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Abstract. We consider electron dynamics in two-band semiconductor superlattices
within the envelops function approximation. We develop a numerical method,
based on the properties of the periodic continued fractions, o find the dispersion
relation inside allowed minibands and to obtain the envelope functions. As an
application, we concentrate on GaAs sawtooth-doped superlattices, consisting of
periadic alternating n- and p-type d-doped sheets separated by undoped material.
Results are compared with one-band semiconductor predictions, and we find that
coupling of bands in the host semiconductor indeed gives rise to relevant effects,

especially for higher minibands.

1. introduction

In recent years heterostructures and superlattices have
been intensively investigated as a source of novel
physical properties as well as for device applications.
Recently, attention has been paid to sawtooth-doped
superlattices, which consist of periodic alternating
n- and p-type §-doped sheets separated by undoped
material [1, 2]. Such doping profiles are generated
by interrupting the crystal growth of the host material
and evaporating the doping impurity during molecular
beam epitaxy. Under appropriate growth conditions,
excellent confinement of dopant atoms can be achieved
and diffussion of impurities is irrelevant [2]. As
a consequence, the doping profile along the growth
direction z can be represented as
N()= NP> 8(z—jL)- NP 8(z— jL—L/2)
i J

(B
where N2 and NZ° are the two-dimensional donor
and acceptor concentrations, and L is the period of
the superlattice. Usually samples are compensated so
that N2° = NZ° = N? . The chain of alternating §-
doped sheets results in a sawtooth modulation of both
conduction and valence band edges. This sawtooth
structure allows us to obtain the largest potential
modulation possible on a short length scale; the
interna] electric field is F = eN?’/2e, e being the
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and the band-edge modulation is eFL/2. This value is
twice the modulation of conventional (n—i—p-i) doping
superlattices [2]. The potential in each period of the
superlattice is a V-shaped well and carriers can then
occupy quantized energy levels due to quantum size
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effects. Nevertheless, resonant coupling among all
identical eigenstates of individual wells leads to the
formation of minibands, as occurs in periodically n-
type 8-doped semiconductors (see [3-5] and references
therein). Hence electronic states are actually extended
in perfect superlattices in the absence of external fields.

The analysis of the resulting electronic structure has
been carried out by various methods. Most of them
are based on the envelope function approximation [6].
Neglecting the non-parabolicity of the bands, the system
is described by a scalar Hamiltonian corresponding to
decoupled bands. The wave equation is a Schridinger-
like equation for a particle of effective mass m* in 2
V-shaped potential well. In this case exact solutions are
possible since the corresponding Schridinger equation
may be transformed into the Airy differential equation
(see [7] and references therein). This isotropic and
parabolic conduction-band approximation usually works
well in some semiconductors, as is the case for GaAs, but
only at moderate electric fields [8]. On the other hand,
however, decoupled bands cannot adequately describe
narrow-gap semiconductors or those superlattices whose
band modulation is comparable to the magnitude of the
gap, mainly due to non-parabolicity effects [9, 10]. The
latter situation is found, for instance, in GaAs sawtooth
superlattices: although GaAs is usually regarded as a
wide-gap semiconductor, the magnitude of the band
modulation for N = 10¥em™ and L = 20nm is
found to be 600meV, which is more than 40% of the
gap in GaAs. It is then clear that a more realistic band
structure is essential to propetly describe the electronic
structure of sawtooth superlattices. It is known that two-
band models such as we give here represent direct-band
compounds quite well [11].

The aim of this paper is twofold. Fxrst we develop
a simple numerical method for the determination of the



dispersion relation inside allowed minibands, the energy
of miniband edges and envelope functions in arbitrary
superiattices of two-band semiconductors. Besides the
periodicity, we require the built-in potential and the
position-dependent gap to be symmetric around the
centre of the unit cell of the superlattice. Actually, this
is not a serious restriction since most semiconductor
superlattices present a centre of symmetry. Second,
as a specific illustration of the method, we calculate
the miniband structure of sawtooth-doped superlattices
of GaAs for several growth parameters and compare
our results with those obtained by means of the one-
band approximation. We shall show that significant
differences exist between the two approaches even when
the magnitude of the band modulation is not too large.
These differences will be discussed in view of the
analogy existing between two-band models and the
relativistic Dirac theory of electrons.

2. Model

We treat the resulting electronic structure in the
superlattice by means of the effective-mass & - p
approximation. Therefore, the electronic wavefunction
is written as a sum of products of band-edge orbitals
with slowly varying envelope.functions, assuming that
the superlattice potential is also slowly varying. This
approximation fails if this potential changes appreciably
on the scale of superlattice period compared with the
gap. However, envelope function results still give a
good account of tunnelling experiments where electric
fields are as high as 0.1 Vum™' [12]. This value is
well above the internal electric fields encountered in
sawtooth superlattices of GaAs; for doping-densities as
high as N%® = 10 ¢m2 the internal electric field is
about 0.03Vnm™'. Therefore, the use of the envelope
function theory is justified in our case since we never
exceed such doping densities.

Keeping only the two nearby bands, there are two
coupled envelope functions describing the conduction-
band and valence-band states of the semiconductor,
subject to an effective 2 x 2 Dirac-like equation.
Assuming that both the gap and the gap centre depend
only on z, the resulting equation for the envelope

fl.lIlCthnS in the conductlon and valence hands can be

written as
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where 3 = d/dz. Here E,(z) is the position—dependent
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centre. In the case of periodic superlattices of period
L both functions are periodic, i.e. E;(z + L) = E;(z)
and V(z + L) = V(z). The velocity v is related to
Kane’s momenturn matrix elements and is given by
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the effective mass m™ are in general position-dependent,
the value of v is almost constant in direct-gap III-V
semiconductors, reflecting the similarity in the zone-
centre Bloch functions [12]. Hereafter we will assume
this constancy in the superlattice. It should be mentioned
that the mon-zero in-plane momentum can be easily
absorbed in the parameter definitions, as mentioned in
[12], and we will ignore it in the following. Equation
(2) can be decoupled in the standard fashion to obtain

V(=) — 8E,(2)/2

82 [ - a ¢
fel2) V( )= E = E,()/2 fe(2)
hz (V@ - EP-1E@] £ =0 Go)
and "
fule) = 5 - 8f.2).  (3b)
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using (3b).

3. Numerical method

There exist, at present, several numerical methods for
one-dimensional band structure calculations based on the
discretized Schridinger equation [13, 14], whereas the

2 % 2 Dirac eqguation has received much less attention
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[15, 16]. The method we present here is a generalization
of previous work by the authors [15] in order to include
the spatial dependence of the gap (i.e. the equivalent

of relativistic scalar-like potentials in the ordinary Dirac
fhpnrv\ To thig end. the nrnnprhpe of continued fractions
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will be used to find the chspersmn relation inside allowed
minibands of the superlattice.

Let us divide the umit cell of the superlatuce
[-L/2,L/2] into N + 1 equal parts of length 5 =
I I(N =+ T'\ which defines the orid » e — 1 [
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rn =0, 1,...,N). Using a finite-difference scheme,
the discretized form of (34) at any point of the grid is
given by

1 Lo \ 1
W= dUp)felingl) T LT

where for brevity we bave defined

_ 1 Vize4) = V(za1) = Ep(Za11)/2 + Eg(2e1)/2
"4 V(zs) — E - Eg(za)/2
(5a)
§ 2 y
by = (;{;) [(V(ze}) — E)* ~ $EX(za)] - (5b)

Due to the spatial periodicity of the superlattice,
envelope functions must satisfy the Bloch theorem
along the growth direction. This implies that f.(z) =

. exp(ikz)U (z) with U(z'+ L) = U.(z) where k Is
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along z.
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equation (35) ensures that f,(z) is also a Bloch function.
If we define

“= 17, o)
2—=b,
Pu= 7 T {66)
ks Uclzn
R, =¢™ & Efc(z%i-)l—) (6c)
we find the following continued fraction:
Ryt = B — tn/Ry. (N

The periodicity of the function U, gives rise to
the periodic boundary condition Ry = Ry4 for
the continned fraction (7). To deal with periodic
continued fractions we define the nth numerator 4, and
denominator B, through the relations [17]

A+t = Pui2ln — Cpp1Ang (8a)
Bn+l = ﬁn+ZBn = Oyl Brz—I (Sb)

along with the initial values Ay = By = I, Ap =
B and B_; = 0. It is worth mentioning that both
A, and B, depend on the energy E but they do
not explicitily depend upon any particular value of k;
this is an important point in obtaining the dispersion
relation. Since we are assuming that V(—z) = V(z)
and E.(—z) = E,(z), it is straightforward although
somewhat tedious to demonstrate that the dispersion
relation inside allowed minibands is given by (see [15]
for further details)

coskL = 1 [AN(E) — anu(E)By_1(E)]. (O

Note that the right-hand side of (9) is recursively
evaluated from (8) at every energy value. Once its
absolute value is less than unity, a real value of & is found
and the dispersion relation inside allowed minibands
E = E(k) is obtained. Conversely, forbidden minigaps
appear whenever |Ay — ay4By—| > 2. In addition,
the time-reversal symmetry E(—k) = E(k) is preserved
with this numerical technique.

In many physical applications one requires not only
the dispersion relation inside allowed minibands but also
the wavefunction at some particular energy value E.
This may be accomplished as follows. The periodicity of
the continued fraction (7) allows us to write the equation
for Rp in terms of A, and B, [15]:

ByR: — (an1 By + Ay)Ro+ayAn-1=0 (10)

and proceeding recursively from (7) one finds every R,.
Since & = k(E) is known, the function U/, may be
evaluated, apart from the normalization factor, by means
of (6¢). Finally, f. and f, are obtained in a simple way.

Some words concerning truncation errors are in
order. Since the method uses a standard finite-difference

scheme, the truncation error is of the order of s2. -

Results may be improved by means of the Richardson
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extrapolation formula, where the corresponding energy
value is given by (4E.y — En)/3, Ey being the value
obtained with N subdivisions of the unit cell. The
truncation error is then of the order of s*. Moreover,
the Numerov scheme, whose error is also of the order
of s*, may be easily implemented in equation (4) if
higher accuracy is required, since it is a three-point rule.
However, equation (4) gives rather accurate results, at
least within the scope of the present work, even if s
is not too small compared with the superlattice period.
We should stress that the numerical method is quite
general, in the sense that it is valid for a large variety of
superlattices in the two-band approximation, assuming
the existence of a centre of symmetry. Also, the
outlined numerical method can be adapted to one-band
semiconductors, i.e. those superlattices whose mintband
structure can be properly described by means of an
effective-mass Schrodinger equation. This reduction
is accomplished simply by taking a, = 0 and b, =
2m*s*[E — V(z,)1/7* in equation (4).

4. GaAs sawtooth superlattices

We study the resuiting miniband structure in GaAs
sawtooth-doping superlattices within the two-band
model and compare the obtained results with the one-
band model predictions. We consider compensated
samples N3¥ = NP = N?° with two-dimensional
doping densities ranging from 1 up to 10 x 102cm™2.
In order to investigate the effects of the superlattice
period L on the electronic structure, we have considered
samples with L = 10nm and L = 15nm. The value of
the gap is assumed to be constant along the whole sampie
(E, = 1.42eV} and we have taken /iv = 0.9eV nm. The
modulation of the conduction and valence bands in each
period is then described by the function V{z) = eF|z|
with |z| £ L/2. To check the accuracy of the numerical
method, the number of grid points in the unit cell varied
from 500 to 1000; in both cases we obtained the same
results within the desired accuracy.

Figure 1 shows the miniband structure of super-
lattices with N2 = 102 em™2, for L = 10nm and
L = 15nm. Similar results are found for other dop-
ing concentrations. Energies are measured from the
bottom of the V-shaped potential well in both cases.
The modulations of the conduction band are 290 meV
and 430meV respectively. As expected, lower bands
are almost dispersionless due to the small overlap of
neighbouring identical states. This effect is more ap-
parent on increasing the superlattice period. Figure 1
also shows results corresponding to the one-band model,
obtained by solving the effective-mass Schrddinger
equation. A detailed analysis of the obtained data
indicates that lower minibands are practically indepen-
dent of the model used (one-band or two-band). The
energy of the lower, almost non-dispersive miniband is
about 130 meV, in excellent agreement with the ground-
state energy obtained by directly solving the Schrédinger
equation for an infinite V-shaped potential well, given by
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Figure 1. Miniband structures in GaAs sawtooth
superlattices for N2° = 10"® em™2 and superlattice period
{#) L=10nm and {b) L = 15nm, for two-band (full curves)
and one-band (broken curves) models.

1.02(#%e*F? /2m*)'/* ~ 126 meV [2]. On increasing the
energy, however, the two models yield different disper-
sion relations because non-parabolicity effects become
increasingly important. This fact implies that coupling
of bulk bands becomes more important at higher energy,
and that the one-band model is meaningful only in the
case of the ground-state miniband. One can cbserve that
the widths of both minigaps and allowed minibands de-
crease in the case of the two-band model in comparison
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the doping concentration.

Figure 2 shows the widths of the first two lower
minibands and the minigap between the two, as functions
of the doping concentration for a period of L = 10nm.
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doping concentration, the V-shaped potential being
deeper in the gap, the minigap width becomes larger
whereas the miniband widths decrease in both models.
Notice that two-band predictions are always smaller than

one-band results in the whole range of doping studied in

this work., As mentioned above, the lower miniband is
almost unaffected by the coupling of bulk bands; this
result is clearly seen in figure 2(a). On the other hand.
the difference between the minigaps in the two models
increases slightly with increasing doping concentration,
as observed in ﬁgure 2(b). However the width of the
second miniband decreases linearly with the same slope
in the two models, as shown in figure 2(c), and thus the
difference is independent of doping concentration in the
range considered, being of the order of 25 meV.

Let us comment that the shrinkage of the electronic
spectrum seems to be a universal property of Dirac-like
equations. It was earlier observed in Dirac—Kronig—
Penney models [18], in connection with relativistic
electron dynamics in solids, but it {s not restricted
to this simple case.  The energy spectrum also
shrinks in more elaborate models of solids, such
as the relativistic Mathien potential [15] and Dirac—
Kronig—Penney models with non-local potentials [19].
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Figure 2. Widths of (a) the first miniband, (b) the first
minigap and (¢) the second miniband as functions of the
doping concentration for a superlattice period L = 10nm,
for two-band (full curves) and one-band (broken curves)
models.

Moreover, the periodicity of the potential is not
an essential condition for observing this effect; for
instance, similar rtesults are found in Dirac-Kronig—
Penney models on quasiperiodic superlattices [20].
Therefore, we may conclude that one of the main
results we have found in sawtooth superlattices when
a two-band model is used, namely the reduction of the
widths of minibands and minigaps, may probably be
observed in other kinds of superlattice. These effects
should be more dramatic on decreasing the gap of the
material, when coupling of bands becomes increasingly
important. We feel that it is important to mention here
that, to our knowledge, the shrinkage of the electronic
spectrum has been previously discussed only with regard
to relativistic effects in solids. The fact that the rest-
mass energy of electrons (MeV) is very much larger than
typical values of electron energy (eV) makes it hard to
investigate relativistic effects in solids experimentally.
In contrast, we suggest that two-band semiconductor
superlattices are well suited to testing the validity of
‘relativistic’ predictions, as occurs in the case of the
spectrum shrinkage described in this work, due to the
formal analogy between two-band models and the Dirac
equation. The situation would then be similar to what
happened with the well-known Stark—Wannier ladders:
they were predicted to appear in actual solids but their
existence has been firmly -established only in quantum-
well superlattices [21].
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5. Summary

By making use of the algebraic properties of periodic
continued fractions, we are able to develop a simple
numerical scheme to find the dispersion relation inside
allowed minibands in periodic superlattices of two-band
semiconductors, whose electron dynamics is described
by means of an effective Dirac equation. To illustrate
the proposed numerical method, we have focused
our attention on GaAs sawtooth-doping superlattices,
consisting of periodic alternating n- and p-type &-
doped sheets separated by undoped GaAs. We have
found that two-band and one-band models give different
miniband structures in GaAs sawtooth superlattices, even
when GaAs is usually not considered as a narrow-
gap semiconductor and conduction and valence band
modulation is not large (the largest value we have
studied in this work is only 30% of the GaAs bulk
gap). One of the more relevant features is that the two-
band model leads to a shrinkage of the whole electronic
spectrum, this effect being more apparent with increasing
energy. In particular, we found that the shrinkage of the
second miniband is independent of doping concentration,
although conduction band modulation increases linearly
with doping. We believe that this reduction should be
observable experimentally since it amounts between 10%
and 20% of the miniband width.
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