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Intermittency and band splitting




e Localization



FIG. 1. A double Cayley tree of connectivity K=2 and lattice
constant . Each boexd s a perfect one-dimensional conductor.
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Equivalence between the mobility edge of electronic transport on disorderless networks
and the onset of chaos via intermittency in deterministic maps

M. Martinez-Mares’ and A. Robledo”



* Zipf’s and Benford’s laws
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Fig. 1. The rank of the top 8% aristocrat families and institutions as a function of
their estimated total wealth on a log-log scale. Measurement results for the Hungar-
ian noble society in the year 1550. The total wealth of a family is estimated as the
number of owned serf families. The power-law fit suggests a Pareto index a = 0.92.



Benford's law
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(From "The First-Digit Phenomenon" by T. P. Hill, American Scientist, July-August 1998)

Benford's law can be used to test for fraudulent or random-guess data in income tax
returns and other financial reports. Here the first significant digits of true tax data taken by
Mark Nigrini from the lines of 169,662 IRS model files follow Benford's law closely.
Fraudulent data taken from a 1995 King’s County, New York, District Attorney's Office study
of cash disbursement and payroll in business do not follow Benford's law. Likewise, data
taken from the author's study of 743 freshmen's responses to a request to write down a
six-digit number at random do not follow the law. Although these are very specific
examples, in general, fraudulent or concocted data appear to have far fewer numbers
starting with 1 and many more starting with 6 than do true data.



We have built on the work of Pietronero, Tossi, Tossi & Vespigniani (2001) and:

* Found a likely statistical-mechanical structure
underlying the laws of Zipf and Benford

* Discovered a complete analogy with the transition to
chaos via intermittency

- Altamirano, C. , Robledo, A.,
“Generalized thermodynamics underlying the laws of Zipf and Benford”

Lecture Notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering (LNICST)

A series of Springer-Verlag, Vol. 5 (Complex Sciences), pp. 2232-2237
(2009).



Some calculations

* Benford’s law corresponds to a uniform distribution in logarithmic space

[ PlogN)d(logN)=C [N"'dN = P(N)~N"'

* The probability of observation of the first digit n of number N is given by

n+l n+l

p(n)= [N dN = [ d(logN) =log((n +1)/n)

* The rank k of a set of I data numbers is

Nmax
k= [N dN =¥ log(N

N(k)

/N(k))

max

* Or, equivalently,

N(Kk) = N,,,, exp |-~ k|



But when PN)~N% as>l1

* The probability of observation of the first digit n of number N is given by

n+l
p(n)=fN‘°‘ a’N=1 !

_a[(n+ 1)@ —nl'“], asl

* The rank k of a set of ‘N data numbers is

k= [ NN - [V NG, as

max
N(k)

* In terms of the g-deformed logarithmic and exponential functions In,x=

and exp, (x)=[1+(1-¢gx]""" we have

log, N(k)=log, N_ (N)-N"k or N(k)=N_, expa[—NO“1 N k]

max max

*In the limit N_,, = % we recover Zipf’s law

N(k) < k', a>1



Hu & Rudnick (1982) RG fixed-point map for tangent bifurcation

X'= fP%)=x+ux’ +..,z>1

z

@)=y (yx)

X = sign(x)‘x

xv—(z—l) _ x—(z—l) _ (Z _ l)l/t, y = 21/(Z—1)

1

x'= f(x)= xexpz(uxz'l) = x[l —(z- l)uxz‘l] K3

x5 = x, Y — (- Dut

In, x, =In_x,—ut, x,>0

1
x =f *(t)(xo) = X, exp, (ux Oz"l 1) =x,[1-(z- l)uxoz_lt] z-1
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Eigenfactors
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* Renewal processes



» We offer a statistical-mechanical interpretation of the basic elements
that constitute the theory of renewal processes.

» Our purpose for developing this analogy is to facilitate the application
of techniques and approximations built up and tested through a large
amount of studies of thermal systems.

* Potentially, these methodologies may have an effect in the study of
complex systems in a variety of fields, in ecology, economy, sociology,
etc., where stochastic processes such as that for the renewing of
events often arise.

Statistical-mechanical structure for renewal
stochastic processes

Jorge Veldzquez and Alberto Robledo



Basics of renewal processes

Y(t) density distribution for waiting times
Y, (1) = Zdt' Y-y, (1), n=1

D, @ =[]

Y(t,z) = an(t) "

P(&z) = 21,0 (&) 2" =(e) z [1 — () Z] !

Y(e;2) everything can be extracted from this function



An illustration

(1) = bexp(-br) exponential waiting-time distribution
() =b(b+e)”

Y(&z) = bz (b+e- bz)—l

P, (e)=b"(b+¢)”"

Y(t;2) = btz exp(1 - bt + btz)

Y (1) = (bt')n exp(=bt) Poisson distribution
n!




A statistical-mechanical structure?

P(&z) = EI/AJ” ()", z=expu
n=1

B,(0) = [ dr explen (1) = [ve)]

Se.u =1n1(£:2),

Sy, = ImZJn (&),
S, =Iny(z:2),

S,, =ny, (1)

S,, =te—nu

a grand canonical partition function?

a canonical partition function?

entropies or Massieu potentials?

an Euler relation?



From canonical to micro canonical

Cc+io

Y (1) = % fds exp(et) 1/3” (¢) = zimf::" de exp[n(gr + 11’117)(8))], T=t/n

c—i%©

saddle-point approximation

n”'Iny (nT) = €,7 + Iny(e,)

d ~
T=——Iny(e
e Y( )E

Y, (t)=expS,, where S, =-1g,+S,

when Y(t) = exp(=br)

t=nb+e,)”

S, =In[(bn™")" exp(n) exp(-br)]

with S,  =Iny, (g,)

<

S, = ln[

(b

)"

n!

exp(—bt)]



Anomalous deterministic diffusion

e Repeated-cell maps

= f(x,), where f(m+x)=m+ f(x),m=..,-10,1..and f(-x)= f(x)
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* Distribution of cell residence time intervals (¢ x ) = fdt' Y(t',x,)

BG statistics g-statistics

W(t,x,)=expl-a,(x,)t] W(t,x,) =exp, [ -a,(x,)1]



e Central limit theorem



Sum of positions inside the Feigenbaum attractor
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P(y')
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Band splitting in ‘mean field’

» Consider that band splitting scales with the most crowded and
sparse regions of the multifractal attractor, i.e. a*ora™

1.56 -

144 -

142 =

138 ! 1 1 ! ! 1 1 !

* The widths of the bands form a Pascal triangle across band splitting



ARG view of the CLT as illustrated by chaotic band attractors
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Renormalization group structure for
sums of variables generated by
incipiently chaotic maps

Miguel Angel Fuentes'?* and Alberto Robledo’



* Summary



