THE PEACE MEDIATORS EFFECT IN SMALL GROUPS

Daniele Vilone Madrid, February 19th, 2010 GISC Workshop

<u>Collaborators:</u> Franco Bagnoli and Graziano Barnabei (Florence), Andrea Guazzini (Pisa), Timoteo Carletti (Namur)

SUMMARY

- Introduction: continuous opinion models
- From Deffuant to our model
- Mean-Field treatment
- Numerical results
- Adding the Peace Mediators: numerical results
- Conclusions and perspectives

Introduction

- <u>Discrete opinion models</u>:
 Scalar → Voter model (spin models)
 Vectorial → Axelrod model
- <u>Continuous opinion models:</u> Deffuant model
- In general, according to the values of the parameters, there is a consensus-disorder transition

Deffuant Model

• Elementary evolution rules:

$$O_i \rightarrow O_i + \mu (O_j - O_i)$$
$$O_j \rightarrow O_j + \mu (O_i - O_j)$$

- The agents interact only if $|O_i O_j| < d$
- $O_i \in [0,1]$, are the opinions (*i*=1,...,*N*)
- $d \in [0,1]$ is the threshold
- $\mu \in [0,1]$ is the learning factor
- Final consensus for high values of *d* (details depend on the topology).

[Deffuant *et al.*, **Adv. Compl. Syst.**, <u>3</u>, 87 (2000)]

Our model [Carletti et al., EPJB <u>64</u>, 285 (2008)]

Interaction between agents *i* and *j* takes place only if $|\Delta O_{ij}(1-\alpha_{ij})| < \sigma$, being σ social temperature

$$O_{i} \rightarrow O_{i} + \mu (O_{j} - O_{i}) \qquad [\alpha_{ij} > \alpha_{c}]$$

$$\alpha_{ij} \rightarrow \alpha_{ij} \pm \alpha_{ij} (1 - \alpha_{ij}) \qquad [\Delta O_{c} - |\Delta O_{ij}| \ge 0]$$

Affinity matrix: $\alpha_{ij} \in [0,1]$. It measures how *i* "trusts" *j*.

 ΔO_c and α_c are the thresholds.

Initial conditions: agents uniformly spaced in the opinion space [0,1]; affinity matrix entries picked at random.

Mean-field treatment

$$\frac{\partial P(x,t)}{\partial t} = \int_{[0,1]} dO_i \int_{\left| \Delta O_i \right| < \frac{\sigma}{1 - \alpha_{ij}}} dO_j P(O_i,t) P(O_j,t) [\delta(x - O_i + \mu \Delta O_{ij}) - \delta(x - O_i)]$$
$$\frac{d\alpha_{ij}(t)}{dt} = \Gamma(t) \cdot \alpha_{ij}(t) [1 - \alpha_{ij}(t)]$$

Where P(x,t)dx is the fraction of agents having opinion in the range [x,x+dx] at time t, and $\Gamma(t)=\text{sgn}(|\Delta O_{ij}(t)|-\Delta O_c)$. The social temperature is assumed to be small enough.

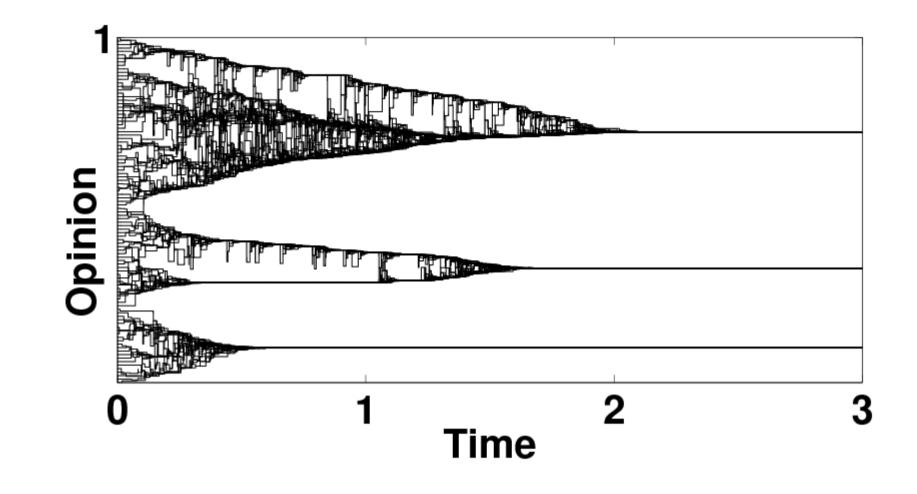
<u>Notice:</u> the first equation is formally similar to the one in Ben-Naim, Krapivsky, Redner, Physica D <u>183</u>, 190 (2003) • At the initial stages of the dynamics, it makes sense to assume $\alpha_{ij} \approx \langle \alpha_{ij} \rangle$.

• It is crucial this quantity:
$$\Delta = \frac{1 - \langle \alpha_{ij} \rangle}{\sigma}$$

• Following Ben-Naim et al., it results

 $\Delta < \Delta_c \Rightarrow consensus$ With $\Delta_c = 1$ in Ben-Naim's equation. In our case this critical value is not so well-defined (due to the approximation and to the several parameters involved), but qualitatively the same transition can be seen.

• The affinity matrix always ends up as a block-matrix, i.e. the final configuration is a disconnected network.



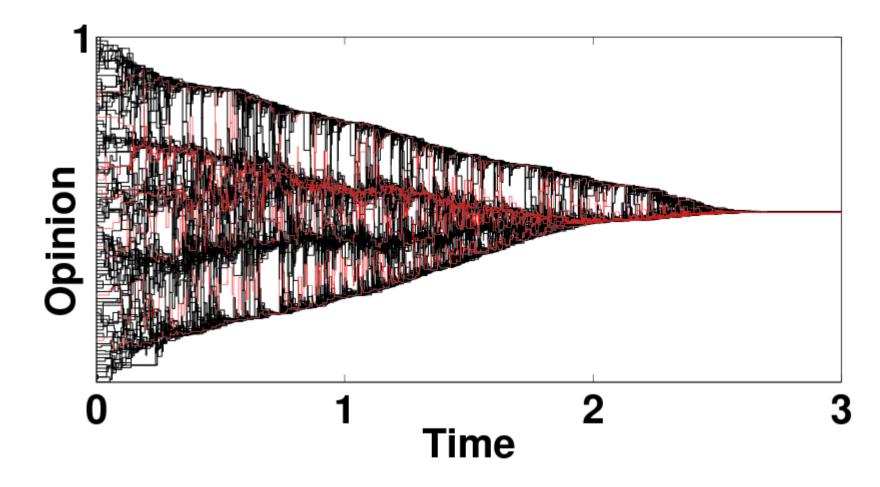
$$N = 100; \Delta O_c = 0.2; \alpha_c = \mu = 0.5; \sigma = 0.003; \langle \alpha_{ij} \rangle = 0.25$$
$$\Rightarrow \Delta = 250 \gg 1$$

Adding the "Peace Mediators"

- "*Diplomats*" they have a bigger opinion threshold with respect to normal agents: $\Delta O_c > \Delta O_c$.
- "*Auctoritates*" agents have a bigger affinity with an auctoritas than with the normal ones: $\alpha_{ia} > \alpha_{ij} \forall a, j$.

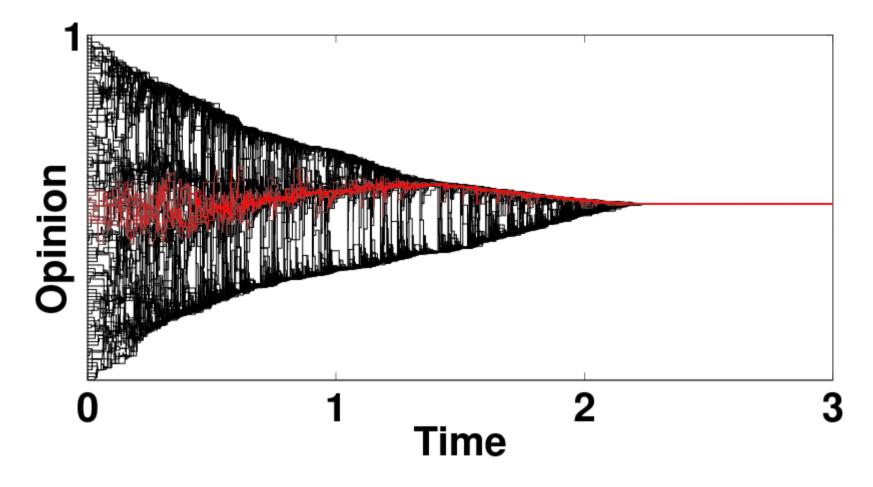
What happens inserting such PMs in our model? (Diplomats and auctoritates were always put in the system separately) They should promote the final consensus.

System with *diplomats*



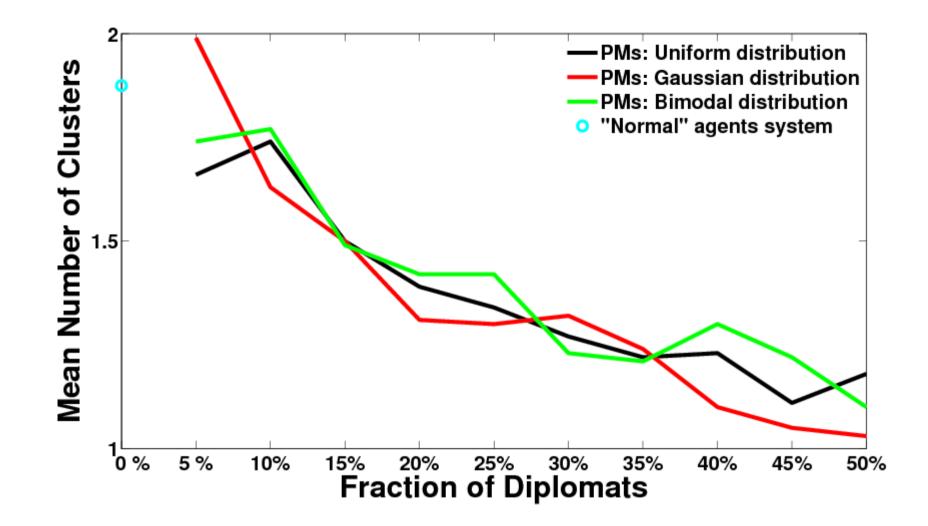
Same parameters of the first picture, plus the 10% of diplomats with $\Delta O_c = 0.5$ instead of 0.2

System with auctoritates



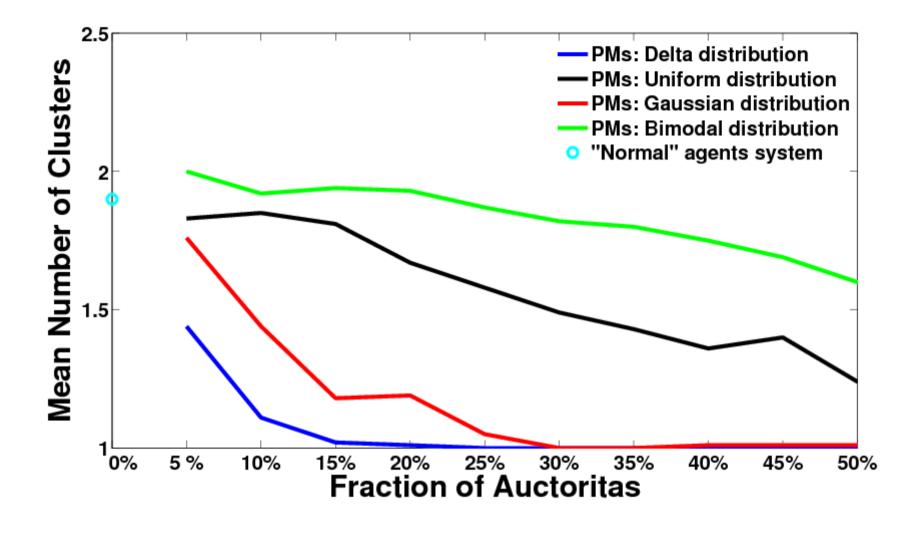
Same parameters of the first picture, plus the 10% of *auctoritates* such that $\alpha_{ia}=0.75 \forall i,a$

Diplomats: results



N = 100; $\Delta O_c = 0.2$; $\alpha_c = \mu = 0.5$; $\sigma = 0.003$; $\langle \alpha_{ij} \rangle = 0.25$ *diplomats* with $\Delta O_c = 0.5$; averages over *S*=100 realizations

Auctoritates: results



N = 100; $\Delta O_c = 0.2$; $\alpha_c = \mu = 0.5$; $\sigma = 0.003$; $\langle \alpha_{ij} \rangle = 0.25$ auctoritates such that $\alpha_{ia} = 0.75$; averages over *S*=100 realiz.

Final considerations and perspectives

- *Diplomats* have an important effect in promoting consensus when are distributed along the system and there is a great deal of them:
- *Auctoritates* have an effective role in promoting consensus when localized in the middle of the system, in this case a small number of them is enough to reach more easily the consensus;
- A system with *diplomats* such that the average opinion's threshold is $<\Delta O_c' >$ behaves like a system with no PMs but $\Delta O_c = \langle \Delta O_c' \rangle$;
- A system with *auctoritates* such that $<\alpha_{ij}>=\alpha'$ still promotes consensus better than a system with the same average affinity but no PMs;

- The effect of PMs is to <u>unify a disconnected network in a</u> <u>totally connected</u> one;
- Up to date, all the numerical results have been collected for small groups (in particular N=100): what happens in bigger systems, and in general for $N \rightarrow +\infty$?
- Is it possible to get some theoretical interpretation also for systems with PMs?
- What happens if PMs act on a system already put on a social network?

<u>**References**</u>: Guazzini, Barnabei, Carletti, Bagnoli and Vilone, arXiv:0907.3228[physics.soc-ph]; Bagnoli, Vilone et al., *in preparation*.

THE END