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Introduction

The survival of many organisms depends on their ability to navigate within a complex 

environment through the detection and processing of a variety of internal and external signals

Chemotaxis: ‘‘the movement of biological cells or organisms in response to chemical 

gradients ’’

A lot of work has been done in order to understand and model this ability for a variety of 

organisms

Examples:

- Multicellular organims: Drosophila melanogaster (fruit fly), male moths, algae …

- Cell populations: sperm cells, immune cell migration, fibrobalsts, …

- Bacteria: E. coli, salmonella typhimurium,…

- Slime molds: Dictyostelium discoideum
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When the bacteria are consumed and starvation is imminent, the amoebae stop dividing and aggregate 
by chemotaxis towards cyclic AMP diffusing from centrally located cells (a-b). 

These aggregates, wich can contain up to 100,000 cells, transform into motile slugs (c, d) and finally into 
fruiting bodies (e–g). The fruiting bodies contain 80,000 viable spores supported by 20,000 dead stalk cells. 

Dictyostelium discoideum
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Starved cell populations of Dictyostelium cells develop on agar to form slime molds and eventually  fruiting 
bodies (latter not shown). The movies show how the cells aggregate via chemotaxis.

Dictyostelium discoideum
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Theoretical and mathematical modelling of chemotaxis dates to the seminal work of Keller and Segel (KS)

[E.. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability. J.Theor. Biol. 26:399 (1970)]

A number of stochastic and discrete approches have arisen but the continuum KS description has become
prevailing for its intuitive nature and relative tractability (analytically and numerically) and has been later derived
from mechanistic/microscopic descriptions

Describes at the population level the evolution of the density of chemotactic cells, u, and the chemoattractant
concentration, v

Captures key phenomena such necessary conditions for pattern formation (critical mass, species diffusivity values)

Gives rise to a variety of observed spatial patterns [Tyson et al. J. Math. Biol. 38:359 (1999)]

Similar models have been developed to understand the aggregation process in a variety of organisms and the 
pigmentation patterning in snakes and fishes, neural crest migration, inflammatory response, tumor growth

In addition to its application to biological systems, a lot work has emerged on its mathematical properties

Keller Segel type Models

∂u
∂t = ∇ · (k1(u, v)∇u− k2(u, v)u∇v)
∂v
∂t = Dv∇2v + k4(u, v)− k5(u, v)v
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Standard (classic) Model

It has rich and and interesting mathematical properties including globally existing of solutions, finite time blow-
up and spatial pattern formation

1D solution exists globally [Osaki y Yagi, Funkcial. Ekvac. 44:441 (2001)]

2D solution depends on a critical mass [Perthame: Transport Equations in Biology. Birkhäuser, Basel (2007)]

While the model predicts the conditions for the existence of aggregation, this takes the form of a finite blow-up in 
a finite time

Therefore, the model is only valid in the initial stages of aggregation

A number of modifications has been made to allow global existence of solutions and understand later stages

∂v
∂t = Dv∇2v + fu− sv

Keller and Segel, J.Theor. Biol. 26:399 (1970)
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Standard (classic) Model
1D 2D

χ=χ0u, D=1,χ0=10, u0=0.25
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Volume filling model
Hillen y Painter, Adv. Appl. Math. 26:280 (2001)

∂v
∂t = Dv∇2v + fu− sv

Derived assuming that cells has a certain finite size and the number of cells in a certain area is limited

γ denotes the maximum cell density (for γ→∞ the classic model is recovered)

Global existence of solutions has been shown in any D 

The volume filling idea was used to model pattern formation of D. discoideum and S. typhimurium in Ref. 

[Dolak y Hillen, J. Math. Biol. 46:153 (2003)]

Gives rise to uninterrupted coarsening, in contrast with experimental observations 
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Volume filling model

2D

1D 2D

χ=χ0 u (1-u/γ), D=1,χ0=10, u0=0.25, γ=1
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• To simplify the analysis we can rescale

with u0 the initial total cell density, to obtain

• Often the medium into which the chemical signal is released is not stationary but is a moving fluid (e.g. air or 
water) while the chemotactic cells or organisms may or not be transported by the flow as they are bound to a 
solid surface (eg. algae or microbial biofilm communities in natural environments or bioreactors) or may 
navigate by themselves.

•What happen to this biological chemotactic populations in an advected environment? 

Advected environment

∂u
∂t +Vu ·∇u = ∇ · (Du∇u− χ(u)∇v)
∂v
∂t +Vv ·∇v = Dv∇2v + fu− sv

• We consider incompressible flows and we  start with the simpliest case of constant flow.

•Choosing an appropriate reference system for differential advection V=Vv-Vu we have 

∂u
∂t = ∇ · (Du∇u− χ(u)∇v)
∂v
∂t = Dv∇2v + fu− sv −V ·∇v

x0 →
p
s/Dv , t

0 → st, u0 → u/u0, v
0 → s/(fu0)v,

∂u
∂t = ∇ · (D∇u− χ(u)∇v)
∂v
∂t = ∇2v + u− v −V ·∇v

D0 = Du/Dv,χ0(u) = f/(sDv)χ(u),V0 = (sDv)−1/2V0• Where we have omitted primes and defined
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Pattern formation in 1D

V=2

Standard (classic) model: χ=χ0u, D=1,χ0=10, u0=0.25

V=5

• For large V the singularity in the classis KS model is suppressed
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Pattern formation in 1D

Volume filling model, χ=χ0 u (1-u/γ), D=1,χ0=10, u0=0.25, γ=1

V=1 V=5

• In the volumen filling model the advection suppress the coarsening process
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• Assuming initial planar condition u0 and v0 we obtain the solutions:

• The real part gives the growth or decay rate of the perturbation amplitude and the imaginary part is related with the 
velocity at which the instability travels across the substrate, Vl, and verifies:

Linear analysis
u(t) = u0, v(t) = u0 + (v0 − u0)e−st

• Perturbing this solution with u(x, t) = u0 + û exp [iq · x+ ω(q)t] , v(x, t) = u0 + v̂ exp [iq · x+ ω(q)t]

Re(ω+) = [χ(u0)−D] q2 − χ(u0)q
2{[(1−D) + χ(u0)]q

2 + (V · q)2}+O
¡
q6
¢

a = (1 +D)q2 + 1
b = V · q
c = Dq4 + [D − χ(u0)] q

2

d = Dq2V · q.

ω2 + ω(a+ ib) + (c+ id) = 0

Im(ω+) = −χ(u0)q2 (V · q) +O
¡
q5
¢

Vl · ql = −Im
£
ω(ql )

¤
• When                                there is a band of unstable wave vectorsχ(u0)−D > 0

• The stabilizing effect of the flow contrasts with the results by Rovinsky and Mezinger in chemical reactio-difussion
equations [Rovinsky y Menzinger Phys. Rev. Lett. 69:1193 (1992), Phys. Rev. Lett. 72:2017 (1994)]

• Although the particles are not directly advected by the flow, we see that chemotaxis induces a phase velocity 
inversely proportional to square of the wavelength

• For large wavelengths (small wave vectors) we can expand the dispersion relation 
to obtain
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Pattern formation in 1D

ql ≈
r

χ(u0)−D
2χ(u0)[(1−D)+χ(u0)+V 2]

V l ≈ [χ(u0)−D]V
2[(1−D)+χ(u0)+V 2]
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• When V exceeds an certain threshold,                           , stronger advection induces slower pattern 
movement

(Vt ≈
q
(1−D) + χ(u0))

•From the previous results we can estimate the wavelength and pattern velocity for large V and compare with the 
simulations
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• When the advection takes place the resulting pattern is not isotropic 

• From the linear analysis is concluded that the dominant pattern is oriented perpendicular to the advection and the 
linear wavelength and coarsening process are not affected by V (in this direction)

• In the parallel direction to the advection, the aggregates velocity is proportional to V and decreases with the pattern 
wavelength following

Pattern formation in 2D

V lx =
4π2χ(u0)

λ2x
V

V=1 V=2
Volume filling model, χ=χ0 u (1-u/γ), D=1,χ0=10, u0=0.25, γ=1
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Conclusions
We have shown how a differential uniform flow affects the aggregation dynamics in KS type 

models

Even if the cells are not directly advected by the flow, the chemotactic signal induces a 

movement as the organisms try to follow region of high chemical concentrations

We have studied numerically and analytically the aggregation features and find out that for 

large enough advection the system remains in the linear regime (obtaining an analytical 

estimation for that value)

The inclusion of an advected term may limit the aggregation process and the singularities in

the KS model

This work: J. Muñoz-García and Z. Neufeld, Aggregation of chemosensitive particles in an advected environment (2009). 

arXiv:0901.1831
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Future work
Test these predictions experimentally

Study the effect of more complex advection such as turbulent flows

Expand this work to other biological system such as phototactic swimming microorganisms 

[Colin and Neufeld, Phys. Rev. Lett. 101:078105 (2008)] using a phototactic source instead cell segregation 

following

∂u
∂t +Vu ·∇u = ∇ · (Du∇u− χ(u)∇v)

∂v
∂t +Vv ·∇v = Dv∇2v + f(x)− sv

Other work
Cell signalling transduction

J. Muñoz-García, Z. Neufeld y B. Kholodenko, Positional Information Generated by Spatially Distributed Signaling Cascades, 

(in press) PLoS Comp. Biol. (2009)
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Low-temperature electron micrographs of clusters of E. coli bacteria. Each 
individual bacterium is oblong shaped.`

S. enterica Typhimurium. Multiple 
flagella are shown on the cell surface

Bacteria:

Salmonella typhimurium

Escherichia coli (E. coli)

E. Coli bacteria colonies cultured in a Petri dish.

LA plate streaked with Salmonella 
Typhimurium and incubated at 37ºC for 24 

hours

Petri plates (8.5 cm) 
containing aggregates of S. 

typhimurium wild-type strain 
LT2 grown in M9 succinate, 
citrate for72 h at 25°C: (a) 5 
mM succinate and 1.5 mM
citrate. (b) 5 mM succinate

and 1.7 mM citrate. The 
inoculum, a remnant of 
which can be seen at the 

center of each plate, was 5 
µl of a stationary-phase 
culture grown on M9 

glycerol. 
H. Berg PNAS 1996
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