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Departamento de Matemáticas, Universidad Carlos III de Madrid, Spain
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How can networking affect the turnout in an election? We present a simple model to
explain turnout as a result of a dynamic process of formation of the intention to vote
within Erdös–Rényi networks. Citizens have fixed preferences for one of two parties and
are embedded in a social network. They decide whether or not to vote on the basis of the
attitude of their immediate contacts. They may simply follow the behavior of the major-
ity (followers) or make an adaptive local calculus of voting (calculators). So they have
the intention of voting either when the majority of their neighbors are willing to vote too,
or when they perceive in their social neighborhood that elections are “close”. We study

the long-run average intention to vote, interpreted as the actual turnout observed in
an election. Depending on the values of the average connectivity and the probability
of behaving as a follower/calculator, the system exhibits monostability (zero turnout),
bistability (zero and moderate/high turnout) or tristability (zero, moderate and high
turnout). By obtaining realistic turnout rates for a wide range of values of both param-
eters, our model suggests a mechanism behind the observed relevance of social networks
in recent elections.
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1. Introduction

Two basic questions concerning the turnout in elections are: “Who votes?” and
“Why do people vote?” Empirical research answers the first question by pointing out
a list of individual characteristics that influence participation. The results suggest
that non-participation is positively correlated with low education level, social or
geographical isolation [29], being a newcomer or immigrant [21], having a low income
[27], and being young [17, 22]. Moreover, those persons who voted in the previous
election are more likely to vote in the next: voting is thus a habit [14, 18, 40]. The
effect of external characteristics such as the electoral system or the closeness of the
race between candidates has also been studied. It appears that voters are more likely
to turn out under proportional electoral systems than under majority systems [15].
Closeness also matters [15, 42] although the evidence is patchy [28, 30].

Looking at the problem from a sociological viewpoint, the influence of social
networks on voting behavior is well-known in political science [3, 25]. The recent
empirical findings concerning what is called “behavioral contagion” [32] or “per-
ceived pressure to vote” [4] can be summarized as follows. People whose neigh-
bors and friends usually vote are more likely to participate [24, 32]. Interpersonal
discussion influences political participation [20], although the effect of social inter-
action on participation is contingent on the amount and the quality of political
discussion that occurs within the social network [31, 33]. Moderately informed
voters tend to imitate their neighbors’ voting behavior [22]. The contagion effect
occurs among spouses [35], but weaker ties or even casual interactions may also
determine political behavior patterns [19]. Publicizing participation increases the
turnout [13]. According to some empirical studies, political disagreement within the
network tends to dampen turnout [34, 16]. However, once the distinction between
isolation within one’s own opinion environment and the balance of exposure to
two conflicting points of views is made, such political disagreement would foster
participation [36].

Summing up in a stylized fashion, the empirical evidence that accounts for
the social influence on turnout or voting behavior suggests that there might be
two forces underlying the decision to cast a vote: on the one hand, contagion or
imitation; on the other hand, the reaction to political discussions, where possibly
people would tend to vote whenever they face a balanced opinion environment.

At the theoretical level, in a seminal work, Downs [7] uses rational choice to
question the turnout in large elections: Why do so many people vote given that in
marginal terms the cost of voting is larger than its benefits? Indeed the benefit of
voting depends on the voter’s probability of being decisive, which is extremely low
in large electorates. Since then many explanations have been given, among them
a sense of duty [41] and the objective of minimizing regret [9]. Game theoretical
models have been proposed [37, 38, 26], as have group-based models of mobilization
[45, 42]. (For a review of these models, see [8] or [15].) More recently, network theory
has sought to explain turnout by contagion through social networks: groups of voters
can convince their nearest neighbors to go and vote. It has been shown that if people
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imitate their neighbors’ behavior, a small group of people with strong feelings about
voting can bring about a massive turnout by a “domino” or “cascade” effect [1, 10].
Alternatively, when individuals base their decision to abstain or participate on
what the most satisfied neighbors did in the previous period, the result is a large
turnout [11].

At last, it is also worthwhile to mention the fruitful literature on dynamic opin-
ion formation in the field of physics.a Most of the applications follow either the
Sznajd model [44] or the majority-vote model [6]. In the Sznajd model, essentially
groups of people sharing the same opinion (vote’s preferences) can convince their
nearest neighbors with some probability. As a result, unless some individuals are
assumed to behave differently, full consensus is reached (see [43] and references
therein). In the majority-vote model, agents follow the majoritarian behavior in
their neighborhoods with some probability 1 − q. This model has been studied in
several types of networks and displays a critical transition at qc (that is, if q > qc

full consensus is reached). In particular, applied to Erdös–Rényi networks, such
critical value increases with the average connectivity of the graph [39]. Finally, the
so-called Galam model introduces the idea of group discussion in the context of
physics-based models, by considering local majority rules in small groups of peo-
ple that are reshuffled every timestep (see [12] for an account on the history and
variants of this model).

In this paper, we bridge the gap between rational theory and network theory
by combining adaptive calculus of voting and imitation within social networks.
Based on the empirical evidence, we assume that individuals decide whether or
not to vote on the basis of the influence of their social neighbors (e.g. family,
friends, coworkers, etc.): while some individuals simply follow the observed majority
behavior (imitation or contagion effect), others tend to turn out if they perceive
that elections are “close” (local adaptive calculus of voting effect).

In more detail, we propose the following model. Two parties compete in an
election. Each citizen has a given preference for one party or the other and that
preference does not change during the relevant period. Instead, before the election
takes place, the decision that evolves is the intention to participate. Citizens are
embedded in a random social network and dynamically make their choice to vote or
not depending on what they observe within their social neighborhoods. We study
the long-run emerging average behavior which, as discussed in the next sections,
can be interpreted as the actual turnout observed in the election.

We represent the social structure as a fixed random network. Nodes are citi-
zens and links (ties) are social relationships. More specifically, we consider undi-
rected Erdös–Rényi random networks. In this type of network, all ties have the
same probability of being present and for a large number of nodes the connectiv-
ity distribution is approximately Poisson. This implies that the network can be
fully characterized by the average connectivity (e.g. average number of links per

aFor an exhaustive review, see [5, part III].
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node or average degree). This feature is therefore one of the two parameters of
our model. Its magnitude depends on who is really influential when one decides
whether to participate or not. Do people discuss politics only with friends, with
friends and family, with friends, family and co-workers, etc? Naturally, it may also
depict different kinds of society, some of which are more densely connected than
others.

Given the pattern of interactions, citizens form their intention to vote. Agents
have limited information and are backward adaptive learners. They only have access
to local information (that which they can gather in their immediate neighborhood)
and use the past as a guide for making their current decision [11, 23]. That is,
whenever a citizen updates his/her intention whether or not to turn out, say at
time t, he/she takes into account his/her neighbors’ intention to participate at t−1
as well as their given political preferences.b We consider two possible behaviors —
imitation and adaptive calculus of voting — which may reflect differences in political
awareness [2]. The probability of adopting one of these behaviors is the second
parameter of our model. If the citizen acts as a “follower”, he/she decides to vote
if the majority of his/her neighbors are willing to vote too. If the citizen is a
“calculator”, he/she decides to vote if he/she may be “decisive” in his/her social
neighborhood. In this case, if a large majority of his/her voting neighbors have
preferences for his/her preferred party or his/her opposed party he/she will not
vote. (Empirical evidence of not voting if one is isolated in an enemy neighborhood
can be found in [16]). The “calculator” agent only votes if his/her neighborhood is
divided (or, in other words, if there is opinion balance among social neighbors who
are willing to vote); he/she does not vote if he/she feels that either party may win
by a very large majority.c

We use two complementary approaches to find the long-run turnout equilibrium,
i.e. the average turnout that remains stable through time. The results obtained by
an analytical (mean-field) approximation are confirmed by Monte Carlo simulations.
The interplay between the two key parameters, average connectivity and probability
of being a follower results in a rich long-run behavior. The model often does not
predict a unique stable equilibrium: the system may exhibit bistability with zero
and high or moderate turnout and tristability with zero, moderate and high rates
of turnout.

The rest of the paper is organized as follows. First, we present the framework
and the assumptions (Sec. 2). Next, we analytically study the model and present
some Monte Carlo simulations (Secs. 3 and 4, respectively). We highlight the main
intuitions of the dynamics of the model and compare our long-run results with real

bIt should be clear that the dynamic process of turnout formation occurs just before an election.
Therefore, step t is an arbitrary time unit each time (i.e. it does not represent different election
days).
cNote that followers’ behavior resembles that of agents in a majority-vote model. The difference
is that with the complementary probability our agents behave as adaptive calculators.
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election data (Sec. 5). Finally, we sum up and discuss possible avenues for future
research (Sec. 6).

2. The Model: Evolution of Turnout Intention

Two parties, A and B, compete in an election. Before the election takes place,
citizens are involved in a dynamic process of formation of turnout intention. Let N

denote the set of agents or citizens with the right to vote (indexed by i = 1, . . . , n).
Each agent i usually interacts with a small group, thus we model the pattern of
interactions as a (exogenously given and fixed) random social network G à la Erdös–
Rényi. In this network, agents are nodes and links (ij) represent social relationships
or political discussions. Ties are undirected (thus if i is connected to j, so is j with
respect to i) and any two agents have the same probability of being connected. We
denote Ni = {j �= i, j ∈ N : ij ∈ G}, the set of agents with whom i is connected or
i’s neighbors. The connectivity of i (number of neighbors) is denoted by ki = |Ni|.
As G belongs to the Erdös–Rényi family of networks, for large n, the connectivity
is approximately Poisson-distributed and there are no correlations. In particular
the clustering coefficient (i.e. the average probability of two neighbors of any agent
i being connected themselves) is very small. All this implies that for a sufficiently
large number of realizations and a large n, the network can be fairly described by
its expected connectivity 〈k〉 ≈ ∑

i∈N ki/n, the unique parameter of the Poisson
distribution.d

Each agent has two basic characteristics: his/her preference and his/her turnout
intention. Agent i’s preference does not change during the relevant period and is
denoted by ui ∈ {A, B}. This means that if agent i votes, he/she chooses the
candidate of party A(B) whenever ui = A(B). We assume that preferences are
uniformly distributed among the population and there are exactly n/2 agents of
each type. What does change over time is the intention of agent i to vote or not.
Let vi,t = 1 (0) denote the intention of agent i to turnout (or not) at time t.
We assume that initially a proportion of the population is willing to vote and its
distribution (uniform) is independent of the network structure and the distribution
of preferences. Agents are bounded rational and at each t consider the information
they know from t − 1. More specifically, the information that they can gather is
the characteristics of their neighbors; therefore at time t each agent i knows uj and
vj,t−1 for every j ∈ Ni.

The turnout intention dynamics is as follows. At each time t = 1, . . . , one agent
is random uniformly chosen to update his/her turnout intention (i.e. asynchronous
updating). With probability p, the chosen agent behaves as a “follower” and is
willing to vote if a majority of his/her neighbors are also willing to vote. With
probability 1 − p, the chosen agent behaves as a “calculator”: he/she is willing

dThroughout this paper 〈· · ·〉 denotes expected value. Note that for n large, the mean connectivityP
i∈N ki/n converges in probability to the expected value or average connectivity 〈k〉.
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to vote if he/she thinks that elections are more or less close. Close elections (i.e.
balanced opinions among voting neighbors) are understood as a near-half division
50± β% between neighbors who are considering voting. To simplify our model, we
fix such degree of “closeness” β to 10% — thus, “close” elections are a 40–60%
division — and briefly discuss the implication of varying this parameter at the
end of Sec. 3. Note that as citizens only have access to information within their
neighborhood, this adaptive calculus of voting is done at the local level.

If agent i is chosen to update his/her turnout behavior at time t, he/she uses
the information gathered at period t − 1, namely, the number of voting neighbors,
which we denote by xi,t−1:

xi,t−1 =
∑
j∈Ni

vj,t−1, (1)

and the number of voting neighbors with identical preferences, which we denote by
yi,t−1,

yi,t−1 =
∑

j∈Ni:
uj=ui

vj,t−1 . (2)

Therefore, formally, if agent i behaves as a follower, his/her turnout intention
at time t will be

vi,t−1 =

{
1 if xi,t−1 ≥ 0.5ki,

0 otherwise,
(3)

while if agent i behaves as a calculator,

vi,t−1 =

{
1 if 0.4xi,t−1 ≤ yi,t−1 ≤ 0.6xi,t−1,

0 otherwise.
(4)

If agent i has no neighbors (ki = 0) or no one in his/her neighborhood is
willing to vote (xi,t−1 = 0), we assume that he/she simply copies his/her own past
behavior, i.e. vi,t = vi,t−1.

Under the assumption that v1,t, v2,t, . . . are independent and identically dis-
tributed random variables, the average turnout intention at time t,

∑
i∈N vi,t/n,

for n large approximates the expected turnout intention at time t, i.e.
plim

∑
i∈N vi,t/n = 〈v〉t where plim denotes convergence in probability. The equi-

librium turnout v is approximated by the long-run value of 〈v〉t, that is plim〈v〉t =
v, or in other words, when 〈v〉t remains stable over time, v = 〈v〉t = 〈v〉t−1 (see
Sec. 3 for more specific details).e

eNote that assuming that v1,t, v2,t, . . . , are independent and identically distributed random vari-
ables allow us to invoke the weak law of large numbers. That is, for any δ > 0: plim

P
i∈N vi,t =

〈v〉t ⇔ limn→∞ Pr(|P
i∈N vi,t/n − 〈v〉t| > δ) = 0. An analogous argument lies behind

plim〈v〉t = v, for random variables 〈v〉1, 〈v〉2, . . . .
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The long-run turnout intention obtained v represents, or can be interpreted as,
the actual turnout that would be observed on the elections’ day. We hence study
the behavior of v as a function of the following parameters:

• p ∈ [0, 1], the probability of being a follower or the fraction of time for which any
individual behaves as a follower.

• 〈k〉 = 5, 6, . . . , 25, the average connectivity of the network. We assume 〈k〉 ≥ 5
because for 〈k〉 < 5, the fraction of isolated individuals is too great to allow the
initial behavior to be updated. (This is similar to [10], where 〈k〉 is assumed to
be between four and 20).

We adopt two different complementary approaches to solve the model. We approx-
imate analytically the long-run average turnout via mean-field techniques. The
approximation obtained is then confirmed and complemented by Monte Carlo
simulations.

3. Mean-Field Approximation

Our aim in this section is to obtain an analytical approximation of the equilibrium
turnout, i.e. the long-run state of the dynamics. As a first step, we approximate
the evolution in time of the expected turnout intention 〈v〉t. The idea is simple. We
assume that the binary variables vi,t are independent and identically distributed
Bernoulli random variables with a probability of success of E[vi,t] = 〈v〉t, therefore
for n large the average turnout at time t converges in probability to the expected
value 〈v〉t, i.e. plim

∑
i∈N vi,t/n = 〈v〉t. In this context, 〈v〉t is the approximated

probability that any agent i is willing to vote at time t.
The probability that an agent i is willing to vote at time t depends on his/her

behavior at time t (either calculator or follower) and his/her local information,
which in turn depends on what his/her neighbors did at time t − 1. Recalling
the mean-field basic hypothesis, we assume that any neighbor intended to vote at
time t − 1 with probability 〈v〉t−1 and that i has ki ≈ 〈k〉 neighbors, where 〈k〉 is
the average connectivity of the network.f

If i behaves as a follower, what matters is the fraction of neighbors who were
willing to vote at time t − 1, (xi,t−1/ki). If i behaves as a calculator, he/she cares
about the fraction of voting neighbors with the same preferences as himself/herself
(yi,t−1/xi,t−1). Our assumptions imply that xi,t−1 ≈ xt−1 and yi,t−1 ≈ yt−1 for all i.
They also allow us to interpret xt−1 as a random variable with Binomial distribution
(〈v〉t−1, 〈k〉); and yt−1, as a random variable with Binomial distribution (1/2, xt−1).

The probability that any agent i is willing to vote at time t is hence approxi-
mated by

〈v〉t ≈ p Pr(xt−1 ≥ 0.5〈k〉) + (1 − p) Pr(0.4xt−1 ≤ yt−1 ≤ 0.6xt−1); (5)

fHere we assume that the average connectivity is an integer number, while it may be a real number.
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where the probability of voting conditional on behavior as a follower (in the first
term) can be computed as

Pr(xt−1 ≥ 0.5〈k〉) =
〈k〉∑

l=�0.5〈k〉�
Pr(xt−1 = l)

=
〈k〉∑

l=�0.5〈k〉�

(〈k〉
l

)
〈v〉lt−1 (1 − 〈v〉t−1)〈k〉−l, (6)

where �z	 denotes the ceiling integer value of z, i.e. the smallest integer larger than
z and the probability of turnout conditional on calculating behavior (second term
of (5)) as

Pr(0.4xt−1 ≤ yt−1 ≤ 0.6xt−1)

=
〈k〉∑
l=1

Pr(xt−1 = l) Pr(�0.4xt−1	 ≤ yt−1 ≤ 
0.6xt−1�|xt−1 = l)

=
〈k〉∑
l=1

Pr(xt−1 = l)
�0.6 l�∑

m=�0.4 l�
Pr(yt−1 = m)

=
〈k〉∑
l=1

(〈k〉
l

)
〈v〉lt−1 (1 − 〈v〉t−1)〈k〉−l

�0.6 l�∑
m=�0.4 l�

(
l

m

)
1
2l

, (7)

where 
z� denotes the floor integer value of z, i.e. the largest integer smaller than
z. Substituting the probabilities into (5) we obtain 〈v〉t as a function of 〈v〉t−1.
As discussed above, we are interested in the long-run emergent behavior, which is
therefore approximated by the asymptotically stable solutions of (5).

3.1. “Long-run” solutions: existence and stability

In the long run, 〈v〉t = 〈v〉t−1 = v, thus given 〈k〉 and p, the turnout intention v

verifies:

v = p

〈k〉∑
l=�0.5〈k〉�

(〈k〉
l

)
vl (1 − v)〈k〉−l

+ (1 − p)
〈k〉∑
l=1

(〈k〉
l

)
vl (1 − v)〈k〉−l

�0.6 l�∑
m=�0.4 l�

(
l

m

)
1
2l

. (8)

The right-hand side of (8) is a function of v, f(v), thus by definition any fixed
point v∗ satisfies condition (8). Fixed points reflect long-run behavior as long as they
are (locally) asymptotically stable. Therefore, we require v∗ to meet the additional
condition |f ′(v∗|〈k〉, p)| < 1 (that is, the absolute value of the slope of f evaluated
at the fixed point should be smaller than 1).

First, we address two results that can be easily shown analytically.
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Proposition 1. v∗ = 0 is always a local asymptotically stable solution for any
choice of parameters.

Proof. As the right-hand side of (8) as a function of v is a polynomial of degree
〈k〉 with an independent coefficient of zero, f(v) − v = 0 has always at least one
solution, which is v∗ = 0, whatever the values of 〈k〉 and p. To check its stability,
we consider f ′(v), which after rearranging is given by

f ′(v) = p

〈k〉∑
l=�0.5〈k〉�

(〈k〉
l

)(
(1 − v)〈k〉−l−1vl−1(l − v〈k〉))

+ (1 − p)
〈k〉∑
l=1

(〈k〉
l

)(
(1 − v)〈k〉−l−1vl−1(l − v〈k〉)) �0.6 l�∑

m=�0.4 l�

(
l

m

)
1
2l

.

In all the terms of f ′(v), v or a power of v appears, except in the term for l = 1
preceded by (1−p). But as l = 1, the factor in that term

∑�0.6 l�
m=�0.4 l�

(
l
m

)
1
2l = 0 for,

if i has only one voting neighbor, he/she never votes. Thus, |f ′(0|〈k〉, p)| = 0 < 1
and v∗ = 0 is an asymptotically super-stable fixed point.

The intuition is simple. If at some point in time no one has the intention to
vote, followers follow this behavior and calculators are not able to update, so they
keep their past behavior. The equilibrium turnout is then equal to zero.

One might wonder whether the other extreme, that is, a 100% turnout, may
also be a stable equilibrium. The answer is yes, but only if all voters are followers.
Formally:

Proposition 2. If v∗ = 1 is a local asymptotically stable solution, then p = 1.

Proof. We first show that if v∗ = 1 is a fixed point of (8), then p = 1. Suppose
that v∗ = 1 and p < 1. If v → 1 in condition (8) all the terms except those for
l = 〈k〉 are zero, thus (after rearranging) (8) becomes

(1 − p)


1 −

�0.6 〈k〉�∑
m=�0.4 〈k〉�

(〈k〉
m

)
1

2〈k〉


 = 0.

Then, as the second factor is strictly positive, it must be the case that p = 1,
otherwise v∗ = 1 would not be a fixed point, a contradiction. Next, we check the
stability of v∗ = 1 under the assumption of p = 1. Consider f ′(v) for p = 1,

f ′(v) =
〈k〉∑

l=�0.5〈k〉�

(〈k〉
l

)(
(1 − v)〈k〉−l−1vl−1(l − v〈k〉)).

In all the terms of f ′(v), (1 − v) or a power of (1 − v) appears, except those
for l = 〈k〉 and l = 〈k〉 − 1. These two terms (symplified) are equal to
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(
v〈k〉−2 − v〈k〉−1

) 〈k〉 (〈k〉 − 1) and for v = 1 also vanish. Thus, |f ′(1|〈k〉, 1)| = 0 < 1
and v∗ = 1 is an asymptotically super-stable fixed point.

These two propositions together imply that for p = 1 there is bistability, that is,
we have two different (although extreme and unrealistic) equilibrium turnouts. This
means that depending on the initial conditions either or both of these equilibria
may emerge.g

For other values of p, the solutions of f(v)−v = 0 have to be found numerically,
as the degree of the polynomial (〈k〉 ≥ 5) is too high for analytical solutions to
be obtained. We fix 〈k〉 and show the typical bifurcation diagrams taking p as the
bifurcation parameter. The function v∗(p) describes branches of fixed points and
the bifurcation diagram presents all those branches in the (p, v∗) space. When for
a value of p, say p0, several branches come together, the point (p0, v

∗) is said to be
a bifurcation point and p0, its bifurcation value. As Fig. 1 depicts, in the diagrams
of our model there can be one or two bifurcation points, at which saddle-node or
fold bifurcations emerge. In a saddle-node or fold bifurcation, two branches of fixed
points emerge. One of them is stable (points are attracting), the other unstable
(points are repelling).

An important conclusion that can be derived is that, depending on the combi-
nation of p and 〈k〉, the system may exhibit monostability, bistability or tristability.
That is, for some pairs (p, 〈k〉), the model predicts multiple equilibria. This does not
mean, however, that all the equilibria are equally likely to emerge: the equilibrium
observed depends on the initial conditions, i.e. the initial fraction of population
willing to vote (v0). The arrows in Fig. 1 describe the basins of attraction of each
asymptotically stable equilibrium.h

Consider for example the diagram of Fig. 1(c), for p between p1 and p2, where
the model predicts tristability (zero, moderate and high turnout). If the initial
condition lies strictly above the upper-dashed line, we will observe only the high
turnout equilibrium. If the initial condition lies approximately on the upper-dashed
line, both the high and moderate long-run turnouts are likely to be observed (in
this situation we can say that there exists “true” multistability). Similarly, if v0

lies strictly below the upper-dashed and strictly above the lower-dashed line, only
the moderate turnout will emerge; if it lies on the bottom-dashed line, again two
equilibria are possible (moderate and zero turnout); and, finally, if it lies strictly
below the lower-dashed line we will observe only the zero turnout equilibrium.

The stability zones in the (p, 〈k〉) space are shown in Fig. 2. The critical prob-
abilities are the aforementioned bifurcation values. We observe that

• If the connectivity is low (5 ≤ 〈k〉 ≤ 9), there is a critical probability p1 such
that for p < p1 there is a unique zero turnout equilibrium; while for p > p1 the

gIt also implies that there must be at least one more fixed point between 0 and 1 which is unstable,
i.e. a repelling fixed point. See Fig. 1.
hSee Sec. 4 for a numerical example.
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Fig. 1. Bifurcation Diagrams, v∗(p ). Solid lines depict stable fixed points; dashed, unstable fixed
points. p1, p2 are bifurcation values. Panels: (a), 〈k〉 = 6; (b), 〈k〉 = 12; (c), 〈k〉 = 16; (d), 〈k〉 = 22.

system exhibits bistability, with either zero or high turnout. An example is given
in Fig. 1(a) (〈k〉 = 6).

• If the connectivity is intermediate (10 ≤ 〈k〉 ≤ 14), there are two critical values,
p1 and p2, (0 < p1 < p2 < 1). For p < p1 the system exhibits bistability, with
either zero or moderate turnout. For p1 < p < p2, there is a unique zero turnout
equilibrium, and for p > p2 the system exhibits bistability, either zero or high
turnout. The typical diagram is shown in Fig. 1(b) (〈k〉 = 12).

• Finally, if the connectivity is high (15 ≤ 〈k〉 ≤ 25), there are two critical values,
p1 and p2, (0 < p1 < p2 < 1). For p < p1, we have either zero or moderate
turnout (bistability). For p1 < p < p2, turnout can be zero, moderate or high
(tristability), and for p > p2 there can be either zero or high turnout (bistability).
In this case, there are two kinds of bifurcation diagram (cf. Fig. 1(c) for 〈k〉 = 16
and Fig. 1(d) for 〈k〉 = 22).

Remark. Although there is no difference between the two bottom panels of
Figs. 1(c) and 1(d) in terms of stability zones, an important difference emerges
if we study the effect of gradual variations of p. Starting from one extreme of the
range of p (either 0 or 1), we let the system stabilize at the corresponding fixed point
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and gradually vary the value of p (either up or down, respectively) until another
steady state is reached, then change p again and so forth. Thus for example, when
〈k〉 is very high (between 18 and 25, as in Fig. 1(d)), if we start from p = 1 and
vary p downwards, we move along the upper stable branch (i.e. without “jumps”).
However when 〈k〉 is medium-high (between 15 and 17, as in Fig. 1(c)), we observe
a discontinuity or discrete jump at p1.

We conclude by discussing what would happen if we varied some parameters that
we have kept constant so far, namely the size of the majority and how “closeness” is
defined. Imagine that a follower is willing to vote if xi,t−1 ≥ r ki where r ∈ [1/2, 1];
while a calculator is willing to vote if (1/2 − β)xi,t−1 ≤ yi,t−1 ≤ (1/2 + β)xi,t−1,
with β ∈ [0, 1/2]. Roughly, increasing (decreasing) r (β) reduces the average turnout
and, depending on 〈k〉, changes the bifurcation diagram. In particular, when 〈k〉 is
large, instead of a diagram like Fig. 1(d), we would have one similar to Figs. 1(c) or
1(b) because when either r is close to 1 or β is close to 0, we are introducing a bias
towards non-voting behavior, the effect of which is similar to reducing connectivity
〈k〉. The opposite occurs when r (β) is reduced (increased), i.e. r and β are close
to 1/2.

4. Simulations

In this section, we run simulations to confirm our theoretical analysis and insights
about the model. The aim is to check whether the long-run solution of the mean-field
approximation describes, at least qualitatively, the long-run state of the model.i

iSoftware used: Python 2.5.2 (Copyright 2001–2008 Python Software Foundation. All rights
reserved). The codes are available at https://sites.google.com/a/ucn.cl/constanza-fosco/research.
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In one realization (or run), we generate an Erdös–Rényi network of 5 × 103

nodes and given average connectivity 〈k〉. Starting with an initial condition v0, the
behavior evolves for T = 5×105 timesteps (one individual’s update each timestep).j

The turnout of each realization is the average over the last 2×103 timesteps. This is
repeated 100 times (with the same values of p and 〈k〉), and the fixed points v∗ are
the average over all runs. Whenever the dynamics ended in different fixed points,
we calculated the different averages. For technical reasons, we have introduced the
possibility of an agent with a low probability (ε) randomly choosing whether to
participate or not. This is done to prevent the possibility of being stuck in the
extreme turnout of 0%, although this is very unlikely given that v0 is not too small.
(In other words, we introduce ε to restore ergodicity.)

The observed long-run solutions depend on the initial condition. For an ini-
tial condition of 50% of voting citizens (i.e. v0 = 0.5), the typical behavior of
the simulated diagrams, from low to high average connectivity, is exemplified in
Fig. 3. Panels (a), (b), (c) and (d) depict the typical behavior for low, medium-low,
medium-high, and high average connectivity, respectively. Then, we modify the ini-
tial condition in order to see whether other equilibria (stable fixed points) can be
observed. (See Fig. 4 for some examples.)

For the extreme case when there are only followers (p = 1), the initial condition
completely determines the equilibrium turnout: if the initial turnout is smaller
than 50%, by contagion we end up with a null turnout. By contrast, the initial
condition has almost no effect in the case of purely calculating behavior (p = 0).
The reason is simple. On the one hand, when the average connectivity is small
(5 ≤ 〈k〉 ≤ 9), the only possible equilibrium for p = 0 is zero turnout for all initial
conditions. On the other hand, even if there are two possible equilibria (zero and
moderate) for 〈k〉 ≥ 10, the initial condition would have to be extremely low for
the zero turnout equilibrium to emerge. As explained in the previous section in
the analysis of Fig. 1, for the zero turnout equilibrium to emerge, initial conditions
would have to lie below the lower dashed line (unstable or repelling fixed points).
These unstable branches are, in turn, very close to zero.

Two aspects of the simulations can be stressed:

• First, the mean-field approximation describes the actual long-run turnout
intention quite accurately. Almost all the simulated turnout points (symbols)

jThe maximum number of timesteps is quite safe, as can be observed in Fig. 6. We previously
ran several realizations starting from T = 105 and observed whether the dynamics tended to
stabilize around any particular value. Then, we have increased T until the stabilization was evident.
(Depending on 〈k〉, this occurred around T = 3 × 105.)

We also ran several simulations assuming a synchronous mechanism, i.e. all agents updating
simultaneously at each timestep (code available at https://sites.google.com/a/ucn.cl/constanza-
fosco/research). We did not find significant differences. The intuition is simple. There would be
more important differences if, under the asynchronous mechanism, agents who are network neigh-
bors were chosen to update in subsequent periods t and t + 1. Since the mechanism consists of
time independent draws and n is large, this event is very unlikely.
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Fig. 3. Turnout intention v against the probability of being follower p. Solid lines are theoretical
predictions; circles, MC simulations (v0 = 0.5, n = 5× 103, ε = 0.001, T = 5× 105). Each circle is
the average of 100 runs; each run is the average of the last 2× 103 timesteps. Panels: (a) 〈k〉 = 6;
(b) 〈k〉 = 12; (c) 〈k〉 = 16; (d) 〈k〉 = 22.

correspond to stable fixed points of condition (8) (solid lines). When there are
multiple equilibria, the initial condition v0 matters. Therefore, in general, to reach
low equilibria, an initial condition of less than 50% is needed.

• Second, with the initial condition of 50%, for some combinations of parame-
ters the system exhibits what we call “true” multistability. This is observed for
medium-low connectivity and a relatively large p, and for medium-high connec-
tivity and intermediate values of p (cf. Figs. 3(b) and 3(c), respectively).

Given that multiple equilibria are possible, what is the probability that a particular
equilibrium emerges? We approach to this question in two different ways.

First, we consider the fixed initial condition v0 = 0.5. Since repelling fixed
points for medium or high p lie around 0.5, the small noise ε perturbs the dynamics
so that some realizations reach the high turnout equilibrium (above the repelling
point), and other realizations reach the low turnout equilibrium (below the repelling
point).k Simulations suggest that the dynamics yields the high turnout equilibrium

kIt should be clear, though, that given that ε also restores the ergodicity of the system, once
a particular realization reaches an asymptotically stable equilibrium, it could eventually reach
another asymptotically stable equilibrium, but only if t → ∞.
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Fig. 4. Turnout intention v against the probability of being follower p. Solid lines are theoretical
predictions; squares (v0 = 0.3) and stars (v0 = 0.7) are MC simulations (n = 5 × 103, ε = 0.001,
T = 5 × 105). Each symbol is the average of 100 runs; each run, of the last 2 × 103 timesteps.
Panels: (a) 〈k〉 = 5; (b) 〈k〉 = 10; (c) 〈k〉 = 15; (d) 〈k〉 = 20.

with a probability increasing in p. (See in Table 1 the relative frequencies for
〈k〉 = 16.)

Second, we assume that any initial condition v0 is equally probable, i.e. v0 is
uniformly distributed between 0 and 1. Then, for each pair (p, 〈k〉), the probability
that some equilibrium emerges can be theoretically computed as the probability

Table 1. Relative frequency of different equilibria for 〈k〉 = 16, given an initial
condition of v0 = 0.5. The possible equilibria are denoted by v∗1 , v∗2 , and v∗3 , with
v∗1 = 0 < v∗2 < v∗3 . Cells contain the relative frequency (over 200 realizations) of
each equilibrium, conditional on the probability of being follower (p). Theoreti-
cally, for 0.27012 < p < 0.40287 there are three equilibria; otherwise, there are
two.

p <0.27 0.27 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

v∗1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
v∗2 1.0 0.99 0.97 0.89 0.78 0.72 0.64 0.52 0.46 0.30
v∗3 0.01 0.03 0.11 0.22 0.28 0.36 0.48 0.54 0.70

p 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 >0.6

v∗1 0.23 0.17 0.13 0.08 0.06 0.05 0.03 0.02 0.01 0.0
v∗2 0.77 0.83 0.87 0.92 0.94 0.95 0.97 0.98 0.99 1.0
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Fig. 5. Multiple equilibria and initial conditions v0. These are 1000 MC realizations (runs) for
〈k〉 = 16 and p = 0.3, with random uniformly distributed initial conditions (n = 5×103, ε = 0.001,
T = 5×105). Each circle is the average of the last 2×103 timesteps. The three theoretically possible
equilibria are v∗ = 0, v∗ = 0.2116, and v∗ = 0.6206. The repelling fixed points (0.0427 and 0.4985)
delimit approximately the correspondent basins of attraction.

that v0 belongs to its basin of attraction. For example, consider the case 〈k〉 = 16
(Fig. 1(c)), and assume that the probability of being follower is p = 0.3 (between p1

and p2). For p = 0.3, the fixed points {0, 0.2116, 0.6206} are asymptotically stable
(attracting), while the fixed points {0.0427, 0.4985} are unstable (repelling). Then
the probability of observing v∗ = 0 can be approximated by 0.0427 − 0 = 0.0427,
the probability of observing v∗ = 0.2116, by 0.4985 − 0.0427 = 0.4558, and the
probability of observing v∗ = 0.6206, by 1 − 0.4985 = 0.5015. In Fig. 5, we show
1000 realizations for random uniformly chosen initial conditions that approximately
confirm these calculations.

5. Discussion

In this section, we outline the intuition of the dynamics underlying our main results
and compare the theoretical levels of long-run turnout intention with real election
data.

Let us start with the extreme case where only follower or imitation behavior
prevails in the population (p = 1). Any agent is willing to vote if a majority of
his/her neighbors intends to turnout. This does not depend much on the connectiv-
ity but rather on the average turnout in the previous period. For an initial turnout
slightly larger than 50%, agents are likely to start out as willing to vote, and so on
in the following periods, which should increase the turnout. Contagion thus spreads
participation through the whole population and a very high turnout can be expected
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in the long run. Indeed we show that in this case the equilibrium turnout is 100%.
Similarly if the initial turnout is smaller than 50%, non-participation should spread
through the population and the equilibrium turnout should be 0%. More generally,
the qualitative effect of follower behavior on turnout is to reinforce the prevailing
conditions.

Now let us focus on the other extreme case, i.e. when there are only calculators
(p = 0). The connectivity matters for the calculus of voting. The probability of close
division at local level depends on the number of voting neighbors and also on the
preferences of those neighbors. If we assume that supporters of A and B are uni-
formly distributed, the more voting neighbors there are, the larger the probability of
close division is (though the parity effect plays a role). Qualitatively, if average con-
nectivity increases, the number of voting neighbors should also increase, and thus
the equilibrium of turnout should be higher. Note, however, that an equilibrium
turnout equal to 100% cannot arise in the presence of pure calculating behavior. The
intuition is simple. Assume that initially all agents are willing to vote. As preferences
are uniformly distributed within the population an agent is more likely to find that
elections are “close” in his/her neighborhood. However, this is not certain for all
agents, and some will change their intention towards non-participation. By contrast
a null turnout can be an equilibrium: if no one is willing to vote, no one can make
his/her calculus of voting and thus all agents maintain their prevalent behavior. In
sum, the effect of calculator behavior is less obvious than the effect of follower behav-
ior, but there seems to be a positive relation between connectivity and turnout.

Now let us consider the interplay between the two types of behavior, depending
on the initial turnout and the connectivity. We observe two kinds of self-reinforcing
dynamics, one yielding low turnout and the other high turnout:

• Low Turnout, the “Vicious Cycle”: Consider a situation with an initial
turnout below 50% and/or low connectivity so that calculators are likely not to
vote. As a consequence followers will not vote either, which decreases the number
of voting neighbors. If the calculators face smaller subsets of voting neighbors they
tend to vote less, followers continue to reinforce this behavior, and so on. In the
long run, followers are likely not to vote at all, while the turnout of calculators
may be moderate or null. The process thus stabilizes around zero turnout or,
under some conditions, at a positive but moderate turnout (below 50%).

• High Turnout, the “Virtuous Cycle”: Next, consider a situation with an ini-
tial turnout above 50% and/or high connectivity so that calculators are likely to
vote, and push the average voting above 50%. In this case, followers are likely to
vote, calculators have many voting neighbors, which increases the probability of
a close division, and thus vote, followers reinforce this outcome, etc. The long-run
outcome will be a high turnout.

Of course, both cycles are mediated by the probability of an agent being a fol-
lower, and a cycle may start because followers reinforce an increasing or decreasing
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Fig. 6. Evolution of turnout intention (v) conditional on behavior. These are two realizations
for n = 5 × 103; 〈k〉 = 16, p = 0.35, initial condition v0 = 0.5 and T = 5 × 105. One realization
(upper panel) converges to a high turnout equilibrium, the other (bottom panel) to a low turnout
equilibrium. Each 1000 steps, we calculate the fraction of times a calculator (follower) agent votes
(symbols). Full lines are theoretical predictions cf. Eqs. (6) and (7) in Sec. 3, respectively.

turnout or because calculators increase or decrease overall participation. Moreover
both cycles can be observed on networks with identical numbers of agents, param-
eters, and initial turnout. In Fig. 6, we show an example of the evolution over time
of the probability of voting conditional on each type of behavior. These are two
realizations for a network of n = 5× 103 agents and average connectivity 〈k〉 = 16;
a probability of being a follower of p = 0.35, and an initial turnout of 50%. Every
1000 steps we plot the fraction of times that a calculator votes and a follower votes.
As the average connectivity is medium-high, calculators tend to vote, but the key
is whether or not they are able to maintain an average turnout above 50%. If so, a
virtuous cycle starts and if not, a vicious cycle starts. For the realization that leads
to the low turnout equilibrium, the calculator turnout falls below 50%, the followers
have no incentive to vote, and thus the vicious cycle operates. In the high turnout
equilibrium, initially driven by calculators, the followers tend to vote en masse,
and the virtuous cycle starts. As we shown in the previous section, this is not an
exception. There are many combinations of parameters that lead to non-uniqueness
of the turnout equilibrium.

Finally, let us focus on the levels of the equilibrium turnout and compare them
with the turnout that we observe in real elections. The international Institute for
Democracy and Electoral Assistance (International IDEA) has a voter turnout web-
site on which statistics are available on political participation.l From these data, it

lSee http://www.idea.int/vt/index.cfm.
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Fig. 7. Regions where the predicted turnout rates are realistic. The four regions depict the
combinations of average connectivity 〈k〉 and probability of being follower p that yield realistic
long-run turnout rates. The non-monotonic shape of the borders is due to the fact that 〈k〉 is
assumed integer and the subsequent parity effect.

can be said than more than half of the countries listed have turnouts of between
60% and 80%, and four-fifths have turnouts of between 50% and 90%. The countries
with turnouts of more than 90% are usually countries where voting is compulsory
(such as Australia and Belgium).

The question is whether our model can lead to equilibria compatible with real
data, that is, with turnout rates between 50% and 90%. The answer is yes, but not
for all values of our parameters. In Fig. 7, we plot the regions of pairs (p, 〈k〉) with
which we obtain realistic turnout rates. These rates are one of the two or three
equilibria that the model predicts, specifically the highest one. Thus, it should
be clear that these realistic turnout rates could arise if the dynamic process of
turnout formation stabilizes around the highest equilibrium, given the adequate
initial condition.

• A turnout rate of between 80% and 90% can be obtained for all connectivity
levels 〈k〉. Roughly speaking, the more densely connected the network is, the
lower the probability of being a follower p needs to be, but at the same time,
the range of possible values of p increases. For instance, if 〈k〉 = 5, p should be
between 0.75 and 0.82; while if 〈k〉 = 25, it should be between 0.43 and 0.7.

• Something similar occurs with a turnout of between 70% and 80%. The difference
is that all the possible values of p are smaller than in the previous case.

• A turnout of between 60% and 70% can be obtained for low levels of probability
of being a follower and connectivity levels greater than five.

• A turnout of between 50% and 60% can be obtained for very low levels of prob-
ability of being a follower and connectivity levels greater than 9. Note that due
to the parity effect, for 〈k〉 = 11, 13, 15, the theoretical turnout is always greater
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than 60%, and that for 〈k〉 = 10, 12, 14, 16, 17, the turnout in this region is greater
than 55%, meaning that only for 〈k〉 ≥ 18, would turnouts of close to 50% be
observed.

For realistic turnout rates to be obtained, the probability cannot take extreme
values: for p = 1, we have either 0% or 100% participation, while for p = 0,
the turnout is below 60%, even for high connectivity. Realistic levels of turnout
are obtained either for a large proportion of follower behavior and not very densely
connected networks, or for more connected networks and a larger fraction of adap-
tive calculating behavior.

6. Conclusion

We present a simple model to explain turnout rates under the assumption that
before any election takes place, i.e. during the campaign, citizens dynamically form
their intention to vote as a consequence of their social interactions. The pattern of
interactions is fixed and modeled as an Erdös–Rényi random network and hence
it can be characterized by its average connectivity. Individuals may simply follow
the majority behavior (and vote or not) or they may behave as local adaptive cal-
culators. In the latter case, they tend to vote if they perceive that the election is
“close” in their neighborhood. These two behaviors intend to capture what empir-
ically has been found to be the main determinants of voting behavior with respect
to the influence of the social neighborhoods: contagion or imitation and the effect
of balanced/unbalanced opinion environments in political discussions.

We study the long-run average turnout intention, which in this model repre-
sents the turnout observed in an election. When all agents behave as pure followers,
long-run turnout rates are very unrealistic (either all vote or no-one does) and con-
nectivity plays no role. Indeed, this unrealistic result holds for dynamics driven by
some contagion or imitation effect whenever the possibility of noisily (or reversed)
decisions is small enough. The introduction of calculating behavior then has two
interesting effects. On the one hand, the resulting turnout rates are in general more
realistic. On the other hand those outcomes depend on the average connectivity
of the network. Depending on the combination of values of the two key parame-
ters (average connectivity and the probability of being a follower/calculator), the
system exhibits monostability (zero turnout), bistability (zero turnout and either
moderate or high turnout) or tristability (zero, moderate and high turnout). When
there is more than one possible equilibrium, different initial conditions converge to
different stable stationary states. In some cases, the same initial condition yields
different equilibria, so turnout eventually becomes unpredictable.

For a wide range of the parameters values, this model predicts realistic turnout
rates, i.e. comparable to the average turnout observed in the real-world elections.
This yields interesting normative questions about the possibility of improving the
turnout rates by somehow impinging on the key parameters of the model. The type
of behavior (mediated by p) seems difficult to assess and therefore to “control”.
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Instead, given our interpretation, increasing the average connectivity would mean
increasing the average size of the individual’s group of influence. This would be
achieved, for example, through the use of communication channels which take
explicitly advantage of the structure of social networks (internet social networks
or mobile phone). This is consistent with the observation in recent elections that
the use of social networks and other Web 2.0 resources is a key factor in increasing
turnout (at least for the candidates that use these media in their campaign).

In our model, citizens have fixed preferences for two parties and their decision is
whether to vote or not. There is no correlation among neighbors’ preferences. This
is not completely consistent with voting literature, where it is found that citizens
tend to segregate in groups of identical preferences: citizens with identical political
preference are more likely to be connected. In our setup, this segregation would
only decrease turnout. To see why, consider an agent with calculating behavior who
shares the same preference with all his/her neighbors. Then he/she will never vote.
This would induce a trend of non-participation that would spread through the whole
population by contagion. The fact that segregation depresses turnout was found
previously in [11]. Further research could include the co-evolution of preferences
and turnout intention, perhaps assuming that a fraction of the population does not
have clear preferences for one particular party or may change its preference. This
would reflect what was found in [46]: half of the electorate switch their decision
at least one over three ballots. Differences between supporters of the two parties
could also be introduced, that is, the initial fraction of supporters may differ for
one party or the other.
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