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Abstract. We report the theoretical electronic structure of Fibonacci superlatiices
of narrow-gap ll-V semiconductors. The electron dynamics is accurately described
within the envelope-function approximation in a two-band model. Quasiperiodicity
is introduced by considering two different 111-V semiconductor layers and arranging
them according to the Fibonacei series along the growth direction. The resulting
energy spectrum is then found by solving exacily the corresponding effective-mass
(Dirac-like) wave equation using tranfer-matrix techniques. We find that a
self-similar electronic spectrum can be seen in the band structure. Electronic
transport properties of samples are also studied and refated to the degree of spatial
localization of electronic envelope functions via the Landauer resistance and
Lyapunov coefficient. As a working example, we consider type 1l InAs/GaSb

superlatiices and discuss in detail our resuls in this system.

1. Introduction

Heterostructures and superlattices (SL)} consisting of
semiconductors have been investigated as a source of
novel physical properties as well as for their applications
in devices. From the very beginning, most researchers
have considered the Fibonacei sequence as a typical
example of a quasiperiodic system [1,2]. Some years
ago, the advances achieved in nanotechnology—mainly
those techniques based on molecular beam epitaxy—made
it possible to fabricate a quasiperiodic semiconductor SL
(3,4]. Since this progress was made, there has been
an increasing interest in the study of (quasiperiodic)
Fibonacci systems, their electronic structure and transport
properties. These studies have provided much information,
and several physical properties are now well established.
One of the most conspicuous features is the occurrence
of highly fragmented electronic spectra with a hierarchy
of splitting subbands displaying seif-similar patterns [5,6].
This exotic electronic spectrum strongly influences electron
propagation [7,8] and DC conductance through the system,
even at finite temperature [9]. In addition, electronic
wavefunctions are neither extended in the Bloch sense nor
exponentially localized, but critical in Fibonacci lattices
[10]. AIll these striking features make Fibonacei lattices
good candidates for investigation of their novel properties
from a theoretical point of view as well as for their potential
technological applications in new devices.
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Electronic properties of quasiperiodic SL have been
studied by various methods, most of them being based on
the envelope-function approximation [5], which is known to
be quite successful for periodic structures [11]. Neglecting
the non-parabolicity of the bands, the electron dynamics
is described by a scalar Hamiltonian corresponding to
deccupled bands in the hosi semiconductors. The wave
equation is a Schrodinger-like equation for a particle of
effective mass m™* in a one-dimensional potential, so that
the electron dynamics is studied with only a single envelope
function. Since the potential through which the electron
moves is usually regarded as piecewise constant (Kronig—
Penney potential), the solution of the wave equation is
a superposition of plane waves in each layer with real
or imaginary momentum, corresponding to travelling or
evanescent solutions respectively. Matching the solutions
at the interfaces, one can obtain the envelope function in
the SL using, for instance, the transfer-matrix formalism.
Isotropic and parabolic bands usually work well in some
M-V semiconductors, like GaAs and AlAs. However,
scalar Hamiltonians cannot adequately describe narrow-gap
semiconductors [11] or those SL whose band modulation is
comparable to the magnitude of the gap, as is the case in
sawtooth-doped GaAs [12], since coupling of bands and
non-parabolicity effects for such a situation are usually
rather strong. Hence a more realistic band structure
is indeed required to properly analyse electron states in
superlattices of nartow-gap semiconductors. It is known
that two-band models as we report here based on a Dirac-
like equation represent narrow-gap II-V semiconductors
quite well {13]. In this case, two envelope functions are
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needed, one corresponding to the conduction band (s-like)
and the other to the valence band {p-like).

The need for a general model like the two-band meodel
poses the question as to whether the peculiar electronic
properties obtained so far within the one-band model
(highly fragmented and self-similar spectra and the allied
transport properties) still remain in narrow-gap SL. As
far as we know, this question has not been answered
yet. The main aim of this work is to show that those
distinctive characteristics also appear in more complex and
realistic models, suggesting strongly that those features can
be regarded as universal fingerprints of one-dimensional
Fibonacci systems. As we have already mentioned,
the equation governing the conduction- and valence-band
envelope functions is a Dirac-like equation. We can find
exact solutions via the transfer-matrix technique in view
of the analogy existing between the two-band models and
the relativistic Dirac theory of electrons. The transport
properties of relativistic electrons in a (quasiperiodic)
Fibonacci as well as in an (aperiodic) Thue-Morse one-
dimensional lattice have been previously considered by
the authors {8,14], and the transfer-matrix formalism
for relativistic electrons is well established (see [15-19]
for example). The main difference between the two
treatments is that, in the case of two-band models, the
gap is also position-dependent and it enters the equation
of motion as a scalar-like potential, whereas our previous
relativistic treatments considered only electrostatic-like
potentials (the time component of a Lorentz vector).
Keeping this difference in mind, one can proceed in
analogy with the relativistic treatment. The transport
properties of the SL at zero temperature are discussed
in the context of the transmission coefficient and the
Landauer resistance [20,21] and related to the possible
critical nature of the electronic states. The spatial extent
of the envelope functions is determined by means of the
Lyapunov coefficient, which is nothing but the inverse
of . the localization length. The nature of the electronic
spectrum of our system is analysed by means of bandwidth-
scaling techniques, which suggest an underlying singular
continuous character.

2. The model

The system we study in this work is a Fibonacci superlattice
(FSL) made of two kinds of layers of narrow-gap III-V
serniconductors, hereafter denoted as A-layers and B-layers.
Because of the offset between conduction and valence
bands at the interfaces, carriers move under the action of
barriers and wells within the effective-mass approximation.
For simplicity, we neglect band bending in the rest of the
paper, so that the built-in potential is constant in each layer.,
This approximation simplifies our treatment while keeping
the qualitative aspects of the physics involved. Without loss
of generality, we consider that B-layers act as barriers for
electrons and that their widih b is the same for all layers.
To generate our FSL we arrange two tiles ¢ and @’ (g and
a' larger than b), which represent the distance between
two consecutive points characterizing the centres of two
consecutive barriers, according to the Fibonacci sequence
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(see [19] for further details on how to construct the FSL).
A-layers are of thickness a2 — & or @' — b according to
this arrangement. The number of barriers in the FSL is
a Fibonacci number F;, obtained from the recumence law
Fy=Fj. + Fy with Fo = F; = 1,

After describing the way we construct the FSL, we turn
to the dynamics of electrons in this system. We treat the
resulting electronic structure by means of the effective-
mass k - p approximation. The electronic wavefunction
is written as a sum of products of band-edge orbitals with
slowly varying envelope functions, assuming that the SL
potential is also slowly varying. To proceed, let Egs and
Egp be the gaps of semiconductors A and B respectively,
and let us denote the relative offset between gap centres
by V (in what follows we take the centre of the gap in A-
layers as the origin of energies; V is then the energy of the
gap centre in B-layers and could be positive or negative,
depending on the kind of interfaces). As pointed out
earlier, we will restrict ourselves to the case of two nearby
bands. Thus, there are two coupled envelope functions
describing the conduction-band and valence-band states of
the semiconductor, subject to an effective 2 x 2 Dirac-
like equation. Assuming that both the gap and the gap
centre depend only on x (the growth direction), the resulting
equation for the envelope functions in the conduction and
valence bands can be written as

1Eg(x) — E+ V(x) —iRvd Je(x)
—ihvd 3B () —E+V(x) |\ fi(x)
=0 (1)

where 8 = d/dx. Here, Eg(x) is the position-dependent
gap and V(x) gives the energy of the gap centre, The
velocity v is related to Kane's momentum matrix elements
and is given by v? = E;/2m*. In spite of the fact that
both E; and the effective mass m* are in general position-
dependent, the value of v is almost constant in direct-
gap III-V semiconductors [22]. Hereafter, we assume this
constancy in the SL. It should be mentioned that the non-
zero in-plane momentum can be easily absorbed in the
definition of parameters and we will henceforth ignore it.
Considering only electronic states below the barrier,
which are of most interest in studying quantum confinement
effects, the solution of equation (1) yields the following
expression with reference to the rth barrier centred at x,:

A
(53) = re( ) erptits =32 - /21

+4n ( i ) expl—ik (x — X, — b/2)]

o+ b2 <x < Xppy —B/2 (2a)
@Y _. () _ 1
( B )= Se{ o JEXPC=mx) tua | _., ) explnx)
x,—b/2<x =x,+b/2 28)
where, for brevity, we have defined the following real
parameters:
1
= — g _ g2
K= v,fE E A /4 (3q)
E — Ega/2
= 88T 3
Y hui ©0)



1
1= B/t — (E - VP (30)
i L2 E+V ()
hun

Assuming the continuity of the envelope functions at
the interfaces, we can eliminate (s,,#,), thus relating
(PnsGr) 10 {Prai, gn—1) via the 2 x 2 transfer-matrix M (n)
through the relationship

Pn } __ Pr=1 Y _ [ @ B Pn-1
(5r)=wm(52)= (5 %) (o) @
where
N W
oty = [cosh(nb) + l( %) )smh(nb)}
x explix (Ax, — b)] (5a)

2 A‘2
Be=—i (y 2+,k ) sinh{nb) expl—ix (Ax, — b)] (56)
Y
with Ax, = x, —x,_ and the convention x; = (. Note that
det[M(n)] = 1. Letting N be the total number of barriers
(B-layers), the transfer matrix T(N) of the whole FSL is
obtained as

1
Ay By
T(N) = M) = . 6
) ];[v () (Bx, A,;V) ©)

The elements of the transfer matrix T(N) can be easily
calculated recursively, taking into account the fact that
T(N) = M(N)T(N — 1). In particular we find the
expression [8,23]

o) (B

supplemented by the initial conditions Ag =1, A; = o).

Once we have calculated the matrix element Ay, some
physically relevant entities can be readily obtained from it.
Thus, the transmission coefficient T at a given energy E is
written as q

T lanl?’

Also the single-channel, dimensionless Landauer resistance
is given as [20]

®

7

-7
p=—=Asl-1. &)

The dependence of the resistance on the system size is
useful for studying the spatial extent of the electronic
states: localized states lead to a non-chmic behaviour of the
resistance, which increases exponentially with the system
size, whereas extended states show a bounded resistance.
Apart from these two entities, there are others that can also
be obtained from Ay. Indeed, the Lyapunov coefficient I'
is a non-negative parameter given by [24]

<

r= —% Int. (10)

The Lyapunov coefficient represents the growth rate of the
envelope function and it is nothing but the inverse of the
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localization length in units of the SL period: the more
localized the electronic state, the larger the value of T.
Finally, considering periodic boundary conditions at
both edges of the FSL, one can obtain the following
condition for an energy to lie in an allowed miniband:

- 3 I [T < 1. (11)

In particular, in the case of periodic SL (¢ = &'} with
period L the Bloch theorem holds good and one then gets
cos K L = Re(oy); for this situation the dispersion relation
E(K), K being the crystal momentum, is found from

cos K L = cosh(nd) cos[« (L — &)]
]/2 — 2
- ( ) sinh(n&) sin[x (L — b)]. (12)
2yh

This expression will be used later to determine the miniband
structure in periodic SL, in order to compare it with results
obtained in FSL.

3. InAs/GaSh FsL

As an application of our results we consider nearly lattice-
matched InAs/GaSb sL. Recently, much interest has been
centred on the use of these materials in resonant tunnelling
devices, which produce differential negative resistance with
high peak-to-valley current ratio even at room temperature
[25]. The band alignment is type Il-staggered [26] in the
InAs/GaSb interface, as shown in figure 1. Perhaps this is
the most interesting feature because the conduction-band
edge of the InAs is 0.15 eV lower in energy than the
valence-band edge of the GaSb [27], so that electrons can
flow from the conduction band of the InAs to the valence
band in GaSb. Moreover, these two semiconductors present
a nearly equal Kane matrix element, leading to Av ~
0.77 eV nm, thus supporting our previous assumption that
this parameter is constant through the whole sL. From
figure 1 we conclude that Egp = 0.36 eV, Egg = 0.67 eV
and V = 0.665 eV, We set the layer thickness leading to
a=6.0nm, a =62 nm and b = 4.0 nm in our numerical
computations.

Using the above set of parameters, we first studied the
miniband structure using (12) in periodic SL with periods
L =a and L = a’. The corresponding dispersion relations
are shown in figure 2. The most relevant feature is that,
in both cases, there exists only one miniband between
the conduction-band edges of InAs (0.18 eV} and GaSh

InAs GaSb
Ec
0.67 eV
foisev " Ev
_Io.ss eV JI

Figure 1. Schematic band-edge diagram of the InAs/GaSh
type Il interface, neglecting band bending at the
heterojunction.
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Figure 2. Miniband structures for periodic InAs/GaSb
supetiattices with periods L = 6.0 nm (full curve) and

L =6.2 nm (broken curve) and barrier thickness b = 4.0 nm.
Energies are measured from the gap centre of InAs.
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Figure 3. Schematic band-edge diagram of an InAs/GaSh
FsL. GaSb layers are of the same thickness b and they are
centred at x,. X — Xp-.1 takes on two values a or &
according to the Fibonacci sequence.

(1.0 eV). As expected, the larger the SL period L, the deeper
the miniband. Nevertheless, this is the only noticeable
effect since the miniband width is almost unchanged

Now we consider the most prominent features of
the resulting electronic structure when quasiperiodicity is
introduced (& # &’). Figure 3 presents a schematic diagram
of the band-edge profile in the FSL. As we have already
explained in the Introduction, one of the most characteristic
properties of the electronic spectrum in (one-band) FSL is its
highly fragmented, Cantor-like nature. We have confirmed
this fragmentation in our (two-band) FSL, even when the
deviation from perfect periodicity is actvally smafl. This
deviation can be measured quantitatively from the ratio
a'fa which, with our choice of parameters, is very close
to unity. In fact, using the coadition (11), we have found
that the miniband of the periodic SL splits into several
subminibands, that is, small gaps appear. The origin of
these small inner gaps is directly related to the loss of
long-range quantum coherence of the electrons. Results
corresponding to the fragmentation of the miniband ase
shown in figure 4 as a function of the Fibonacci order !,
i.e. the number of GaSb layers in the FSL is F;. Only short
approximants of the FSL are displayed since on increasing
[ the spectrum becomes so fragmented that it is difficult
to observe minor features in the plot. However, we have
carefuily analysed FSL spectra up to order [ = 15 (N =
Fi5 = 987 GaSb layers) and we have confirmed that the
number of subminibands composing the whole spectrum is
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Figure 4. Allowed subminibands as a function of the
Fibonacci order /, for a InAs/GaSbh FsL. The number of
subminibands is F; for each order /. The thickness of GaSb
tayers is b = 4.0 nm and the distance between their centres
is 4 =6.0 nm or &’ = 6.2 nm, arranged according to the
Fibonacci sequence.

exactly F;. The two outermost main subminibands present
Fy_> subsubminibands whereas the innermost subminiband
presents Fj_3 subsubminibands, so the total number of
subsubminibands is Fi_s+ Fi_s+ Fio = F_ + Fi_, = F,.
The number of subsubminibands in each main cluser is a
consequence of how the energy spectrum is fragmented,
as we shall further discuss later. Since, strictly speaking,
quasiperiodicity is observable only in the limit ¥ — oo,
our results provide information on the prefractal signature
of the FSL energy spectrum. We have observed that
both the position and widths of the main subminibands
converge very rapidly to stable values with increasing
number of GaSb barriers. We shall refer to this behaviour
as asymplotic stability of the spectrum; it implies that its
global structure can be obtained in practice by considering
very short approximants, as short as Fy = 55 barriers, to
very large FSL.

Another characteristic feature of Fibonacei systems is
the self-similar pattern exhibited by their corresponding
spectra. This self-similarity has been widely investigated
within the tight-binding approximation and, to a lesser
extent, in wide-gap semiconductor FSL. Our results indicate
that self-similar spectra are also obtained in narrow-gap
semiconductor FSL as shown in figure 5. It is clear that
the whole electronic spectrum for a short approximant
(F2 = 3 in this case) is mapped onto a small portion
of the spectrum for a higher approximant (Fg = 13 and
Fy = 55 in figure 5). This is a consequence of how the
FSL is constructed, based on a deterministic substitution
sequence [28]. Qur previous experience [9] has led us to
the conclusion that the fragmentation scheme of a particular
kind of Fibonacci lattice is very well characterized by
means of the Lyapunov coefficient. Hence, we undertook
the study of this parameter in InAs/GaSbh FsL. Results are
displayed in figure 6 for a FSL with N = Fj; = 144
barriers, although resuits are independent of the Fibonacci
order. To be specific, in all cases we have considered
we have observed a well-defined trifurcation pattern of the
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Figure 5. Self-similar spectrum of the InAs/GaSb FsLs with
the same layer thickness as in figure 3. The left plot shows
the whole spectrum of a FsL of order | = 3, whereas the
central and right plots show a detail of the spectrum of the
FsL of order / = 6 and [ = 9, respectively.
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Figure 6. {2} Lyapunov coefficient as a function of energy
for an InAs/GaSh FsL with the same layer thickness as in
figure 3. The number of GaSbh layers is Fi; = 144. (b) An
enlarged view of one of the main subminibands in which
the self-similar character is more clearly observed.

energy spectrum, characterized by the presence of three
main subminibands separated by large minigaps. Inside
each main subminiband, the fragmentation scheme follows
a trifurcation pattern in which each subminiband further
trifurcates, obeying a hierarchy of splitting from one to
three subsubminibands. This fragmentation scheme is
clearly observed in figure 6(g), in which the three main
subminibands are detected as an overall decrease of the
Lyapunov coefficient, whereas minigaps appear as local
maxima. In figure 6(b) an enlarged view of the lower main
subminiband shows the self-similar nature of the spectrum
structure.

In the thermodynamic limit Fibonacci systems present
a singular continuous electronic spectrum [29]. In order
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Figure 7. Equivalent bandwidth S as a function of the
number of GaSb layers N = F; for an InAs/GaSb FsL with
the same layer thickness as in figure 3.
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Figure 8. Landauver resistance as a function of energy for
InAs/GaSb sLs that are (a) periodic with L =6.0 nm and

b =4.0 nm and () Fibonacci with the same parameters as
in figure 2. in both cases the number of GaSb layers is

F: =34,

to estimate the spectral type associated with our FSL,
we have computed the so-called equivalent bandwidth S,
defined as the sum of all allowed subminibands. As can
be expected from the Cantor-like nature of Fibonaccian
spectra, 5 vanishes as the number of barriers increases,
according to a power law of the form § = F,;‘B with
B ~ 0.3 (see figure 7). Earlier work [28] reported that such
power-law scaling is characteristic of a singular continuous
spectrum for which all the wavefunctions are critical, i.e.,
regarding localization properties, the functions are neither
exponentially localized nor extended in the Bloch sense.
Therefore, it should be expected that FSL present higher
values of the Landauer resistance at zero temperature than
periodic SL with the same number of barriers since, in
the former case, electronic states are critical whereas in
the latter case electronic states are truly extended (Bloch
states). To confirm this situation we have evaluated the
Landauer resistance p by means of its definition (9} for the
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two kinds of SL with N = Fg = 34 GaSb barriers, as shown
in figure 8. Notice that, in addition to the occurrence of
well-defined inner gaps leading to a strong enhancement
of p, the overall resistance is larger in the case of FsL.
These results suggest that the overall resistance of the SL
is directly connected with the decay rate of the electronic
envelope function along the sample, as can be deduced from
the comparison between figure 6, showing the inverse of
the localization length, and figure 8(b). Hence, the spatial
extent of envelope functions controls the electrical transport
of the sample, as is the case for wide-gap semiconductor

PaL..

4. Summary

We have studied theoreticaily a new type of quasiperiodic
sL made of narrow-gap III-V compounds, whose electron
dynamics is described by means of an effective Dirac
equation in the framework of an effective-mass k - p
approach. The quasiperiodic SL is constructed by arranging
two kinds of narrow-gap semiconducior layers following
the Fibonacci sequence, assuming that the barrier thickness
is always the same while the well thickness takes on two
values according to the inflation rule of the Fibonacci
series. By means of the transfer—matrix formalism, we
obtain closed GKPTGSSiGﬂS for m.uu_y:.ug electron uaunyuu
through the Landauwer resistance, the localization length
of electrons through the Lyapunov coefficient and the
spectral nature of the FSL. These expressions are suitable
for an efﬁcient numerical treatment. Although the method

manaral  avan tha mracamna Af hand
is \aUulkJAGI.BA_}' Euu\.dcu Sven 1o Wl Pl Ul cana-

inverted semiconductors, as is the case for some IV-VI
heterostructures (e.g. Pb;.,Sn,Te), we have focused our
attention on InAs/GaSb FsSL. The corresponding electronic

spectrum shows a highly fragmented, self-similar nature
rp-:f-mhlmo that found for qlmn]er hahf-hmdmp models,

The spectral nature of our modcl Ha:mltoman, obtained
from bandwidth-scaling considerations, indicates that it
is singular continuous in the thermodynamic limit, in
agreement with the conjecture that the spectral type
for almost all substitution sequences should be singular
continuous {29]. Using the Lyapunov coefficient we have
been able to demonstrate that the electronic spectrum
follows a frifurcation scheme of fragmentation with
increasing Fibonacci order. In addition, investigations of
the Landauer resistance indicate an overall increase of
its value as compared with periodic SL. The relationship
obtained in this regard suggests that the resistance of the
FSL is directly connected with the decay rate of the electron
envelope function along the sample.
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