
A good choice for the initial wave packet is
given by a linear combination of the cigen-
states belonging to the first miniband. For
the sake of clarity we have selected as the
initial wave packet ¥(z,0) = v¥(2), al-
though we have checked that this assumption
can be dropped without changing our conclu-
sions. The subsequent time evolution of the
wave packet ¥(z,t) is calculated numerically
by means of the implicit integration scheme
given in Section 3.2 (see also Ref. [73]). In
addition to ¥(z,t) we also compute the prob-
ability of finding an electron, initially in the
state ¥(z,0) = ¢{?(2), in the state ¥{ (2).
This probability is given by

o= [ avreos. o

We present here results for a SEL with 10 pe-
riods of 100 A GaAs and 50 A Gag.7AlgsAs
with AE, = 0.25eV. We consider electric
fields from 12.5 up to 100kV/cm as typi-
cal values. Figure 8(a) displays PSS (t) with
F = 25kV/cm at the resonant frequency

= (BE® - E)/h = 24THz. In this
wa.y, we are monitoring the transitions be-
tween the central state (§ = 5) in the first
miniband to the central state in the second
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FIG. 8. Probability of finding an electron, ini-
tially situated in f,"') (2), in the state u';f")(z)
as a function of time for F = 25kV/cm, when
the ac field (a) is tuned to the resonant fre-
quency wae = 24THz and (b) is out of reso-
nance w,. — 16 THz. Notice the different vertical
scales,

miniband as a function of time. We observe
the occurrence of very well defined ROs when
the ac field is tuned to the resonant frequency
with an amplitude close to 0.25. Summing up
the probabilities of the rest of states in the
second miniband, the probability of finding
the clectron in this band is very close to unity
(~ 0.99). The frequency of the ROs, ob-
tained performing the fast Fourier transform
(FFT) of P$(t) is wr = 3 THz. The prob-
ability P{3(t) is dramatically reduced when
the ac driving field is out of resonance, as
shown in Figure 8(b) for wac = 16 THz. The
FFT of these data reveals no specific features
besides the peak at the driving frequency wpe.

In a pure two-level system, a straightfor-
ward calculation yields wp = |Fo1|/A. Thus,
wg i8 linear in the electric field in a pure two-
level system. Although the SL is not a pure

two-level system, we realize that this linear
dependence still holds, as we can see in Fig. 9.

&, (TH2)

0 20 40 60 50 100
F (kV/cm)

FIG. 9. Rabi frequency as a function of the
electric field when the driving frequency is tuned
to the resonant frequency wa, = 24 THz.

5.3. Effects of interface roughness

The presence of imperfections introduced
during growth processes should also be taken
into account. Since RQs are a coherent phe-
nomenon, unintentional disorder will affect
them. From the viewpoint of applications,
it is most important to elucidate whether
ROs are to be detected in actual devices. To
answer this question we consider again the
model of disordered SL proposed in Section 2.

Figure 10 displays P{(t) with F =
50kV/cm at the resonant frequency wye =
24 THz for both ordered (W = 0} and un-
intentionally disordered (W = 0.03, namely
less than one monolayer) SLs. Natice that
the perfect oscillatory pattern. detected in
perfect SLs is completely altered when we
iniroduce a small amount of disorder. The
disorder induces both a decrease of the am-
plitude of the oscillations and a progressive
dephasing comparing with the ideal ordered
case. This fact can be explained by scatter-
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FIG. 10. Probability of finding an electron,
initially situated in > (2), in the state > (z)
as a function of time for F = 50kV/cm, when
the ac field is tuned to the resonant frequency
wae = 24 THz with (a)} W = 0 (ordered SL) and
(b) W == 0.03 (unintentionally disordered SL).

ing of electrons with the random potential.
From the above results we conjecture that
there exists a characteristic scattering time
Tais related to the amount of disorder in the
sample, after which RQs are destroyed by dis-
order. Moreover, it is readily observed that
Tqis decreases upon increasing the degree of
disorder. However, the above results have
been obtained for a fixed value of the electric
field. To check the validity of the proposed
Tais we have studied Pé?’ (¢) for different val-
ues of the ac field strength with the same
amount of disorder. Typical results are pre-
sented in Fig. 11 for W = 0.03 and F = 25,
50 and 100kV/cm. From this plot we can
roughly estimate that 74, =~ 0.756ps for all
values of the electric field. Thus, this scatter-
ing time plays the same role as the scattering
time arising from inelastic interactions, in the
sense that the period of ROs must be kept

smaller than 743, to be observed. The behav-
ior of ROs is very similar to the case when
disorder is absent for ¢ < 7g;,. Moreover,
performing the FFT of PS )(t) for different
values of the electric field, we obtain that wg
shows a linear dependence with the field, as
it is expected from perturbation theory. The
difference between the values of wg of perfect
and imperfect SLs for ¢ < 14;5 is negligible.

02 @)
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t(ps)

FIG. 11. Probability of finding the electron
in the state wis){z) as a function of time for
W = 0.03, wae = 24THz and (a) F = 25, (b)
50 and {c} 100 kV /em.

Figure 12 shows the integrated probability
density in the right part of the SL, defined
in (18), for (a) W = 0 and (b) 0.03. Solid
lines are the results in the resonant regime
wge = 24 THz, whercas dashed lines are the
results for w,. = 32 THz (out of resonance).
We can see that the tunneling probability is
negligible when the ac field frequency is not
very close to the resonant one. When wae
is close to the resonant frequency, the wave
function is therefore ecmitted by bursts from
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the SL region every time a RO has been com-
pleted. We can see that this phenomenon is
also observed for the imperfect SL for times
smaller than 7y;,-

Finally, some words about the experimen-
tal conditions to ohserve the theoretical find-
ings are in order. Nowadays a high-power
terahertz ac field can be generated in a free-
electron laser [74]. A straightforward way to
observe ROs in SL experimentally is to detect
the radiation at the frequency wg emitted by
the oscillating dipole associated with the RO
when the SL is driven by the ac field at the
resonant frequency.

FIG. 12. Pr(t} as function of time when
F = 50kV/fem, for (a) W = 0 and (b) 0.03.
Solid lines are the resuits in the resonant regime
wae = 24 THz, whereas dashed lines are results
for we: = 32 THz (out of resonance).

6. INTERPLAY BETWEEN
DISORDER AND NONLINEAR
EFFECTS

68.1. Electron transmission across
superlattices: Nonlinear-effects

In semiconductor nanostructures there are
several scattering mechanism that could re-
sult in a reduction of the carrier coherence.
An example of inelastic scattering events is
electron-electron interaction, in which the en-
ergy of the tunneling electron changes and
the phase memory is lost. The influence of
such many-body effects on SL has recently
attracted considerable attention. Presilla et
al. [75] pointed out the possibility of nonlo-
cal effective nonlinearities due to many-body
interactions in electron transport through
semiconductor heterostructures. Several re-
sults have been obtained using this mean
field analysis such as quantum chaos [76]
and nonlinear oscillations [77-79]. Loosely
speaking, this kind of treatment could be re-
garded as similar to Hartree-Fock and other
self-consistent techniques, which substitute
many-body interactions by a nonlinear effec-
tive potential. It has to be stressed, how-
ever, that the nonlocal interaction might not
be the most suitable one in many contexts
(e.g., when wells are wide) because it does
not take into account the spatial variation of
the effective potential.

To consider the electron-electron interac-
tion we write a generalized effective-mass
equation modifying Eq. (2) that now has the
form

[hzdld

~he -2 —eF
2 dzm*(z) dz+VSL'(z) ers



156

F. Dominguez-Adame et al.

+ ()| w(2) = Ev(z). (36)

with & = a AE, L where AE, is the conduc-
tion band offset, L is the SL period and a
is the dimensionless nonlinear coupling con-
stant.

To obtain the transmission coefficient we
develop a similar approach to that given in
Ref. [80]. For simplicity we take a constant
effective-mass over the whole SL. As usual in
scattering problems, we assume an electron
incident from the left and define the reflec-
tion, r, and transmission, ¢, amplitudes by
the relationships

eikoz +re-‘ikoz, 2z < 0,
¥(z) = { teibcz z> L, (37)

where we have introduced the notation kj =
om*E/R and k2 = 2m*(E + eFL)/K.
The transmission coefficient is computed as
r = (ke/ko)|t]?. Now we define (z) =
(1t] VE)Q(2) expli¢(2)], where Q(z) and
¢(z) are real functions. Inserting this fac-
torization in Eq. (36) we have {81]
d{(z)

SH-07w (38)

and

R (dQ(z) 1 )
‘2m*( dz2  Q¥(z2)

+ [V - E| Q=0 @9

This nonlinear differential equation must
be supplemented by appropriate boundary
conditions. However, using Eq. (37) this
problem can be converted into a initial condi-
tions equation. In fact, it is straightforward
to prove that

Qo =1 WA o

z=L
and that the transmission coefficient is given
by
. 1k6Q%(0)
1+ 2koQ?(0) + k3 @*(0) + Q%(0)Q3(0)’
(41)

where Q.(0) = dQ(z)/dz|.—0. Hence, we
can integrate numerically (39) with initial
conditions (40) backwards, from z = £ up
to 2 = 0, to obtain g{(0) and ¢.(0), thus
computing the transmission coefficient for
given incoming energy E and applied volt-
age V = FL. Once the transmission coefh-
cient has been computed, and recalling that
contacts are linear media, the tunneling cur-
rent density at a given temperature T for the
SI, can be calculated within the stationary-
state model with Eq. (27). As an exam-
ple we have considered a symmetric GaAs-
Gay gpAlg 35 As double-barrier structure with
£ = 3d, = 1504, and thus L = 2d,
in this case. The conduction-band offset is
AE. = 0.25eV. In the absence of applied
electric field and nonlinearities, there exists
a single, very narrow resonance with 7 ~ 1
below the top of the barrier, with an energy
of ~ 81meV, and hence the well supports
a single quasi-bound state. Figure 13 shows
the transmission coefficient as a function of
the incoming energy for different values of
the nonlinear coupling o (a) 0 and 1074, (b)
1072 and (c) 1072, at zero bias. Insets show
the effective potential the conduction-band
profile.

It is clear that the resonances are shifted
to energies higher than in the noninteracting
case. The shift is produced by the accumula-
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tion of charge in the well. These results are
in very good agreement with self-consistent
calculations [82,83] and reproduces the ob-
served charge accumulation in the barriers,
close to the hetercojunctions, and in the cen-
ter of the wells, obtained in the Hartree ap-
proximation [7]. Then we have shown that
the effective nonlinear interaction we have
introduced captures the essential physics of
electron-electron interaction in resonant tun-
neling processes in a very simple way.
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FIG. 13. Transmission coefficient v as a func-
tion of the electron energy at zero bias for (a)
a = 1074, (b) 1073, and (¢) 10~*. For compar-
ison, dashed line indicates in (a) the result for
o = 0. Insets show the conduction-band profile.

6.2. Nonlinear dynamics in superlattices
under ac-flelds

In the Sections 4.4 and 5.3 we investigate
the dephasing effects of unintentional disor-
der in coherent phenomena as BOs and ROs.
Now we want to study other decoherence
processes producing the observed fast de-
phasing of coherence phenomena in SL, and
more specifically in the interplay between the
growth imperfections {disorder) and many-
body effects as the electron-electron inter-
action. The interplay between the effects
of disorder and many-body effects on elec-
tronic properties is a long-standing problem
in solid-state physics. Probably one of the
most promising ways to gain insight into this
intricate problem is to combine the actual
state-of-the-art of the molecular beam epi-
taxy, which allow us to grow samples with
monolayer perfection and consequently with
well-characterized disorder, with coherent os-
cillations that are extremely sensitive to im-
perfections and nonlincar effects.

Our model is based in the time-dependent
effective-mass method. The envclope func-
tion for the electron wa~e packet satisfies the
following quantum evolution equation

L 0%(z,t)
s =
e 42

" om* Ez_f

+Van(z )| ¥z, 0, (42)

We consider two approaches to the nonlin-
car potential Vni{2,t) in Eq. (42). On the
one hand we take into account the modei de-
scribed above, where Wy, (z,1) is

VN;;('_z,t) = Vsi,_(é) - eFacz'siﬁ(u};.ct) : -
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+ fnoc|¥ (2, t)fza (43)

Fu: and wy, being the strength and the fre-
quency of the ac field respectively. We de-
fine @ioc = aloc AE. L where AE, is the
conduction-band offset, L is the SL period
and all the nonlinear physics is contained in

the dimensionless coefficient a,. which we
discuss below. There are several factors that

configure the nonlinear response to the tun-
neling electron. We want to consider only
the repulsive electron-electron Coulomb in-
teractions, which should enter the effective
potential with a positive nonlinearity, i.e., the
energy is increased by local charge accumu-
lations, leading to a positive sign for 4.

On the other hand, we have consid-
ered a different approach by solving self-
consistently the Schrodinger and Poisson
equations obtaining a Hartree-like poten-
tial {84]. In this context, the nonlinear po-
tential is,

WNL (2, 1) = VaL(2) — eFacz sin(wact)
+ &sglfVH (Z, t), (44)

where now Vj it is obtained by solving the
Poisson equation for the density of charge
|¥(z,t)|%, and we define the coupling coeffi-
cient as Ggeif = Ogeif D¢ L, where g is the
dimensionless nonlinear coupling constant.
We present here results for a SL with 10 pe-
riods of 100 A GaAs and 50 A Gag7Alg3As
with conduction-band offset 0.30eV and
m* = 0.067mg. The time and spatial mesh
used in the simulations are 4 x 1078 seconds
and 1A; we have checked that our numer-
ical results are not affected by these par-
ticular values. To illustrate the effects of
the nonlinear coupling we show in Fig. 14
the conduction-band profile for a perfect SL

=1

>
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>
-1 + -+
(c)
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_10 e 161-; e 260_ _..____30.0_._____450
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FIG. 14. Conduction-band profile for a per-
fect SL (W = 0) at £ = 0.4 (solid lines) and
1.2 ps {dashed lines) for (a) the linear case and
modeling the electron-electron interaction with
(b) the self-consistent method (crees = 1072) and
with (c) the local model {ao. = 10).

(W = 0) at t = 0.4 (solid lines) and 1.2ps
{dashed lines) when the ac field is tumed
to the resonant frequency w,. = (E{"’) -
E®)/h = 24THz, for (a) the linear case
and modeling the electron—electron inter-
action with (b) the self-consistent method
(asetr = 2.2 % 107%) and with (c) the local
model {aj,; = 0.22).

In Fig. 15 we plot the probability of finding
an electron, initially situated in w'(]‘_”(z), in
the state d}{s}(z) of a perfect SL (W = 0) as
a function of time when the ac field is tuned
to the resonant frequency, for different vai-
ues of the nonlinearity coupling (a) Qgeif =
1.1 x 1078, (b} 2.2 x 1079, (c) 1.1 x 10~°
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and (d} 2.2 x 10~>. The results for the local
model are very similar, When we compare
this picture with Fig. 10 we see the process
of vanishing of the ROs are completely dif-
ferent when the dephasing mechanisms is the
interface roughness or, the electron-electron
interaction. In the second case, the effects
are the same for any time, then we could not
speak about a dephasing time since appar-
ently we only modified the electronic struc-
ture and then we are decreasing the resonant
coupling between the external ac field and
the Bloch bands.

The results that we obtained when we

Probability
g = &
|
i
c
s
gﬁf_’:—
T?

Y
: i 'Qﬁ rUH"i‘

Time {ps}

FIG. 15. Probability of finding the eiectron in
the state 1 >'(2) in a perfect SL (W = 0) as
a function of time when the ac field 15 tuned
to the resomant frequency, wsc ~ 24 THz, for
different values of the nonlinearity coupling {a)
Quar = 5 % 1072, (b) 1074, (c) 5 x 10~* and (d)
1073,

consider together both dephasing effects are
more interesting. In Fig. 16 we pilot the oc-
cupation probability of the state ¢§5’(z) as
a function of time considering imperfections
about one monolayer (W = 0.03) for (a) the
linear case and considering, together with
the imperfections, the electron—electron in-
teraction (b) within the self-consistent model
aser = 2.2 x 107% and (c) within the local
one gy = 1.1 x 1071, We can clearly see
how nonlinearity prevents the dephasing ef-
fects introduced by the imperfections allow-
ing the observation of Rabi oscillations dur-
ing larger coherence times.

Probability

Time (ps}

FIG.-16. Probability of finding: the electron
in the state qbg"’)(z) as a function of time for
the resonance driving frequency for a SL with
imperfections (W = 0.03) for (a) the linear
case, and modeling the electron-electron in-
teraction with (b} the self-consistent method
(ol = 2.2.x 107°%) and with (c) the local model
(e =11 x107Y). - ... .
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These theoretical results are completely
consistent with recent experiments in trans-
port properties of intentional disordered su-
perlattices with doped and undoped super-
lattices [85,86], where it is shown that the
Coulomb interactions could be the responsi-
bie of the suppression of disorder effects lead-
ing to quasimetallic behavior at low temper-
atures when the doping of the samples in-
creases.

7. CONCLUDING REMARKS

One of the main conclusions of this work is
to underline the importance of disorder in the
transport properties of SLs, in contrast to the
general belief that the high quality of actual
SLs make the disorder a second order effect.
It has to be kept in mind that unintentionally
disorder is currently unavoidable, more so
when preparing such long SLs (100 periods)
as we have considered. In fact, our conclusion
is of a quite broader scope, because weak dis-
order has been usually disregarded as a rele-
vant factor in many other contexts, such as,
e.g., studies of optical properties of semicon-
ductors or electronic transport properties in
general, to name a few. We note, however,
we have restricted the discussion mainly to
the single-clectron case. As we have shown
in the previous section, the dephasing effects
of disorder are dramatically reduced when
we consider the electron—electron interaction.
Other dephasing processes, such as impurity
or. phonon scattering, have been ignored but
could affect the predicted phenomena.

We have been able to firmly connect BOs
suppression and dephasing in actual SLs
to small deviations from exact flatness at

well-barrier interfaces. Specifically, we have
shown that an average degree of imperfec-
tion of less than one monolayer suffices to
explain quantitatively the experimental re-
sults reported in {52,59]. Whereas the ini-
tially localized state is recovered after time
7p in the case of perfect (W = 0} SLs (reg-
ular behavior), any degree of disorder due to
imperfections during growth leads to the dis-
appearance of BOs after a few oscillations:
The higher the degree of disorder the faster
the vanishing of BOs. The very good agree-
ment with previous experiments points out
the crucial role of imperfections in the dy-
namics of actual SLs driven by electric fields.
Most. importantly, we have been able to de-
fine a characteristic scattering time 7g4;5, inde-
pendent of the electric field, after which BOs
cannot be detected, this being a specific pre-
diction of our model that can be checked by
experiments. In other words, for the BOs to
be observed in actual SLs, the applied electric
field must be larger than some critical elec-
tric field given by eFys L = 2nh/14is. The
existence of such a critical field is obviously
very important from the viewpoint of practi-
cal applications of our results. Fy;; is directly
related to the degree of disorder present in
the sample and decreases upon increasing the
quality of the sample, ie., it is an excellent
parameter to asses the performance of epi-
taxial growth techniques.

We have solved the problem of elec-
trons moving in a semiconductor superlattice
driven by an ac electric field. We found that
the electron can perform ROs under reso-
nant conditions but coherent oscillation van-
ish due to imperfections during growth: The
higher the degree of disorder the faster the
vanishing of ROs. Most importantly, we have
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been able to define a characteristic scattering
time 74is, independent of the electric field, af-
ter which ROs cannot be detected, this being
a specific prediction of our model that can
be checked by experiments. Finally, we have
shown that electrons are emitted by bursts
under resonant conditions, whereas the tun-
neling probability in vanishingly small out of
resonance.

We note, however, that high-frequency op-
erating devices demand higher electric fields.
Therefore, for sufficiently high fields, the
region ‘where coherent carrier motion takes
place, namely 24 = A/eF, is comparable
to the SL period L. In such a situation, the
in-plane disorder is no longer well described
by an ensemble of different quantum wells as
we have proposed because the wave packet
only would see one quantum well. More-
over, we have shown how the dephasing ef-
fects of disorder can be overestimated if we
do not consider the electron-electron ‘inter-
actions that can reduce dramatically the de-
coherence effects of the structural imperfec-
tions. Our results show that it is possible
to enlarge the dephasing times and, conse-
quently, the number of periods of coherence
oscillations of electrons in SLs. 1n semicon-
ductor heterostructures this can be done by
increasing the doping or with very intense
laser excitation fields. It goes without saying
that, to develop new devices for THz science,
it is crucial to understand how to control and
enlarged the coherence time to exploit the
application in ultrafast optical technology:
high-speed optical switches, coherent control
of excitons, etc. {87,88]. Therefore more the-
oretical work is needed to investigate the role
of imperfections and other dephasing mecha-
nisms like excitonic effects [89,90] in the de-

sign of future, shorter period devices.
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