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Abstract. The electron dynamics and the density of states of both single 
and periodic Si &doped GaAs subject to an applied electric field are studied 
theoretically. The space charge potential due to &doping is obtained by means 
of the  semiclassical Thomas-Fermi model. Analysing the change in the density 
of states introduced by the &doping plus the electric field, we ObSeNe a set 
of sharp peaks, corresponding to field-induced localized states, and subsidiary 
peaks associated with more extended states. Furthermore, we use the inverse 
participation ratio to evaluate the spatial extent of electron wavefunctions. The 
number of sharp peaks equals the number of &doped layers. In the case of 
periodically &doped samples, the  sharp peaks are equally spaced and give rise to 
Stark ladder resonances. 

1. Introduction 

Epitaxial growth techniques. such as molecular beam 
epitaxy (MBE), are currently used to prepare 6-doped 
semiconductor structures, in which a thin slab of 
impurity atoms is localized within few monolayers of 
the crystal. Impurity atoms usually supply electrons 
and give rise to strong confinement by space charge 
potential, as was found in the case of Si &-doped GaAs 
111, hence forming a quasi-two-dimensional electron 
gas. Single and multiple 6-doped systems are being 
intensively investigated from both experimental [2- 
51 and theoretical [6-91 points of view because of 
their numerous potential applications in semiconductor 
devices (see [lo] for some examples of how 6- 
doping might offer practical advantages). Furthermore, 
these structures are a source of basic research on 
related problems, such as electron localization in two- 
dimensional systems due to the random distribution of 
impurities in the doping layer. 

Overlap of the electron wavefunctions of adjacent 
layers in periodically 6-doped structures causes the 
formation of subbands, as observed experimentally 
by Shubnikov-de Haas techniques [4] and optical 
measurements [ I l l  in Si &doped GaAs. Since the space 
charge potential is strongly dependent on the impurity 
concentration, the dispersion relation along the growth 
direction will depend on both impurity concentration 
and doping period. Some information about the Fermi 
surface and energy gaps between minibands can be 
inferred from photoluminescence (PL) measurements, as 
demonstrated theoretically by Henriques et al [9]. From 
this study one might expect that PL measurements at 
low temperatures could provide valuable information 
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regarding the space charge potential and the interaction 
of electrons with the doping layer. Nevertheless, it is 
to be expected that the presence of an applied electric 
field will modify the subband structure of multiple 6- 
doped GaAs. Therefore, the theoretical analysis of the 
resulting electronic structure of the superlattice subject 
to an electric field becomes a valuable task. 

After many years of controversy, it is now 
recognized that an electric field applied across a periodic 
structure leads to the occurrence of the so-called Stark 
ladder resonances (see [I21 for a brief historical survey 
of the evolution of this controversy). These ladders are 
not infinitely sharp levels-as was proposed originally- 
but they are resonant levels whose lifetimes are finite. 
The Stark ladder structure is characterized by a series 
of resonances separated by an energy eFa, where e 
is the absolute value of the electron charge, F stands 
for the applied electric field, and a denotes the spatial 
period of the periodic structure. In actual solids, a is 
of order of the lattice parameter, so that one would 
require very high electric fields to clearly observe 'a 
well-separated ladder structure, with the level spacing 
larger than the level width. Technological progress on 
superlattices has made it possible to fabricate artificial 
structures with very long period and extremely high 
quality, hence making observation of the ladder structure 
easier. In fact, recent experiments seem to firmly 
establish the existence of a ladder structure in quantum 
well superlattices [13-161. From a theoretical point of 
view, most works have considered so far either an array 
of &function potentials [12, 171 or periodic Kronig- 
Penney potentials with an applied electric field [18-201. 
The latter potential is useful for describing quantum well 
structures within the effective-mass approximation. It is 
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reasonable to think that an electric field along the growth 
direction in multiple &doped semiconductors may lead 
to phenomena similar to those observed in quantum well 
superlattices. As far as we know, however, the possible 
occurrence of Stark ladders in such structures has not 
been investigated. 

In the present work we study theoretically the 
electron dynamics and the density of states in both single 
and periodically Si 8-doped GaAs under homogeneous 
applied electric fields, as well as the influence of the 
impurity concentration on electronic properties. The 
space charge potential is found by solving the Thomas- 
Fermi equation. Since no analytical expressions for the 
space charge potential due to the doping layer exist?, 
we have developed a numerical technique to solve the 
corresponding Schrodinger equation and to find the 
change in the density of states (DOS) introduced by the 
structure. We shall show that Stark ladder resonances 
are clearly observed in the DOS, hence suggesting that 
this spectrum should also be observable experimentally 
in periodically &doped structures, as was the case in 
quantum well superlattices. 

The paper is organized as follows. In section 2 we 
briefly discuss our model, in which the space charge 
potential due to Si 8-doping in GaAs is found by 
means of the semiclassical Thomas-Fermi formulation. 
Therefore the many-body problem reduces to studying 
the dynamics of a single electron within the effective- 
mass approach. Section 3 is devoted to describing the 
numerical method used to obtain (i) bound states in 
zero-field single 8-doped layers, (ii) subband structure 
in periodically 8-doped structures and (iii) the change in 
the density of states and electron localization due to the 
presence of the structure plus the electric field. Results 
and discussions are collected in section 4; for the sake of 
clarity, results obtained in single and multiple structures 
(with and without applied electric field) are discussed 
separately. Finally, section 5 summarizes our results. 

2. The model 

The system we study in this work is a semiconductor 
structure made of Si &doped GaAs. The unit cell is a 
slab of GaAs of thickness a, with a Si &doping layer 
embedded in its centre. We assume that there exists a 
uniform p-type background doping with NA acceptors 
per unit volume, and that the doping layer consists of a 
continuous positive slab of thickness d with ND ionized 
donors per unit area The whole structure consists of 
N unit cells sandwiched between two buffer layers of 
GaAs, each of thickness b. The total thickness of the 
system then is L = N u  + 2b. 

We calculate the space charge potential V(x) (x 
denotes the spatial coordinate perpendicular to the 
layers) in the unit cell by means of the Thomas-Fermi 
(TF) semiclassical model. The many-body exchange 

t Ioriatti [6] finds an analytical result in the case of a single layer 
when the doping profile is assumed to be a &function profile in 
the Poisson equation. 
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and correlation effects are known to be small in the 
present system and they will be neglected completely 
131. The TF formulation has been demonstrated to be 
equivalent to the self-consistent formulation over a wide 
range of doping concentrations [6], and it has been 
considered previously in regard to zero-field periodically 
&doped structures by Egues er al [4]. The nonlinear TF 
differential equation in that case is 

[ E F  - V(X)]3’2 
8 

d x 2  3 n  
- dz V ( x )  

+ E N D O  ( x  + 4 )  0 ( x  - i) 
d 

- ~ x N A O  (x  + ;) 0 ( x  - 4) 
where EF denotes the Fermi energy. Distances have been 
scaled by the effective Bohr radius of the impurity, a*, 
and energies by the effective Rydberg, Ry”. In the case 
of Si 8-doped GaAs these parameters are a* = 100 A 
and Ry* = 5.8 meV. Equation (1) is solved numerically 
under superlattice boundary conditions [4] 

These boundary conditions allow us to calculate V(x) in 
the right half unit cell [O,a/2]. Since we are assuming a 
symmetrical doping profile, the potential in the left half 
is found using V(-x) = V(x). 

We assume the validity of the effective-mass 
approximation, and we take an isotropic and parabolic 
conduction band in the growth direction. This 
approximation usually works fine in GaAs, except at 
very high electric fields, when the r-X mixing induced 
by the field occurs 1211. Thus, once the potential 
V ( x )  is found from (I), the electron dynamics in the 
unit cell along x in the presence of a homogeneous 
applied electric field, perpendicular to the doping 
layers, is obtained from the following one-dimensional 
Schrodinger equation: 

To solve the Schrodinger equation (3) we must set 
appropriate boundary conditions at the edges of the 
system. This is not a trivial question, as pointed 
out by Banavar and Coon [18], in order to obtain 
a correct account of Stark ladder resonances. For 
instance, infinite baniers at the edges of the system may 
convert resonance states into zero-width bound states. 
Reasonable boundary conditions consist of letting the 
potential level off at the value it has at the edges of the 
crystal [18]. The potential used in our calculations is 
sketched in figure 1; the origin of the spatial coordinate 
is set at the left edge of the system while energies 
are measured from the potential value at that edge. 
Accordingly, the electron behaves as a free particle for 
x < 0 and x > L. In GaAlAs-based quantum well 
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where we have defined ffk = 2 + h2[ V(xx) + e Fxk - E] 
for brevity. This form is suitable for a transfer-matrix 
approach to solving the scattering problem [24]. In fact, 
iterating this equation gives 

Figure 1. Potential profile of a superlattice consisting of N 
&doped layers of width a under an applied external field, 
used in our calculations. 

structures, Ritze et a1 [20] have found that the spectra 
embody the occurrence of Stark ladder structure in the 
energy range 0 i E < e F L ,  whereas the the range E > 
eFL is dominated by two kinds of structure, one similar 
to Franz-Keldysh oscillations and another resembling 
the Stark ladder behaviour. In our preliminary studies we 
found that an analogous statement holds for periodically 
8-doped GaAs, namely that Stark levels are more clearly 
observed below the top of the ramp, so we will be 
concerned with those states hereafter. 

3. Numerical analysis 

Consider an electron of energy E impinging from the 
left on the structure shown in figure 1. Since we are 
assuming that 0 < E < e F L  the electron will be 
reflected with probability 1. Therefore, the reflection 
amplitude can be expressed as 

(4) ZiO(K) r = e  

where the phase shift @(E) is real. The definition 
of the density of states (DOS) for systems displaying 
continuous energy spectra presents some problems [201, 
while the change in the DOS introduced by the considered 
structure is a well defined parameter [22]. Levinson's 
theorem relates this phase shift and the change in the 
DOS, Ap(E), through the equation [23] 

1 d@(E) 
Ap(E) = 

2 z  dE  

The reflection amplitude is found by solving the 
Schrodinger equation (3). Since there is no analytical 
expression for the potential V ( x ) ,  computation of r must 
resort to numerical procedures. To this end, we divide 
the interval into a grid of points (xn = kh}, where 
h = a / l  is the integration step and 1 is the number 
of grid points in each unit cell. The discretized form of 
the Schrodinger equation (3) may be cast in the matrix 
form 

T(N,) is the transfer matrix of the whole system and 
N, is the number of grid points in the whole structure. 
T ( N , )  is real and relates the wavefunction at both edges 
of the structure. The solution of the wave equation in 
the field-free region is given by 

where q, h a  and qr 2 h d m  for small h. 
Both parameters are real for the energy range considered. 
Using (7) and (8), we have 

r =  
T ~ ~ ( N , )  - TZl(N,)e-" + [TI2(Ns) - Tz(Ns)e-qr]e-'q' 
qI(N, )  - T21(Ns)e-9r + [TdN,) - Tz(N,)e-~~Ie'ql ' 

(9) 

Notice that this numerical procedure preserves the 
unimodularity of the reflection amplitude. This 
amplitude may be recursively computed from the matrix 
elements of T(N, ) .  Taking into account that T ( k )  = 
PkT(k - 1) and T(0) = Po, we find the following 
recurrence relations involving only real parameters: 

- 

Tii(k) = axTii (k - 1) - Ti1 (k - 2) 
Tiz(k) = %Tiz(k - 1) - Tiz(k - 2) 
Tzi(k) = Gi(k - 1) 
T22(k)=TIz(k-1)  k =  1 , 2  ... N,. 

(10) 

These equations must be supplemented with the initial 
conditions zj(-l)  = & j ,  TII(O) = ao, T d O )  = -1, 
TZ1(O) = 1 and Tzz(0) = 0. 

It is worth mentioning that this transfer-matrix 
technique can also be applied to obtain the bandgaps 
and the dispersion relation inside subbands in general 
periodic potentials [24], with particular application to 
zero-field periodically 8-doped structures. Since the 
Bloch theorem must be satisfied, the dispersion relation 
is found to be (see [24] for details) 

cos(qa) = Tr[T(I)I (11) 

where K ~ ,  is the crystal momentum along the growth 
direction. The required symmetry of the dispersion 
relation = E ( K ~ ~ )  is conserved. Real values of 
the crystal momentum give the dispersion relation inside 
allowed subbands. 
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This numerical technique may be easily modified 
to obtain bound states of a single 8-doped well in a 
straightforward fashion. Since outside the well the 
wavefunction of bound state8 is of the form +(xn) - 
exp (-hIkl&??), after some algebra one obtains that 
bound levels are the roots of the equation 

T1l(l)ehQ - Tzz(l)e-hQ+ T , ~ ( I )  - ~ ~ ~ ( 1 )  = o (12) 

where Tj,(Z) are to be computed recursively as before. 
Standard search methods are then used to obtain 
bound state energies. We should mention that in 
(11) and (12) integration is performed over a single 
layer, and consequently computations are fairly fast. 
Unfortunately, this is not the case in multiple &doped 
GaAs with an external electric field because the index k 
in (10) runs over the whole structure. 

4. Results and discussions 

We have studied the electronic structure of single and 
periodically Si &doped GaAs with doping period a = 
500 A, donor concentration ND rangisg from 0.5 up to 
5 x 10” cm-’ uniformly distributed over d = 50 A, and a 
p-type background doping of N A  = 1 x IOl5 These 
parameters, taking ND = 3 x 10” cm-’, correspond 
to the MBE samples grown by Egues et a1 [4]. The 
number of &doped layers N varies b:tween 1 and 10, 
sandwiched between two b = 1000 A buffer layers of 
GaAs. The TF potential was found by solving (1) and 
(2) using standard methods. To solve the corresponding 
Schrodinger equation (3), each unit cell was divided 
into 1 = 600 grid points, which are enough to obtain 
very accurate results. The doping period a = 500 A 
is intermediate between two limiting cases discussed 
by Degani [7]. This author found by self-consistent 
calculations that for a long period (a - 1000 A) the 
system behaves as single doping, whereas for a short 
period (U - 200 A) a superlattice is formed due to 
strong coupling between adjacent wells. Therefore, our 
study acquires the additional importance of assessing the 
effect of moderate coupling in the electronic structure. 
We carry out a systematic study of bound states of single 
&doped layers, subbands in periodically &doped layers 
and reflection amplitude behaviour (and the change in 
the DOS) in biased structures, computed according to 
the methods described in the preceding section. 

4.1. Single Si &doped GaAs with F = 0 

We first give results for single Si 6-doped GaAs without 
applied electric field. Figure 2 shows the calculated TF 
potential for different donor concentrations, choosing 
the origin of the spatial coordinate at the middle of 
the unit cell. The TF potential is deeper for larger 
doping, whereas the top of the potential remains almost 
unchanged. Notice that energies are referred to the Fermi 
level and not to the top of the potential in this figure; 
this allows a direct comparison with previous results of 
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Figure 2. TF potential due to a single 8-doped laver 
obtained by solving the correspondhg TF equation. From 
top to bottom NO = 0.5, 1, 2. 3, 4 and 5 x 10l2 c r 2 ,  
distributed over50 A. 

Egues et a1 [4] and other authors, who take cF as the zero 
of energy. When the electric field is applied, however, 
we measure energies from the value of the potential at 
the left edge of the system. 

As we mentioned earlier, the period a = 500 A 
yields weak coupling between adjacent wells. Therefore, 
lower subbands will be only slightly broadened because 
electrons are tightly bound. Hence it would be 
instructive to find bound state levels of an isolated well in 
order to compare them with subband structure in multiple 
&doped systems. We have used (12) to compute energy 
levels as a function of donor concentration, as shown 
in figure 3. As expected, the number of bound states 
increases with donor concentration: at low doping only 
one bound state is supported, while at high doping (larger 
than about 2 x 10l2 three bound states appear. 
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Figure 3. Bound state energies of a single TF potential as 
a function of the donor concentration (dotted curves). Top 
and bottom values of the potential are also indicated (full 
curves). 
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4.2. Single Si &doped GaAs with F # 0 

In the method of phase-shift analysis, resonances are 
characterized by a rapid increase of JC in the phase @ ( E ) .  
Hence the change in the DOS exhibits peaks accordingly. 
We observe these peaks when an external electric field is 
applied, as shown in figure 4 for a single 6-doped layer 
of ND = 3 x c d  with F = 20 kVcm-' ( W S  will 
be expressed in arbitrary units because we are mainly 
interested in the position and width of these peaks). In 
figure 4(a) two resonances are clearly seen in the change 
in the DOS, centred at about 36.3 Ry* and 41.3 Ry'. 
Resonances occur whenever the energy of the incident 
electron matches one of the quasi-levels of the well (see 
also figure 4(b)). The first one is below the barrier (i.e. 
below the local maximum of the potential, placed at 

whereas the second one is above. As a consequence, the 
resonance below the barrier is much narrower and higher 
because its lifetime is much longer. Figure 5 shows 
the Lorentzian shape of the lowest resonance; this shape 

The narrow resonance is associated with a well-localized 
electronic wavefunction, whereas the wider resonance 
corresponds to an extended wavefunction. as seen in 
figure 6. 

width (EWHM), r, and peak position, Ep,  are strongly 
dependent on the applied electric field. With increasing 
field the peaks shift and become broader and lower. As 
observed from figure 7, where r is plotted versus F-' 
for the two resonances appearing in figure 4Ca); this 
dependence can be expressed approximately as 

I ~ 

... :th h n L ^ -  h..:-h+ Ah-..+ Ann Dw*\ 
,lU W l U l  "'ULLG, LLGbg"c Ll""UL -?".U 1.J ,, 

:- nu...rrarl Cl-- n.r.lnrlrm -nlhnn:r*l rrd+nrinn thnn-, 13 C , y J C C L C U  L l V l l l  ~YyL'LY".-"'Cc"Lullllll " U ' Y L L U L ' . ' 6  LL.""LJ. 

01s coq!,nntafit;nfis we foll_mrl that regonan~e 

r(F) = Ae-B'F (13) 

where the parameters A and B depend on the donor 
concentration and the particular resonance examined. 
For instance, B is largest for the lowest resonance (see 
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Figure 4. (a) Change in the OS versus energy for a sing!e 
S-doped layer with a donor concentration of NO = 3 x 10" 
o m 2  subject to an applied electric field F = 20 kVcm-', 
and (b) a detailed view of the potential versus position. 
Broken lines indicate the energy of the resonances. 
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Figure 5. Linear-scale plot of the change in the DOS versus 
energy corresponding to the narrow resonance of figure 4. 
snowing 11s Lorenmarl siiape. 
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Figure 6. Squared electron wavefunction corresponding 
to the narrow (broken cuwe) and broad Mull curve) 
resonances of figure 4. 
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Figure 7. Resonance width (FWHM) on a log scale a s  
a function of the electric field for the lower (circles) and 
higher (squares) resonances of figure 4. 

figure 7). On the other hand, the position of resonances 
as a function of the applied electric field is of the form 

Ep = 2eaF f E: (14) 

as shown in figure 8 for ND = 3 x lo'* cm-'. The 
factor 5 comes from the fact that the Si layer is placed 
at n = ;a. The parameter E," gives the position of 
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Figure 8. Resonance energy as a function of the electric 
field of the lower (circles) and higher (squares) resonances 
of figure 4. Extrapolation to F = 0 gives the energy of the 
corresponding (zero-field) bound state measured from the 
top of the potential. 

resonances in the limit F + 0, that is, when resonances 
turn into truly bound states. In the case of ND = 3 x 10" 
cm-' depicted in figure 8 we find that E: is -2.21 
Ry" and -9.10 Ry' for the upper and lower resonances 
respectively. These values are in good agreement with 
the energy of the bound states obtained from (12) and 
shown in figure 3, measured from the top of the potential 
well. 

4.3. P&ndke!!y 91 &&?ped G,a ,  -..th F = 0 

In t h i s  section we deal with subband structure of 
periodically Si 8-doped GaAs, obtained by means of 
(11). Figure 9(u) shows a plot of the subbands for a 
donor concentration ND = 3 x 10'' cm-'. Note that 
iower subbands are siightiy broadened (their widths are 
only 1 x Ry' and 6 x lo-' Ry') and become 
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Figure 9. (a) Subband structure for periodically Si 8-doped 
GaAs with a donor concentration No = 3 x lo'= C m F .  An 
enlargement of the two lower subbands is shown in (b) 
and (c). 
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Figure 10. Allowed subbands (hatched regions) and gaps 
for periodically Si 8-doped GaAs as a function of the donor 
concentration. 

almost non-dispersive, suggesting that these 6-doped 
layers cre anly Wealkly caupled. A!! en!ggemenr of the 
two lower subbands is shown in figures 9(b) and (c). 
As we mentioned in section 4.1, the positions of these 
slightly dispersive subbands coincide with the energies 
of the lower bound states of single 8-doped layers. With 
increasing energy: gaps become narrower and subbands 
become broader. 

Since the TF potential depends on ND, it is to be 
expected that the subband structure is very sensitive to 
minor variations in the donor concentration. We actually 
found t h i s  result in our numerical study. Figure 10 
shows allowed subbands and gaps as a function of 
donor concentration. We can observe that the lowest 
subband is almost non-dispersive over the whole range 
of donor concentration considered. However, the second 
subband becomes dispersive for concentrations less than - 2 x 10'' cm-'. 

4.4. Periodically Si &doped GaAs with F # 0 

At zero field electronic states are delocalized and 
form bands. This picture remains valid even when 
a very low electric field is applied. However, on 
increasing the field, the quasi-levels of each well are 
shifted and quantum coherence is then reduced. The 
loss of quantum coherence causes field-induced Stark 
localization, implying the occurrence of sharp peaks in 
the change of the DOS. In this case A.p(E) exhibits 
a set of N pronounced peaks separated equidistantly, 
as shown in figure 11 for two values of the applied 
electric field, N = 10 unit cells and ND = 1 x 10" 

doping concentration. This pattern indicates that a well- 
defined Stark ladder structure is formed. In contrast to 
one-band, tight-binding Hamiltonians, the Schrodinger 
equation (3) includes all bands of the energy spectrum. 

each one evolving from a different zero-field subband, 
so that ladders may be labelled by the band index n. For 

cm-2. jimiiar piois are o,Dserved for other vaiues of 

A -  - ----nr..n--n +h-- n-n Cro-L lorlrlnr n u i n r m  
4 w K ' ~ c ~ u c L # c c ,  I l A W l r  LLI-I W U l  " L a x  l C L U U I l  I A I O L D .  
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Figure 11. Change in the nos versus electron energy 
for two different values of the applied electric field: (a) 
F = 0.5 kVcm-' and (b) F = 6.0 kVcm-'. The donor 
concentration is No = 1 x 10l2 

instance, pronounced peaks of figure 1 l(a) correspond 
to n = 2 whereas those in figure ll(b) correspond to 
n = 1. It is also worth mentioning the occurrence 
of subsidiary peaks with increasing electric field; these 
peaks resemble small, broad peaks due to above-barrier 
states, previously discussed in the case of single 6- 
doping. 

Resonance peaks arise from the interplay between 
two interactions, namely the coupling between different 
wells and the coupling with the applied electric field 
[20]. Since coupling between the &doping wells we are 
concemed with turns out to be rather weak, the second 
interaction dominates except at low field. This explains 
the absence of a perfect periodic pattem in A p ( E )  at 
low field, observed in figure 1 l(a), as due to the lack of 
spatial periodicity of the superlattice. Note, for instance, 
that the spacing between the two lower resonances 
is larger than the predicted value eFu, and also that 
shoulders appear in the higher resonances. Since Stark 
ladder states are rather localized, only states localized 
at the outermost wells (giving rise to lower and higher 
resonances) can feel the missing spatial periodicity. With 
increasing field, field-induced localization increases and 
the Stark state is confined into a single well due to a 
reduction of quantum coherence; then finite-size effects 
become less important. This leads to a well-defined 
Stark ladder stmcture, as seen in figure ll(b). In 
contrast, subsidiary peaks can feel finite-size effects, 
even at higher fields, because of their more extended 
character. 

Figure 12 gives further evidence of the relation 
between the change in the DOS and localization of  the 
electron wavefunction. Figure 12(a) shows a detailed 

in both cases. 
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Figure 12. (a)  Change in the nos versus electron energy 
for F = 6 keV and No = 1 x 10" cnr2. (b) Squared 
electron wavefunction for energies corresponding to peaks 
marked by roman numerals in (a).  (c) IPR versus energy. 

view of the eighth Stark level (marked I) and subsidiary 
peaks (marked 11, III and IV) corresponding to the same 
parameters as in figure Il(b). Elechon wavefunctions 
at the energies of the different peaks are pIotted in 
figure 12(b). It becomes clear that pronounced peaks 
correspond to rather localized states whereas subsidiary 
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peaks correspond to more extended states. In addtion, 
the degree of localization may be evaluated by means 
of the inverse participation ratio (IPR). The IPR gives 
an estimation of the volume occupied by the electron 
wavefunction: the smaller the IPR, the more extended 
the electron state. The IPR has been successfully used to 
study localization of Stark ladder states in tight-binding 
Hamiltonians by Leo and MacKinnon [25] and in GaAs- 
AMs superlattices by Degani [19]. Figure 12(c) shows 
the IPR as a function of the electron energy. A 
comparison between figures I2(u) and (c) demonstrates 
that a prononnced peak in the change of the DOS7 
corresponding to Stark ladder states, yields a sharp 
peak in the IPR, implying that those states are strongly 
localized. In contrast, a subsidiary peak, corresponding 
to above-barrier states, yields a minor increase in the IPR, 
reflecting the fact that those states are rather delocalized. 
Therefore, the IPR confirms the results we discussed 
above. 

With increasing field, the peaks corresponding to the 
same Stark ladder shift and become broader and lower. 
The position of the peaks, E.k (n is the ladder index and 
k = 0 , l .  . . N - 1 runs over the peaks), depends linearly 
on the applied electric field, except for lower resonances 
at very low fields. Figure 13 shows results corresponding 
to the two Stark ladders shown in figure 11. The energy 
of Stark levels for not very low field is approximately .~ 

given by 

where E: is roughly the energy of subband n. 
Extrapolation to F + 0 of data appearing in figure 12 
yields .E$ = -0.17 kyy" and 3: = -3.02 Ky:, in 
good agreement with the centre of the second and the 
first subbands for ND = 1 x 10'' cm-', respectively, 
measured from the top of t h e w  potential (see figure IO). 
Equation (15) is the generalization of (14) in the case of 

spacing is of the form eFa. In general, the shapes of 

Erik = (k i- 5)eFa +E," (15) 
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Figure 13. Energy of the Stark ladder levels as a function 
of the  applied electric field. The donor concentration 
is No = 1 x 1OI2 cm-2. Extrapolation of straight lines 
I", r i U $J,"G.r ,,,G c7,lGlyJ "I UlG UrlllLG U, LGI"-llrl" 

subbands measured from the top of the TF potential: 
(a) second ladder, e = -0.17 Ry'; (b) first ladder, 

= -3.02 Ry*. See text for further explanation. 
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Stark ladder resonances are fitted by Lorentzian curves, 
whose widths are given by (13). In our computations, 
all the widths turn out to be much smaller than the 
level spacing over the whole range of electric fields 
considered. This result suggests that Stark ladders may 
be observed in periodically &doped GAS.  

5. Concluding remarks 

In the present work we have numerically investigated 
,,IC C,CGU"LUG >UUI;LUIG auu LLlC ""a V I  VVUl w,g,c auu 
multiple Si &doped GaAs. The space charge potential 
due to &doping is successfully evaluated by means 
of the semiclassical Thomepermi method. We have 
also worked out a numerical method to compute bound 

superposition of 8-layers and the change in the DOS 
introduced by the structure subject to an applied electric 
field, parallel to the growth direction. In the absence 
of applied electric fields, lower subbands in periodic 

large doping period we consider (500 A). Therefore 
the energies of these almost non-dispersive subbands 
coincide with the bound states of single 8-doped GaAs. 
Since electrons are then tightly bound, it is clear that 

to obtain reliable information on the subband structure 
at low energies. When a single &doped layer is 
subject to an applied electric field, electronic states 
convert into resonances of finite lifetime, in a similar 
fashiax ia hydrogenic sates ix the presexce af an 
external electric field (Stark effect). In the case of 
periodically &doped GaAs under an applied electric 
field, the occurrence of the well-known Stark ladders 
is observed in the change of the DOS. Each Stark ladder 

suggest that the interaction between different ladders 
is small, so that interband coupling should also be 
negligible. It is expected, however, that this coupling 
should increase on reducing the doping period. The 
Stark states are field-induced localized, indicating loss 
in the quantum coherence due to the misfit of local 
quasi-levels. Electronic states are pushed upwards and 
become broader as the electric field is increased, hence 
giving rise to the so-called above-barrier states. The IPR 
clearly shows that these states are less localized than 
Stark ladder states. 

Some of the previous results have also been 
demonstrated to occur in quantum well superlattices. 
From an experimental point of view, however, 
significant differences between quantum well and 8- 
doped superlattices should appear. The model we have 
presented is not complete, in the sense that electron- 
phonon interactions and scattering by disorder have been 
omitted. We have found that the intrinsic broadening of 
levels, i.e. that predicted by scattering theory, is always 
larger than the level width. The physical relevance of 
this result is evident since one requires well-separated 
levels to be observable experimentally. Nevertheless, in 

.L̂  -,--.--..:- " .-.- ...-- ̂..-I .L̂ ĈL̂ &' ":..-,- ̂ ..-I 

gates of sing!e we!!s, sGbband s*=:cpo:e ia Frio*ic 
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a real sample, broadening could be much larger than that 
predicted in our model. In the case of periodic &doping, 
broadening due to scattering by disorder might be more 
dramatic than in quantum well superlattices. The random 
distribution of donors in the &doped layers as well 
as fluctuations in their thickness may lead to a strong 
reduction of phase coherence. Finally, let us comment 
that, although our results indicate that Stark ladder 
resonances should be observable, experimental effort is 
needed to establish their existence. The availability of 
experimental data would greatly help in improving our 
model. 
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