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Can fractal-like spectra be
experimentally observed in aperiodic
superlattices?
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Abstract. We numerically investigate the effects of inhomogeneities in the energy
spectrum of aperiodic semiconductor superlattices, focusing our attention on
Thue-Morse and Fibonacci sequences. In the absence of disorder, the
corresponding electronic spectra are self-similar. The presence of a certain degree
of randomness, due to imperfections occurring during the growth processes, gives
rise to a progressive loss of quantum coherence, smearing out the finer details of
the energy spectra predicted for perfect aperiodic superlattices and spurring the
onset of electron localization. However, depending on the degree of disorder
introduced, a critical size for the system exists, below which peculiar transport
properties, related to the pre-fractal nature of the energy spectrum, may be
measured.

1. Introduction

One of the most appealing motivations for the experimental
study of aperiodic superlattices (ASLs) arranged according
to Fibonacci [1] and Thue-Morse [2] sequences is
the theoretical prediction that these systems exhibit a
highly fragmented energy spectrum displaying self-similar
patterns [3–5]. From a strict mathematical perspective, it
has been proven that the spectra of both Fibonacci and
Thue-Morse lattices are Cantor sets in the thermodynamic
limit [6, 7]. From an experimental point of view, however,
two major limitations appear to validate their peculiar
fractal nature.

In the first place, it is not possible to fabricateperfect
aperiodic structures. Although x-ray diffraction studies
show that the characteristic structural order of ASLs
is preserved under moderately large growth fluctuations
[8], the way this robust aperiodic order can influence
the transport properties of actual, defective ASLs has
not yet been given proper treatment in the literature.
In this sense, the observation of inhibition of vertical
transport in periodic superlattices with intentional disorder
[9], in agreement with the theory of localization in one-
dimensional disordered systems, suggests the possible
existence of a competition between the long-range aperiodic
order and the unintentional short-range disorder and opens
new perspectives [10].

In the second place, even in the most favourable
experimental conditions, onlyfinite arrangements with a
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limited number of layers can be manufactured. In this
sense, the observation of fragmentation patterns in the
energy spectra of short ASLs using different experimental
techniques [11] encourages further analyses as to whether
fractal-like spectra are to be expected in actual ASLs with
an increasinglylarge number of layers.

Two important questions then follow quite naturally.
First, what are the effects of unintentional disorder in
the splitting scheme of the energy spectrum of ASLs?
Second, what are the finite size effects on their fractal-like
properties? In this paper we address these questions by
means of the study of the phase diagram, the localization
length and the bandwidth-scaling of the energy spectra.
Our results indicate that small fluctuations in the sequential
deposition of layers considerably smear out the self-
similarity of the energy spectra on increasing the system
size. Thus, we conclude that fractal-like spectra with a
richness of finer details such as those found by numerical
analyses ofperfect ASLs are not to be expected inlarge
ASLs, but quantum coherence is strong enough inshort
systems to give rise to a measurable hierarchical set of
subminibands in the electronic spectra and to influence
related transport properties.

2. Model

We consider quantum-well based GaAs–Ga1−xAl xAs
superlattices with the same barrier thicknessb in the
whole sample. The height of the barrier for electrons
is given by the conduction-band offset at the interfaces.
We take the origin of electron energies at the GaAs
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conduction-band edge. The thickness of each quantum-
well is 1zn − b ≡ zn − zn−1 − b, zn being the position of
the centre of thenth barrier. We will focus on electronic
states close to the bandgap and neglect nonparabolicity
effects hereafter, so that a one-band Hamiltonian suffices
to describe those states. Physical magnitudes of interest
can be easily computed using a transfer-matrix formalism
in this simple picture [12]. In particular, we can obtain
subband energies under periodic boundary conditions and
the Lyapunov coefficient, which measures the inverse of
the localization length in units of the superlattice period.
We will consider Thue-Morse superlattices (TMSLs) and
Fibonacci superlattices (FSLs) since they have already been
constructed starting from two basic building blocksA and
A′ by means of molecular beam epitaxy [1, 2]. In our
model, we takeA (A′) to consist of a quantum well of
thicknessa (a′) and a barrier of thicknessb. ASLs are
generated using the following inflation rules:A → AA′,
A′ → A′A for the TMSL andA → AA′, A′ → A for the
FSL. In this way, finite and self-similar ASLs are obtained
by n successive applications of these rules, withN = 2n

wells in the TMSL case andN = Fn wells in the FSL case.
The Fibonacci numbers are generated from the recurrence
law Fn = Fn−1 + Fn−2, starting withF0 = F1 = 1.

Interface roughness appears during growth inactual
ASLs. Protrusions of one semiconductor into the other
cause in-plane disorder and break translational invariance
parallel to the layers. Because the in-plane average size
of these defects depends on the growth conditions and is
unknown in most cases, one is forced to develop a simple
approach. We carry out such an approach describing local
excess or deficit of monolayers by allowing1zn to fluctuate
uniformly around the nominal valuesa + b or a′ + b. This
approach enables us to restore the translational symmetry
parallel to the layers, thus facilitating computations. Our
approximation should be valid whenever the mean free path
of electrons is much smaller than the in-plane average size
of protrusions because electrons only seemicro-quantum-
wells with small area and uniform thickness. Therefore,
each micro-quantum-well presents a slightly different value
of its thickness and, as a consequence, resonant coupling
between electronic states of neighbouring GaAs layers is
decreased. To get an accurate description of electron
dynamics, an average over all possible configurations of
disorder is indeed required because the number of interface
defects as well as their mean thicknesses vary from layer
to layer. For definiteness we take1zn = a(1+Wεn)+b or
1zn = a′(1 + Wεn) + b, whereW is a positive parameter
measuring the maximum fluctuation andεn are distributed
according to a uniform probability distributionP(εn) = 1
if |εn| < 1

2 and zero otherwise. Note thatεn is a random
uncorrelatedvariable, even when the lattice is constructed
with the constraint that the mean values of1zn follow the
aperiodic sequences.

3. Results and discussions

We have studied GaAs–Ga0.65Al 0.35As ASLs witha = b =
32 Å and a′ = 35 Å. In this case the conduction-band
offset is 250 meV and the effective masses arem∗

GaAs =

Figure 1. Phase diagram for (a) a GaAs–Ga0.65Al0.35As
FSL with N = F11 = 144 wells and (b) a
GaAs–Ga0.65Al0.35As TMSL with N = 128 wells. Averages
were taken over ten realizations of the superlattice.

0.067m and m∗
GaAlAs = 0.096m, m being the free-electron

mass. In a periodic superlattice witha′ = a = 32 Å
only one allowed miniband lies below the barrier. We
restrict ourselves to the study of the fragmentation of this
miniband when aperiodicity is introduced. Averages over
possible configurations of disorder comprised a number
of realizations varying from 50 up to 100 to test the
convergence of the computed mean values, and this
convergence was always satisfactory. In order to compare
with possible experimental situations, we have considered
W ranging from 0 up to a maximum of 0.08. This value
amounts to having maximum protrusion thicknesses of half
a monolayer on average.

Figure 1(a) shows the dependence of the energy
spectrum structure on the amount of disorder,W , present
in an FSL with N = F11 = 144 wells. The energy is
measured from the conduction-band edge in GaAs. For a
perfect (W = 0) FSL the overall structure of the energy
spectrum is characterized by the presence of four main
subbands. Inside each main subband the fragmentation
pattern follows a trifurcation scheme in which each subband
further splits from one to three subsubbands [13, 14].
Therefore, the energy spectrum of perfect and finite FSLs
presents distinct pre-fractal signatures. The situation
changes when randomness is introduced. In fact, although
the tetrafurcation pattern of the perfect FSL still remains,
the finer details corresponding to successive steps in the
hierarchical splitting scheme are progressively smeared
out on increasing the disorder due to growth fluctuations.
Figure 1(b) shows the dependence of the spectrum structure
on the degree of disorder present in a TMSL withN = 128
wells. For a perfect system the fragmentation scheme
agrees with that previously discussed by Ryuet al [4] in the
framework of the Kronig–Penney model, and displays pre-
fractal signatures as well. The effects due to unintentional
disorder are similar to those shown in figure 1(a) for
an FSL. In a previous paper we have demonstrated that
pre-fractal signatures of FSLs can be properly described
by considering the resonant coupling between electronic
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Figure 2. Localization length for (a) a perfect (W = 0)
GaAs–Ga0.65Al0.35As FSL with N = F11 = 144 wells (solid
curve) as compared with a disordered FSL (W = 0.05) of
the same length (dashed curve) and (b) the same
comparison for a GaAs–Ga0.65Al0.35As TMSL with N = 128
wells. Averages were taken over 50 realizations of the
superlattice.

states of nearest-neighbour building blocks [14]. In this
sense, the above results reinforce this conclusion for
they show that the presence of the short-range disorder
reduces the resonant coupling between quantum wells and,
consequently, weakens the physical mechanism giving rise
to the self-similar pattern.

To investigate the effects due to the competition
between long-range aperiodic order and short-range
disorder on the transport properties, we have evaluated
the localization length,̀ , as a function of the energy, a
magnitude which can be readily determined numerically
within the transfer matrix formalism [12, 15]. Figure 2(a)
compares the localization length for an FSL withN =
F11 = 144 wells in two different cases. For the perfect
(W = 0) case we obtain a very spiky structure. Each
peak corresponds to a quasi-level, and most of them extend
throughout the superlattice, the localization length being
one order of magnitude greater than the system length.
Note that the distribution of peaks reflects the overall
fragmentation of the energy spectrum. However, when
growth fluctuations are introduced, the localization length
distribution becomes smoother and its value remainsalways
smaller than the superlattice length, clearly revealing the
onset of localization effects.

In figure 2(b) the same comparison is made for a TMSL
with N = 128 wells. Although the gross features of
the plot, and their corresponding physical interpretation,
are completely analogous to the case of the FSL, two

interesting remarks are in order. In the first place, we
observe that, in the perfect TMSL, there exists a significant
number of states whose localization length is several orders
of magnitude greater than the system size. This fact is
related to the presence of lattice-like states in the TMSL
[4]. The occurrence of such states does not take place
in the FSL. In the second place, the mean value of` is
lower for the defective TMSL, hence indicating that the
effects of localization are more intense in FSLs than they
are for TMSLs with the same amount of disorder. A topic
which has deserved some attention recently concerns the
comparison between the transport properties in different
kinds of aperiodically ordered structures. Our results
indicate that, in the presence of the same degree of
growth fluctuations, TMSLs should exhibit better transport
properties than FSLs. Finally, notice that the localization
onset is more pronounced at the edges of the energy
spectrum, while in the central regions of the spectrum
(about 110 meV) the localization length almost equals the
system size.

From figures 1 and 2 we can state that the general
effect of disorder in ASLs is twofold. First, it masks
typical pre-fractal features, smearing out the hierarchical
splitting scheme taking place in perfect ASLs. This effect
is independent of the precise nature of the underlying
aperiodic order, that is to say, quasiperiodic (FSL) or
self-similar but not quasiperiodic (TMSL). Secondly, the
overall decrease of the localization length of the electronic
states indicates that localization effects induced by random
fluctuations are starting.

To get a more complete understanding of the
competition between long-range aperiodic order and
random fluctuations, we have performed a bandwidth-
scaling study [16]. To this end, we define the equivalent
bandwidth S as the sum of all allowed energy regions,
this being nothing but the Lebesgue measure of the
energy spectrum, and compute it as a function of the
number of wellsN . The obtained results are presented
in figure 3. Let us start discussing the scaling of
the Fibonacci system. The equivalent bandwidth in the
perfect system (figure 3(a)) decays as a power law of
the form S(N) = S0N

−β , where S0 ∼ 40 meV is
close to the bandwidth of the periodic superlattice and
β ∼ 1

4, within our numerical accuracy. According to
earlier works [16], such behaviour is characteristic of a
fractal-like energy spectrum, becoming a Cantor set in the
limit N → ∞. However, in the presence of moderate
fluctuations (W ≤ 0.05), the equivalent bandwidth decays
faster than a power law, as seen in figure 3(b) forW =
0.05. The deviation from a power law is a natural
consequence of the breaking of the self-similarity of the
electronic spectrum [16]. Using a least-squares fit we
have found thatS(N) = S0N

−β exp[−α(W)N ], where
α(W) ∼ 2W 2. From this expression two conclusions can
be drawn. First, the presence of the exponential factor
indicates that, when disorder is introduced in an aperiodic
system, its spectrum is no longer described in terms of
a pure singular continuous component, whose presence
is characterized by the presence of the power-law factor
N−β . Second, the competition between aperiodic long-
range order and local disorder can be properly estimated
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Figure 3. Equivalent bandwidth S as a function of the
number of wells in (a) perfect W = 0 and (b) imperfect
W = 0.05 GaAs–Ga0.65Al0.35As FSL (solid curves) and
TMSL (dashed curves). Averages were taken over 50
realizations of the superlattice.

from the deviation ofS from a pure power-law behaviour.
Thus, localization effects dominate the electron dynamics
in ASLs whose length is larger than thethreshold length
given byNth(W) ∼ 1/α(W). This value is aboutNth ' 200
for W = 0.05. Interestingly the deviation from power-law
decay becomes appreciable for moderately long systems,
so that short imperfect ASLs will show energy spectra
quite similar to that corresponding to a perfect ASL. This
explains the success of previous experimental works to
detect self-similar features in actual ASLs [11].

Let us now consider bandwidth scaling in TMSLs. As
discussed by Riklundet al [17], the electronic properties
of Thue-Morse lattices lie between those of quasiperiodic
(Fibonacci) and the usual periodic ones. This point has
been further elaborated by Ryuet al [4], who have shown
that, attending to its scaling behaviour, the spectrum of
a TMSL can be decoupled into two components. One
component scales asN−β with β → 0+, and corresponds to
wavefunctions with a marked degree of extension (lattice-
like states). The other one also scales according to a
power law butβ > 0 in this case, and the corresponding
charge density distribution of the related wavefunctions
presents large spatial fluctuations. According to this,
the scaling behaviour shown in figure 3(a) can be easily
understood. For short TMSLs the contribution of the
two kinds of critical states to the total bandwidth is
essentially the same, for both spread uniformly over the
whole sample in an analogous manner. But as the number
of wells progressively increases, the contribution toS

due to the second kind of wavefunction decreases as

a power law, whereas lattice-like states give an almost
constant contribution toS. As a consequence, only these
states contribute significantly to the value ofS in the
thermodynamic limit. The maximum number of wells
considered in our computations has beenN = 4096,
since the spectrum becomes too fragmented to computeS

accurately for larger systems. Conversely, the equivalent
bandwidthS decays exponentially when randomness takes
place, as shown in figure 3(b). It is worth mentioning that
asymptotic values ofS are almost the same for the two
kinds of disordered ASLs, indicating that the particular kind
of long-range order of the underlying structure is immaterial
with regard to their spatial extent.

4. Conclusions

In summary, we have proposed a realistic model to study
actualaperiodic superlattices by allowing the quantum-well
thicknesses to fluctuate around nominal values in order to
take into account interface roughness. Our results indicate
that moderate fluctuations in the sequential deposition of
layers have significant effects on both the energy spectrum
and the spatial extent of wavefunctions. The fractal-
like nature of an arbitrary spectrum is determined by two
complementary features. In the first place, the energy
spectrum becomes more and more fragmented as the ASL
length grows. The physical origin for this fragmentation
stems from resonant tunnelling effects between electronic
states of neighbouring quantum wells (short-range effects).
In the second place, the splitting scheme of the energy
spectrum must display a self-similar pattern. The physical
origin for this self-similarity can be traced back to the
structural self-similarity of the superlattice itself which, in
turn, is imposed by the aperiodic ordering of the system
(long-range effects). Taking both facts into account we
conclude that the purported robustness of the aperiodic
order present in ASLs does not suffice, on its own, to
guarantee the fractal-like nature of the energy spectrum
in the presence of disorder, because the main effect of
growth fluctuations is precisely to weaken the resonant
coupling between electronic states. Hence, although the
structural aperiodic order is preserved in the presence
of moderate fluctuations, the self-similarity related to it
cannot be properly expressed, in its finer details, in the
energy spectrum due to the loss of quantum coherence as
a consequence of short-range effects.

The relative importance that this competition between
long-range order and short-range disorder has on the
transport properties depends critically on the length of the
system. The values of the localization length we have
obtained indicate that wavefunctions no longer spread over
the whole ASL, as they do in the perfect case, but their
degree of extension amounts to a significant fraction of
the system size in contrast to the usual view of localized
states extending just over a few wells. Thus, as a final
conclusion, we can state that distinctive features of a fractal-
like spectrum can be experimentally observed in ASLs of
practical interest, whose length is smaller than a threshold
length. The value of this threshold length depends on the
heterostructure quality attained during the growth process.
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