# Plateau-Insulator transition in graphene

#### M. Amado

GISC - Departamento de Física de Materiales Universidad Complutense de Madrid











E. Diez Universidad de Salamanca D. López-Romero ISOM-UPM J.M. Caridad, F. Rossella, F Dionigi and V. Bellani Università degli studi di Pavia D.K. Maude LNCMI Grenoble

- Brief Introduction. What is graphene?
- Honeycomb lattice: Singular properties of graphene
- Sample processing
- QHE and QHE in graphene.
- Experimental set-up.
- Hall measurements and Plateau-Insulator transition.
- Conclusions and future work.

- Brief Introduction. What is graphene?
- Honeycomb lattice: Singular properties of graphene
- Sample processing
- QHE and QHE in graphene.
- Experimental set-up.
- Hall measurements and Plateau-Insulator transition.
- Conclusions and future work.

#### From graphite to graphene



#### From graphite to graphene

Graphene was said not to exist in the free state...

....but many works studied the system:

- Continuum approximation to fullerene molecules
- J. González, F. Guinea, and M. A. H. Vozmediano Phys. Rev. Lett. 69, 172 (1992)
- Electronic structure of single- and multiple-shell carbon fullerenes Yeong-Lieh Lin and F. Nori Phys. Rev. B **49**, 5020 (1994)

• Zero modes for Dirac fermions on a sphere with fractional vortex V. A. Osipov, E. A. Kochetov J. of Exp. and Th. Phys. Lett. **72** 199 (2000)ok

- Electron-electron interactions in graphene sheets J. González, F. Guinea, and M. A. Vozmediano Phys. Rev. B **63** 134421 (2001)
- Graphene cones: Classification by fictitious flux and electronic properties P. E. Lammert and V. H. Crespi Phys. Rev. B **69** 035406 (2004)

#### The rise of graphene

#### Electric Field Effect in Atomically Thin Carbon Films

K. S. Novoselov,<sup>1</sup> A. K. Geim,<sup>1</sup>\* S. V. Morozov,<sup>2</sup> D. Jiang,<sup>1</sup> Y. Zhang,<sup>1</sup> S. V. Dubonos,<sup>2</sup> I. V. Grigorieva,<sup>1</sup> A. A. Firsov<sup>2</sup>

We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to  $10^{13}$  per square centimeter and with room-temperature mobilities of  $\sim 10,000$  square centimeters per volt-second can be induced by applying gate voltage.

#### Science 306, 666 (2004)

Two-dimensional gas of massless Dirac fermions in graphene

K. S. Novoselov<u>1</u>, A. K. Geim<u>1</u>, S. V. Morozov<u>2</u>, D. Jian<u>g</u>1, M. I. Katsnelson<u>3</u>, I. V. Grigorieva<u>1</u>, S. V. Dubonos<u>2</u> & A. A. Firsov<u>2</u>

Nature 438, 197-200 (2005)

#### Graphene: a true 2D system.



- Brief Introduction. What is graphene?
- Honeycomb lattice: Singular properties of graphene
- Sample processing
- QHE and QHE in graphene.
- Experimental set-up.
- Hall measurements and Plateau-Insulator transition.
- Conclusions and future work.

#### Brillouin's zone in graphene.









#### Why graphene is so different?

#### Semiconductors

Open band-gap Schrödinger-like equation in most of them Degeneracy 2. Conduction by electrons OR holes.

$$E = \frac{p^2}{2m}$$

#### Graphene

Zero band-gap → Semimetal Dirac-like equation Degeneracy 4. Conduction by electrons AND holes

 $E = \hbar v |k|$  $v \sim c / 300$ 

- Brief Introduction. What is graphene?
- Honeycomb lattice: Singular properties of graphene
- Sample processing
- QHE and QHE in graphene.
- Experimental set-up.
- Hall measurements and Plateau-Insulator transition.
- Conclusions and future work.

# The rise of graphene. Previous approaches.



More than 80 layers Krishnan'98



Dresselhaus '81 Horiuchi '04 Restacked and scrolled



McConville '86 Land '92 Affoune '01

Submicron islands on top of a 3D crystal.

# Graphite peeling. Mechanical exfoliation.



Book Tape

#### Sample processing.

Mechanical exfolation. It is dificult to obtain big and homogeneus flakes



- Transfer to a 300 nm SiO<sub>2</sub>/Si substrate. The Si is n-doped and is used as a gate.
- The substrate should be patterned with position markers

#### Sample processing



- Brief Introduction. What is graphene?
- Honeycomb lattice: Singular properties of graphene
- Sample processing
- QHE in graphene, peculiarities.
- Experimental set-up.
- Hall measurements and Plateau-Insulator transition.
- Conclusions and future work.



#### Anomalous QHE in graphene.



Novoselov, Geim et al., Nature 438, 197 (05)

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega_c$$

2DEG in semiconductors -

$$\sigma_{xy} = ne^2 / h$$

 $E_n = \pm \sqrt{2n\hbar v^2 |eB|/c}$ 

Graphene

$$\sigma_{xy} = \pm g_s g_v (n+1/2)e^2 / h = \pm 4(n+1/2)e^2 / h$$

n = 0, 1, 2, .. $\omega_c = \frac{eB}{m}$  $g_s g_v = 4$ 

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega_c$$

2DEG in semiconductors -

$$\sigma_{xy} = ne^2 / h$$

 $E_n = \pm \sqrt{2n\hbar v^2 |eB|/c}$ 

Graphene

$$\sigma_{xy} = \pm g_s g_v (n + 1/2) e^2 / h = \pm 4(n + 1/2) e^2 / h$$

The shift 1/2 is originated from the Berry phase due to the pseudospin (or valley) precession when a massless (and thus chiral) Dirac particle exercises cyclotron motion.

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega_c$$

2DEG in semiconductors -

$$\sigma_{xy} = ne^2 / h$$

$$\int E_n = \pm \sqrt{2n\hbar v^2 \left| eB \right| / c}$$

Graphene

```
v = \pm 4(n+1/2)
```

In the limit  $n \rightarrow 0$ , nothing happens to the LLs  $n \ge 1$ 

```
The two n=0 LLs with E=±mv<sup>2</sup> merge
together to form a single level with
degeneracy 4. Is a partially filled LL !
R_{xy} in 1<sup>st</sup> LL is 2(h/e^2) = \frac{1}{2}R_K
R_K = 25.812 \text{ k}\Omega
```

$$/h = \pm 4(n+1/2)e^2 / h$$

Wang, Iyengar, Fertig and Brey

PRB 78 165416 (2008)







→ high B

Jiang, Zhang, Stormer and Kim PRL **99**, 106802 (2007) **New Plateaus at High Magnetic Fields** 

Energy

 $E_F$ 

n = 3n = 2

n = 1

n = 0

n = -1n = -2

n = -3

DOS

Contradictory experimental results In the extreme quantum limit!

- Brief Introduction. What is graphene?
- Honeycomb lattice: Singular properties of graphene
- Sample processing
- QHE in graphene, peculiarities.
- Experimental set-up.
- Hall measurements and Plateau-Insulator transition.
- Conclusions and future work.

#### Experimental set-up.



- Brief Introduction. What is graphene?
- Honeycomb lattice: Singular properties of graphene
- Sample processing
- QHE in graphene, peculiarities.
- Experimental set-up.
- Hall measurements and Plateau-Insulator transition.
- Conclusions and future work.

## QHE by varying the V<sub>gate</sub>



R<sub>xx</sub> diverges with T at the Dirac point



Quantization of the  $R_{xv} \rightarrow QHE$ 

#### QHE by varying the magnetic field.



 $V_{gate} = -20 V$ 

#### Crossing point.T independence.



#### Conductivity.



#### Plateau-Insulator transition



#### **Plateau-Insulator transition**



- Brief Introduction. What is graphene?
- Honeycomb lattice: Singular properties of graphene
- Sample processing
- QHE in graphene, peculiarities.
- Experimental set-up.
- Hall measurements and Plateau-Insulator transition.
- Conclusions and future work.

#### **Conclusions and future work**

- Sample fabrication.
- Automatic Raman characterisation.
- Systematic study of the temperature dependence of the resistivity.
- Evidence of a crossing point in R<sub>xy.</sub>
- Plateau to insulator transition.
- Critical exponent K=0.58. First observation in a true 2D system. Universality of K.
- Measure the Hall effect going down with T into the milikelvin regime

# Thank you for your attention