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Abstract

We report the theoretical electronic structure of two-dimensional quantum rings based on
narrow-gap III–V semiconductors, subjected to a strong perpendicular magnetic field. The
electron dynamics is considered within the framework of the envelope-function approximation
in a two-band model. A finite width of the quantum ring is taken into account. The resulting
envelope functions and energy spectrum are found by solving exactly the corresponding
(Dirac-like) wave equation. As a working example, we consider the InP–In0.53Ga0.47As–InP
quantum rings and discuss in detail our results in this system. The obtained levels are
compared to the one-band model (Schrödinger-like) predictions. We find that both approaches
may differ significantly, especially in the case of strong magnetic fields.

1. Introduction

Quantum rings (QRs) have been investigated due to their
physical properties as well as for their potential applications
in nanoelectronics [1–10]. QRs are small semiconductor ring-
shaped structures in which electrons are confined in all spatial
dimensions. As a consequence, discreteness of energy and
charge arises, as in atomic systems. Their physical properties
can be continuously tuned by changing the geometry and the
applied external potentials, making them ideal candidates for
applications in future devices.

The electronic structure of QRs can be obtained within the
envelope-function approximation [11, 12], the system being
usually described by a scalar Hamiltonian (Schrödinger-like)
corresponding to decoupled bands. Spatial confinement of
carriers arises from the band-edge offset of the semiconductors
forming the QR [4, 5, 8–10]. Following this approach,
Bandos et al studied the optical transitions in two-dimensional
(2D) QRs under a strong perpendicular magnetic field
[8]. They considered finite-width QRs based on wide-
gap semiconductors, solving analytically the corresponding
effective-mass equation for a single envelope function.
However, this approach cannot adequately describe those QRs
whose band offset is comparable to the magnitude of the gap,
and a more realistic model is required to properly describe the
band structure.

In this work we calculate the envelope functions and
energy levels of 2D QRs under an applied magnetic field

within a two-band model, assuming perfect axial symmetry
of the nanostructures. This approach is known to be valid
in a large variety of semiconductors where the coupling of
the bands is not negligible, as occurs in some narrow-gap
III–V semiconductors [13, 14]. We solve analytically the
Dirac-like equation for the two coupled envelope functions,
one corresponding to the conduction band (s-like) and the
other to the valence band (p-like). Results are compared
to the one-band model (Schrödinger-like) predictions. As a
major conclusion we claim that both approaches may differ
significantly, especially at high magnetic fields.

2. Model of QRs

The system we study in this work is a 2D QR of inner and outer
radii R1 and R2, respectively, made of two different narrow-
gap III–V semiconductors. Because of the offset between the
conduction and valence bands at the interfaces, carriers can be
confined at the QR, namely between R1 and R2. For simplicity,
we deal only with low-doping levels and the band bending
can be safely neglected hereafter. We treat the resulting
electronic structure by means of the k · p approximation.
The electronic wavefunction is written as a sum of products
of band-edge Bloch functions with slowly varying envelope
functions. To proceed, let Ein

g and Eout
g be the gaps of

the semiconductors inside and outside the QR. Let us denote
the relative offset of the gap centres by V (in what follows
we take the centre of the gap in the QR as the origin of
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Figure 1. A schematic band-edge diagram along the radial direction
of a InP–In0.53Ga0.47As–InP 2D QR.

energies). As an example, the band-edge alignment along
the radial direction for a InP–In0.53Ga0.47As–InP 2D QR is
shown in figure 1.

As pointed out earlier, we restrict ourselves to two
nearby bands. Consequently, there are two coupled envelope
functions satisfying an effective 2 × 2 Dirac-like equation. In
addition, we will consider a uniform magnetic field applied
perpendicular to the QR plane, deriving from the vector
potential A = (1/2)B × r. Assuming that both the gap
and the gap centre depend only on the radial coordinate r, the
resulting equation can be written as[

vα · (p − eA) + 1
2Eg(r)β + V (r)

]
χ(r, θ) = Eχ(r, θ), (1)

where χ(r, θ) is a two-component spinor. Here Eg(r) is
the position-dependent gap and V (r) gives the energy of the
gap centre. The velocity parameter v is related to Kane’s
momentum matrix elements and is given by v2 = Eg/2m∗.
In spite of the fact that both Eg and the effective mass m∗

are position-dependent, the value of v is almost constant in
direct-gap III–V semiconductors [13].

Equation (1) describes a model system of a symmetric
two-band semiconductor, and it is the basis for a more
elaborate analysis [15]. We take into account the magnetic
field effects through a minimal coupling in the envelope-
function Hamiltonian [16]. A detailed discussion of the effects
of magnetic fields in a multiband k·p approach can be found in
[17], where it is shown that these effects enter the Hamiltonian
in a way similar to the one-band effective-mass equation.
Hereafter we keep the minimal two-band model since it can be
analytically solved while providing a reasonable description
of the electronic states.

3. Envelope functions and energy levels

We use the following representation of the 2×2 Dirac matrices,
αx = σ1, αy = σ2 and β = σ3, σi being the Pauli matrices.
Due to the axial symmetry of the Dirac-like equation (1), the
spinor can be factorized in the polar coordinates as follows
[18]:

χ(r, θ) = 1√
2πr

(
ei(κ−1/2)θF (r)

i ei(κ+1/2)θG(r)

)
, (2)

where κ = ± 1
2 ,± 3

2 , . . . and the total angular momentum is
j = κ ± 1

2 . Inserting (2) into (1) we can obtain the following
set of coupled differential equations for the upper and lower
components [18]:(

d

dr
+

κ

r
− eBr

2

)
G(r) = 1

h̄v

[
E − V (r) − 1

2
Eg(r)

]
F(r),

(3a)(
− d

dr
+

κ

r
− eBr

2

)
F(r)

= 1

h̄v

[
E − V (r) +

1

2
Eg(r)

]
G(r). (3b)

We now scale the radial coordinate by introducing the
variable z = r/ lm, where lm = √

h̄/eB is the magnetic length.
Thus, the above equations can be recast in the dimensionless
form (

d

dz
+

κ

z
− z

2

)
G(z) = [ε − α+(z)]F(z), (4a)

(
− d

dz
+

κ

z
− z

2

)
F(z) = [ε − α−(z)]G(z), (4b)

where for brevity we have defined ε = lmE/h̄v and α±(z) =
(lm/h̄v)[V (z) ± Eg(z)/2]. Note that the functions α±(z) are
piecewise constant along the radial direction. We now look
for the solution of the coupled equations on each interval,
hereafter labelled I (0 < z < z1), II (z1 < z < z2) and III
(z > z2), with zi = Ri/lm (see figure 1). To this end, we
insert (4b) into (4a) to obtain[

d2

dz2
− κ(κ − 1)

z2
− z2

4
+

(
κ +

1

2

)
+ η(z)

]
F(z) = 0, (5)

with η(z) = [ε − α+(z)][ε − α−(z)].
It is not difficult to express the solution of (5) on each

interval in terms of the confluent hypergeometric functions
[19]

Fν(z) = zm e−z2/4[CM
ν M(aν, b, z2/2) + CU

ν U(aν, b, z2/2)
]
,

(6a)

where the index ν = I, II, III refers to each interval, and CM
ν

and CU
ν are integration constants to be determined from the

boundary conditions. The definition of the various parameters
appearing in (6a) depends on the sign of the quantum number
κ . Thus, for κ > 0 one finds m = κ, aν = −ην/2 and
b = κ + 1/2. On the other hand, for κ < 0 we have
m = 1 − κ, aν = −ην/2 − κ + 1/2 and b = −κ + 3/2.
Here ην refers to the value of the function η(z) defined above
on each interval. Finally, using (4b) we get

Gν(z) = −zm+1 e−z2/4

(
aν

ε − α−
ν

)[
CM

ν

b
M(1 + aν, 1 + b, z2/2)

−CU
ν U(1 + aν, 1 + b, z2/2)

]
. (6b)
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Since the functions M(aν, b, z2/2) and U(aν, b, z2/2)

diverge for z → ∞ and z → 0, respectively, the normalization
condition of the envelope function∫ ∞

0
dz[|F(z)|2 + |G(z)|2] < ∞

implies CU
I = CM

III = 0, leaving four unknown integration
constants. Moreover, the two envelope functions are
continuous at the heterojunctions (z = z1 and z = z2),
thus providing four equations for the remaining integration
constants. The secular equation to obtain the energy levels is
then written as follows:∣∣∣∣∣∣∣∣

D11 D12 D13 0
D21 D22 D23 0

0 D32 D33 D34

0 D42 D43 D44

∣∣∣∣∣∣∣∣ = 0. (7)

For brevity we have introduced the notation

D11 = M
(
aout, b, z2

1

/
2
)
,

D12 = −M
(
ain, b, z2

1

/
2
)
,

D13 = −U
(
ain, b, z2

1

/
2
)
,

D21 = λout

b
M

(
1 + aout, 1 + b, z2

1

/
2
)
,

D22 = −λin

b
M

(
1 + ain, 1 + b, z2

1

/
2
)
,

D23 = λinU
(
1 + ain, 1 + b, z2

1

/
2
)
,

D32 = M
(
ain, b, z2

2

/
2
)
,

D33 = U
(
ain, b, z2

2

/
2
)
,

D34 = −U
(
aout, b, z2

2

/
2
)
,

D42 = −λin

b
M

(
1 + ain, 1 + b, z2

2

/
2
)
,

D43 = λinU
(
1 + ain, 1 + b, z2

2

/
2
)
,

D44 = −λoutU
(
1 + aout, 1 + b, z2

2

/
2
)
,

with λμ = aμ

/(
ε − α−

μ

)
. The subscripts μ = in, out refer to

the value of the corresponding parameter inside and outside
the quantum well, respectively.

4. Numerical results

We have solved numerically the secular equation (7) for
a 2D QR made of InP–In0.53Ga0.47As–InP. These two
semiconductors present nearly equal Kane matrix elements,
leading to h̄v ∼ 0.77 eV nm. The energy gaps are Ein

g = 0.75
eV and Eout

g = 1.35 eV, and the offset of the band centre is
V = −0.04 eV (see figure 1). The inner and outer radii are
set R1 = 10 nm and R2 = 20 nm, respectively. The magnetic
length is given by lm = (26/

√
B) nm, where B is expressed in

Tesla.
Using the above set of parameters, we first obtain the

envelope functions in the conduction and valence bands.
Figure 2 shows the envelope functions F(r) and G(r) of the
ground and first excited states in the conduction and valence
bands for κ = 1

2 when the applied magnetic field is B = 0.1 T.
Note that the amplitude of the smaller component of the spinor
(G(r) for states in the conduction band and F(r) for states in

0.75 eV 1.35 eV

0.412 eV

0.511 eV

-0.418 eV

-0.525 eV

Figure 2. Envelope functions F(r) (solid lines) and G(r) (dashed
lines) of the ground and first excited states in the conduction and
valence bands for κ = 1

2 when the applied magnetic field is B =
0.1 T. The energy of the level is also indicated in the plot.

the valence band) becomes comparable to the amplitude of the
larger component in the case of the excited states. This points
out the relevance of the non-parabolicity effects for states far
from the band edge, as expected.

In order to get a quantitative estimation of the relevance
of the lower component, we have calculated the magnitude

IG

IF

=
∫ ∞

0 dr|G(r)|2∫ ∞
0 dr|F(r)|2 . (8)

In the one-band approximation for states in the conduction
band, the smaller component G(r) is neglected and this
ratio vanishes. Therefore, the larger the ratio the larger the
contribution of the G(r) component. Similar comments can
be stated for the inverse IF /IG concerning the states in the
valence band. Figure 3 shows the envelope functions of the
states in the conduction and valence bands with κ = 1

2 and
different values of the magnetic fields. Remarkably, only
the smaller component is greatly affected on increasing the
magnetic field (G(r) for conduction band states and F(r) for
valence band states). The ratios IG/IF for conduction band
states and IF /IG for valence band states are nonvanishing and
increase upon increasing the magnetic field. Therefore, we
come to the conclusion that the two-band model is required to
get an accurate description of the electronic states in the QR,
especially at high magnetic fields.

Furthermore, we studied the electronic levels in the
conduction and valence bands as a function of the applied
magnetic field, for different values of the quantum number
κ . Results are shown in figure 4, where energy is measured
from the centre of the gap in the In0.53Ga0.47As quantum well.
At low magnetic field the energy levels depend quadratically
on B while at very high magnetic field the dependence is
linear. Similar trends were found in 2D QRs within the one-
band approximation (see figure 1 in [8]). Note that the state
with lowest energy in the conduction band always presents a
positive value of the quantum number κ . Nevertheless, at the
crossing points (marked by circles in figure 4), the minimum
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Figure 3. Envelope functions F(r) and G(r) of the states in the
conduction (upper panel) and valence (lower panel) bands with
κ = 1

2 for different values of the magnetic fields. The right panels
show the ratios IG/IF and IF /IG for the conduction and valence
band states, respectively, as a function of the applied magnetic field.
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Figure 4. Electronic levels in the conduction and valence bands
(upper and lower panels, respectively) as a function of the applied
magnetic field, for different values of the quantum number κ
indicated on each curve.

energy is reached at a higher value of the quantum number
κ . In contrast, states with negative κ never cross and their
energy increases on increasing |κ| for any given magnetic
field. Analogous behaviour is observed in the valence band
states.

The different behaviour of positive and negative κ states
shown above also manifests in the energy separation E

between the two lowest states with the same value of the
quantum number κ . Figure 5 displays this difference for

0 5 10 15 20 25
B (T)
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0.10

0.11

ΔE
(e

V
)

3/2

1/2

5/2

−1/2
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−5/2

0.26 eV
Conduction
band-edgeΔE

Figure 5. Energy difference between the two lowest states in the
conduction band as a function of the applied magnetic field, for
various values of the quantum number κ indicated on each curve.

states in the conduction band as a function of the magnetic
field. Remarkably, the difference increases (decreases) for
positive (negative) values of κ on increasing the strength of
the magnetic field.

5. Comparison to the one-band approach

Let us now discuss the limit of wide-gap semiconductors
within the two-band approach. For the sake of concreteness,
we restrict ourselves to the conduction band states and positive
κ , although other cases can be handled in a similar fashion. To
proceed we define Ẽ = E − Ein

g /2, namely Ẽ is nothing but
the energy level referred to the bottom of the quantum well.
Therefore we can rewrite

ηin =
(

lm

h̄v

)2

Ẽ

(
Ẽ +

1

2
Ein

g

)
,

ηout = −
(

lm

h̄v

)2

(Ec − Ẽ)

(
1

2
Eout

g − EC + Ẽ

)
,

(9)

where Ec is the conduction band offset. The wide-gap
approximation assumes that Ẽ � Ein

g

/
2 and, consequently,

Ẽ � Eout
g

/
2. In this situation one gets ηin � 2Ẽ/h̄ωc and

ηout � −2(Ec − Ẽ)/h̄ωc, where ωc = eB/m∗, assuming the
same effective mass m∗ in the barrier and the quantum well.
Finally, replacing the quantum number κ by � + 1

2 , � being
the angular momentum, it is straightforward to check that the
secular equation (7) reduces to that obtained in [8] within the
one-band framework.

To get a quantitative comparison of both approaches, we
have calculated the energy difference, Ecv, between the
lowest state in the conduction band and the highest state in
the valence band as a function of the applied magnetic field,
as shown in figure 6. Both results are rather different on
increasing the magnetic field, indicating again the failure of the
one-band approximation at high magnetic fields. We observe
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Figure 6. Energy difference between the lowest state in the
conduction band and the highest state in the valence band as a
function of the applied magnetic field. Curves correspond to
calculations within the one-band (� = 0, dashed line) and two-band
(κ = 1

2 , solid line) frameworks.

that the magnitude of this energy difference is always smaller
within the two-band approximation. The observed shrinkage
of the electronic spectrum seems to be a universal property
of Dirac-like equations, as was formerly observed in Dirac–
Kroning–Penney models and sawtooth superlattices based on
narrow-gap III–V semiconductors (see [20] for further details).

6. Summary

We have studied theoretically the electronic states of 2D QRs
made of narrow-gap III–V semiconductors, whose electron
dynamics is described by means of an effective Dirac-like
equation within the framework of an effective-mass k · p
approximation. The effects of an external magnetic field
applied perpendicularly to the 2D electron gas were also
taken into account. Band-edge offsets give rise to the
confining potential for carriers in QRs based on semiconductor
heterostructures, such as those studied in this work. As a
working example we consider InP–In0.53Ga0.47As–InP QRs
and discuss in detail our results in this system. We found
that the carriers remain localized in the potential well for the
system parameters considered here.

Remarkably, the smaller component of the envelope
function is strongly affected by the magnetic field. Results
have been compared to the one-band model (Schrödinger-
like) predictions, when the role of the small component is
neglected. The relevance of the smaller component is higher
at large values of the applied magnetic field (see insets of
figure 3). In addition, we have also found shrinkage of the
electronic spectrum within the two-band model framework, as
compared to the predictions of the one-band approach. The

shrinkage is again more important at a high magnetic field
(see figure 6). Therefore, we come to the conclusion that the
one-band approach overestimates the energy levels of the QRs
based on narrow-gap semiconductors, and a two-band model is
required to get a more accurate electronic structure, especially
in the case of strong magnetic fields currently available in the
laboratory.

Finally, some words concerning Coulomb-induced
electron–hole correlations are in order. The present calculation
neglects the electron–hole interaction, which is likely to be
important in realistic QRs. Using the correspondence between
the two-band model and relativistic quantum mechanics, we
can conclude that the binding energy of the electron–hole pair
is larger than the one-band prediction [21]. In other words,
the electron–hole interaction also experiences the shrinkage
of the spectrum mentioned above. Therefore, the depression
of levels predicted with the single particle approach would be
even larger when the electron–hole interaction is taken into
account.
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