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Abstract

An interacting electron—hole pair in a two-dimensional quantum dot is
studied within the framework of the effective-mass approximation. It is
shown that non-local separable potentials may be used to obtain the ground
state of confined excitons. To this end, we replace the actual Coulomb
potential by a projective operator to determine in a closed form the exciton
energy as a function of the quantum dot size. Several potential functions are
considered and results are compared to well-established approaches.

Improvements to the present method are also discussed.

1. Introduction

In recent years quantum dots (QDs) have been intensively
investigated as a source of novel physical properties in zero-
dimensional structures. This interest also originates from their
quantum device applications since high component density
and very high speed performance are possible. Electron
confinement within the QD can be fairly well approximated
by a parabolic potential with only one adjustable parameter
(confining frequency) [1]. Due to this spatial confinement,
the binding energy of the excitons is strongly enhanced, as
compared to its value in bulk semiconductors or even in
quantum wells. Within the effective-mass approximation,
the interacting electron-hole pair is then described by
a Hamiltonian including the Coulomb potential plus the
confining parabolic potential. The Hamiltonian is separable
upon introducing the centre-of-mass and relative coordinates.
Finally, one is faced with a Schrodinger-like equation for
the relative part, where the effective potential consists of a
Coulomb potential coupled to a harmonic oscillator. Since
no general analytical solutions are available, the relative
Hamiltonian is to be solved numerically [2], by means of
the shifted 1/N expansion [3] and WKB treatment [4] or even
analytically for particular values of the ratio of the strengths
of the Coulomb and harmonic oscillator terms [5].

In this paper we present a novel approach based on the
non-local (separable) potential (NLP) method, in which the
actual potential is replaced by a projective operator [6, 7]. This
method yields an exactly solvable Schrodinger-like equation
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from which the binding energy can be readily obtained without
tedious and elaborated calculations. What is more important,
it is always possible to find an NLP (or a sum of them)
able to reproduce any set of given electronic states [8] and,
consequently, there is no theoretical limitation to the numerical
accuracy with which physical results can be obtained. The
NLP method has already been successfully used to determine
in a closed form the binding energy of an electron in the H ion
within the Born—Oppenheimer approximation and the electron
effective-mass in polyacetylene [9]. For a brief summary of
applications of NLP in condensed matter physics see [10].

2. Model Hamiltonian

Consider an interacting electron—hole pair confined in a two-
dimensional (2D) QD. In the framework of the effective-mass
approximation, the Hamiltonian of the electron—hole pair can
be written as H = Hg + H,, where [3]

P o1,
HR=m+EMU)R (la)
2 1 62
Hy = — + —mw*r’ — — 1b
2m mer €r (15)

Here the pairs (P, R) and (p,r) are the usual centre-of-
mass and relative momenta and coordinates, respectively. The
exciton mass is M = m} + mj, and the reduced mass is
m = m,mj/(m} +mj}). The QD is assumed to be parabolic
with confining frequency w and the Coulomb potential is
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screened by the background dielectric constant €. The exciton
wavefunction is expressed as W(R)Y¥ (r). The centre-of-
mass wavefunction W (R) is exactly solvable since Hpy is the
standard harmonic oscillator Hamiltonian. Thus, we will deal
only with the relative wavefunction ¥ (7) in what follows.

Inspired in our previous treatment of Coulomb forces in
the Hj ion [9], we replace the Coulomb term in (1b) by an NLP.
Consequently, the Schrodinger equation arising from (1) is
replaced by

2
<”— RN VNL) V() = Ey(r) (2a)
2m 2
where
ahz 2.7 / /
WLy (r) = —%v(r)/d roE)y(r). (2b)

Here « is the coupling constant and v is the potential function.
It is usual to assume, as a first approximation, that the
potential function v is spherically symmetric, although other
symmetries can be also considered within the NLP approach.

At this point it is important to stress that the substitution
—(e?/er)yr(r) — VL (1) is exact provided the appropriate
potential function v is used in (2b). The main shortcoming
of the NLP method is that the exact potential function v is
expressed in terms of the eigenenergies and eigenfunctions
of the original Schrodinger equation [8]. Interestingly,
equation (2a) is exactly solvable for any arbitrary potential
function v. Therefore, the crucial point within the NLP is
to choose a potential function that reproduces the observed
energy values of the physical system being considered.
Typically naive functions with very few adjustable parameters
are good candidates [9, 11].

3. Green function

We now calculate an explicit expression for the exciton energy
for any arbitrary potential function v. This task is carried out
within the Green function framework. The Green function for
a 2D harmonic oscillator is determined by the equation

L |
L +—mw’r> —E)G,(r,v'; E) =8 — 1) (Ba)
2m 2

where in polar coordinates (7, ¢)

Str—r) = 8¢ —r) i elt@=¢"
22 /rr’

{=—00

(3b)

The solution of (2a) can be cast in terms of the Green function

Y(r) = / &r' G, (r, s E)YVar ¥ ()

ah?

= ——I/ &' G, (r,r'; E)o(r) (4a)
2m
where we have defined the following constant:
T= /dzr V()Y (7). (4b)

After inserting (4a) in (4b), we arrive at the following implicit
equation for the exciton energy E:

2m_

el fdzr/dzr’Gw(r,r/; EYv(r)v(r). 3)
(07
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Now we perform the integration over the polar angle ¢ using
the expansion

oy .
2m g, (r.r's E) LG4

Gu(r,r'E) = —
W= 2w

(6)

so we can rewrite (5) as follows:
1 o0 o0
L f dr / Vgl s EYorvG) ()
20( 0 0

where, by virtue of (3), the function gg (r,r', E) is obtained

by solving the following Sturm-Liouville problem:

2 1 +r2+4e3—2 01 E) = 8( y
- -5t t— rr'yE)=8(r—r
arz  4r2 L4 2 )%

@®)

where we have introduced the QD size L = /h/mw and
e = 1/2 — E/2hw. Therefore, using the Kummer functions
[12], we get

r 2 2]
go(rr' E) = ——;8) Vrr'exp (——r 22; )

x Mg, 1,r2 /LHU (e, 1,72 /L?) )

where r_ (r.) stands for the smaller (larger) value of (r, r’).

4. Coupling constant o

It is apparent that the coupling constant « is not an adjustable
parameter of the model. The reason lies in the fact that
we might obtain the binding energy E,p = —4Ry* of
free excitons when the confining potential is switched off,
Ry* being the effective Rydberg in the bulk semiconductor.
This step is easily achieved in momentum space, where the
Schrodinger equation for the relative particle (2) for o = 0
reads

p2 ahz
(2— + |E2D|> Y (p) = ——Zv(p). (10a)
m 2m
with
Vo) = — [ Ere iy (100)
2mh
v(p) = %f drrv(r)Jo(pr/h). (10c¢)
0
Using the Parseval identity to write
= [Epvmum an

and (10a) we obtain a closed expression for the coupling
plv(p)I?

constant
1 ) o
— =7h f dp
2u 0 p2+p3p

where p% p = 2m|E;p|. Letus stress that the Fourier transform
of real and spherically symmetric functions is also real, but
we retain the absolute value should nonspherical functions be
considered.

We have found it most appropriate to introduce the
Yamaguchi’s NLP [13], as it correctly describes Coulomb
coupling in the H} ion [9]. This potential function is simply the
Coulomb local potential times the ground state wavefunction
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for this potential, namely v(r) = (1/r) exp(—r/a*), a* being

the effective Bohr radius. Its Fourier transform (10c) reads
2 2 —-1/2

v(p) = (p + pw) so that

L 1. (13)

2a Y 2
For comparison we have considered surface §-potentials, that
is, a force vanishing everywhere except on a spherical shell of
radius a*, namely v(r) = §(r — a*), whose Fourier transform
is v(p) = (a*/h)Jo(pa*/h). This NLP has been found to be
well suited to simulate electron potentials on long quasi-one-
dimensional polymers, such as polyacetylene or polyaniline
[9, 11]. Thus, in this case the coupling constant becomes

1
— =0.5337a*.

o (14)

5. Results and discussions

We consider QDs prepared by confining 2D electrons in a
GaAs—AlGaAs heterostructure. Once the material parameters
are chosen (m} = 0.067m,mj) = 0.090m and € = 13.1,
where m is the free electron mass), the only remaining free
parameter is the QD size, namely L. We have calculated the
exciton energy as a function of L by means of equations (7)
and (9), where the coupling constant is given by (13) and (14)
for the Yamaguchi’s and § NLPs, respectively. Results are
shown in figure 1 and compared to those obtained from the 1/ N
shifted expansion [3] and by direct numerical diagonalization
of the Hamiltonian (1b). We draw attention to the small-size
regime where exciton is confined (L up to 2a™). For large L
(>a*), all data approach the energy of unconfined 2D excitons
(~ —12 meV), as expected. The exciton energy increases as
the confinement is stronger (L decreases) and the confinement
effects dominate. Note that the Yamaguchi’s NLP provides
excellent results over the whole range of sizes when compared
to the exact calculation, while the 1/N-shifted expansion fails
in the strong confinement regime (L < a*). It is worth
mentioning that the NLP approach with the naive potential
function v(r) = §(r — a™) yields better results than the 1/N-
shifted expansion. We have tried several simple potential
functions (e.g. Lorentzians peaked at r = 0) but found no
improvements as compared to the Yamaguchi’s NLP results.
However, it is clear that more elaborated functions might
yield better results. Finally, let us mention that variational
techniques (e.g. taking a* as a variational parameter in the
above potential functions) would surely lead to more accurate
results. Study along this direction is in progress.
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Figure 1. Exciton ground state energy as a function of the quantum
dot size. Results of this work for the § (dotted line) and
Yamaguchi’s (dashed line) non-local separable potential are
compared to the shifted 1 /N expansion (circles) and exact
diagonalization (solid line).
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