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Abstract
In a quantum dot in which the spin degeneracy of a carrier is lifted, the Fano
effect may be used as an effective means to generate spin polarization of
transmitted carriers. In this work, we propose a new and more effective
design of a spin-dependent polarizer. The proposed device consists of a
quantum wire with two side-coupled quantum dots. A detailed analysis of
the spin-dependent polarized current is carried out, and we find some
improvements as compared to more conventional designs.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, there has been much interest in understanding the
manner in which the unique properties of nanostructures may
be exploited in spintronic devices, which utilize the spin degree
of freedom of the electron as the basis of their operation [1–6].
A natural feature of these devices is the direct connection
between their conductance and their quantum-mechanical
transmission properties, which may allow their use as an all-
electrical means for generating and detecting spin-polarized
distributions of carriers.

Quantum dots are man-made nanostructures in which
electrons are confined in all space dimensions [7]. Energy and
charge quantization results from this confinement. As both
features are present in real atomic systems, useful analogies
between real and artificial atomic systems have been exploited
recently. Enforcing this analogy, Fano [8] and Dicke effects [9]
were also found to be present in quantum dot configurations.
On the other hand, Song et al [2] described how a spin
filter may be achieved in open quantum dot systems by
exploiting the Fano resonances that occur in their transmission
characteristic. In a quantum dot in which the spin degeneracy
of the carrier is lifted, they showed that the Fano effect may
be used as an effective means to generate spin polarization of
transmitted carriers and that electrical detection of the resulting
polarization should be possible. Moreover, nonlinear effects
arising in electronic systems due to interactions could help to
finely tune Fano resonances in quantum devices [10].

In a previous work [11], we showed that in a side-coupled
double quantum dot system the transmission shows a large
peak-to-valley ratio. Moreover, the difference of energy

between the resonances and antiresonances can be controlled
adjusting the difference between the energy levels of the two
quantum dots by gate voltages. In this work, we show that
the above properties of the side-coupled double quantum dot
system can be extended to design an efficient spin filter. We
compare the spin-dependent polarization of this design and
the polarization obtained with two other devices, namely one
side-coupled quantum well and a T-shape double quantum dot.
As a main result, we find better spin-polarization capabilities
as compared to those more conventional designs.

2. Model

The system under consideration is formed by two quantum
dots connected by tunnel coupling to a long quantum wire
waveguide, as shown schematically in figure 1. We consider
that the magnetic field is localized in the quantum dots. This
confinement can be done by placing nano-magnets on top
of each quantum dot [5, 6]. The full system is modelled
by the Anderson Hamiltonian with two laterally connected
impurities, namely H = HW + HD + Hint with

HW = −v
∑
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Figure 1. Schematic view of the two quantum dots attached to a
quantum wire. Current passing from the source to the drain is
controlled by the gate voltages V1G and V2G.

where c
†
iσ is the creation operator of an electron at site i

of the wire in the σ spin state (σ = ↑,↓), and d†
ασ is the

corresponding operator of an electron with spin σ of the
upper (α = u) or lower (α = l) quantum dot. Moreover
nασ = d†

ασ dασ . Here, εα is the energy level of the α dot and
V0 is the coupling between the quantum wire and one of the
quantum dots. The magnetic field B is applied perpendicular
to the electron gas; σ z is the z Pauli matrix, g is the Landé
g-factor of electrons, µ is the Bohr magneton and U is the
Coulomb coupling. The potential of the wire is taken to be
zero and the hopping in the wire is −v. Furthermore, we set
the energy levels of the quantum dots as εu = ε0 + �V and
εl = ε0 − �V . The potential drop across the two quantum
dots, 2�V , will be a major parameter controlling the width of
the spin-polarized transmission band, thus allowing for a good
control of the device performance.

3. Conductance and spin polarization

The linear conductance in the coherent transport regime can
be obtained from the well-known Landauer formula at zero
temperature Gσ = (e2/h)Tσ (ω = εF ), where Tσ (ω) is the
transmission probability for the σ spin state given by

Tσ (ω) = 2�L(ω)�R(ω)

�L(ω) + �R(ω)
Im

[
GW

0,σ

]
. (2)

Here, GW
0,σ is the Green function at site 0 of the wire for

the σ spin state and �L(R) is the coupling of the site 0 to
the left (right) side of the wire. By using a Dyson equation
G = G0 +G0HintG, we calculate the Green function of the site
0 of the quantum wire coupled to the dots (with G0 unperturbed
the Green function).

We first consider the transmission probability in the case
of noninteracting electrons, namely U = 0 in equation (1).
The calculation is straightforward and for brevity we quote
only the obtained transmission probability

Tσ (ω) = F(�V )F(−�V )

F(�V )F(−�V ) + 4γ 2F(0)
, (3)

where γ = V 2
0

/
2v. For simplicity, we defined F(z) ≡

[ω − z − ε0 − σgµB]2.
Following [2], we introduce the weighted spin

polarization as

Pσ = |T↑ − T↓|
|T↑ + T↓| Tσ , σ =↑↓ . (4)

Figure 2. Weighted spin polarization (σ =↑) for the side-coupled
double quantum dot, as a function of the Fermi energy and magnetic
field.

(a) (b)

Figure 3. Schematic view of (a) design I (one quantum dot attached
to a quantum wire) and (b) design II (T-shape double quantum dot).

Note that this definition takes into account not only the relative
fraction of one of the spins, but also the contribution of those
spins to the electric current. In other words, we will require
not only the first term of the right-hand side of (4) to be of
order of unity, but also the transmission probability Tσ (ω).

First of all, we realize that the weighted spin polarization
P↑ can be made optimum (100% polarization) at ω = ε0+gµB

when �V = ±2gµB. Therefore, adjusting the gate voltage
and the magnetic field, it becomes feasible to get optimum
polarization of the electron current. Most important, the device
can operate close to optimum polarization within a wide range
of energy and magnetic values, as shown in figure 2. For
GaAs-based devices with γ = 3 meV [12], the magnetic field
required to reach optimum polarization is about 4 T. However,
this field is reduced to 40 mT in InAs-based devices for the
same coupling constant γ . We then conclude that physical
parameters of the semiconductors (Landé factor and Bohr
magneton) are more relevant than the coupling between the
quantum dots and the quantum wire. Furthermore, it is to be
stressed that optimum performance, in the sense defined above,
cannot be achieved so easily with some of the conventional
designs, as we will show below.

After discussing our proposal for an efficient spin filter
device, based on a quantum wire with two side-coupled
quantum dots, we compare its performance to other designs
studied in the literature. We focus on two other proposals
that present spin filtering capabilities, namely a quantum wire
with one side-coupled quantum dot (hereafter referred to as
design I) [8] and a T-shape double quantum dot (hereafter
referred to as design II) [5]. Figure 3 shows a schematic view
of designs I and II.

We solve the transmission problem in a similar fashion as
before, and for brevity we do not quote the final expressions.
Figure 4 shows the weighted spin polarization as a function
of the Fermi energy and magnetic field obtained with both
designs. Remarkably, although design I shows a broader
energy range for which polarization is significantly large,
as compared to our design (see figure 2), the maximum
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Figure 4. Weighted spin polarization for σ =↑, as a function of the Fermi energy and magnetic field corresponding to design I (left plot)
and design II (right plot), respectively.

polarization reaches only 50% for the same values of the
magnetic field. To achieve a polarization close to the optimum
one, the magnetic field must be increased by almost an order
of magnitude. Therefore, our design demands much smaller
magnetic fields to operate close to the optimum polarization,
and in this sense II is easier to implement at the nanoscale.

The right plot of figure 4 displays the weighted spin
polarization for σ = ↑ of design II as a function of the
Fermi energy and magnetic field, when the coupling between
both quantum dots is 0.3γ . We observe that design II is
capable of reaching optimum polarization (∼100%), but in a
much narrower energy interval as compared to our proposal.
Therefore, small changes in the Fermi energy or thermal
fluctuations could leave the device out of resonance, thus
losing its spin filtering capabilities. The reason for this
narrower spin-polarized resonance arises from the peculiarities
of design II. It is based on Rashba coupling [5], which usually
is not large in most semiconductors. In addition, the way
of achieving the maximum polarization is by varying the
coupling between the two quantum dots. Therefore, this
leaves only one free parameter, namely the magnetic field.
In contrast, in our design the resonance width is controlled by
�V and this can be made large. As a second advantage, a
number of semiconductors could be used to build the device
proposed in this work since the control parameter �V is
independent of the material and can be varied at will. We thus
claim that the design proposed in this work should present a
more stable performance as compared to design II. Thus, we
conclude that our proposal presents a good balance meeting
both requirements (low magnetic field and high stability), and
in this sense is better than the other two designs.

As charging effects could become important in electronic
devices based on quantum dots, we now discuss the effects of
Coulomb interaction in the landscape presented above. In the
case of finite U, it is known that electron–electron interaction
mainly enlarges the separation between the peak-dip features
(as shown in figure 2) by an amount of the order of U. On the
other hand, within the so-called Hubbard I approximation, it is
straightforward to show that for spin-up electrons (σ = ↑) in
a Coulomb blockade peak (εF = ε0 + gµB + U and n↓ = 1),
the transmission probability becomes unity (T↑(εF) = 1). In
other words, in a Coulomb blockade peak the conductance
becomes G↑ = e2/h. Thus we consider the case with σ = ↑,
n↓ = 1 and n↑ = 0 at ω = εF = ε0 + gµB + U . For this case,

the transmission probability for spin-down electrons is

T↓(εF) = K(�V,−U)K(−�V,−U)

K(�V,−U)K(−�V,−U) + 4γ 2K(�V,−U)
,

where K(x, y) ≡ (x + y + 2gµB)2. Therefore adjusting �V

such that �V = ± (2gµB − U), the transmission probability
for spin-down electrons vanishes. Consequently, we obtain
optimum polarization, namely P↑ = 1 and P↓ = 0 when
εF = ε0+gµB+U . Finally, we note that this result is important
not only for device design, but also for basic physics. By
varying the Fermi energy through gate voltages we can obtain
the magnitude of U, a parameter that is usually difficult to
measure. To this end, one only needs to vary the Fermi energy
until maximum conductance for spin-up electrons is reached
for a given magnetic field, since U = εF − ε0 − gµB at
resonance.

In summary, we have presented a novel spin filter device
based on a quantum wire with two side-coupled quantum dots.
Assuming perfectly coherent transport, we demonstrated that
spin-polarization filtering capabilities can be made optimum
(∼100%) within a wide range of parameters (Fermi energy
and applied magnetic field). This value is twice the largest
polarization obtained with other designs previously studied in
the literature (design I). Also, it might be more stable under
normal operating conditions as compared to similar designs
presenting optimum spin polarization (design II). To deal with
electron–electron interactions, the device must operate at a
Coulomb blockade peak. Finally, we proposed an experiment
to directly measure the Coulomb repulsion parameter U.
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