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Abstract
We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure pco(L)
described, for large widths, by the Kelvin equation psat − pco(L) = 2σ cos θ/L, where θ is the contact angle at the
side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped
end θcap; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is
first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a
complementary Kelvin equation 1p(L) = 2σ sin θcap/L. On approaching the wetting temperature of the capillary
cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling
shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and
experimental results showing the continuous nature of condensation for θcap = 0 and the influence of corner
menisci on adsorption isotherms are presented.

(Some figures may appear in colour only in the online journal)

The phase equilibria of confined fluids may be substantially
different from that occurring in bulk [1]. Consider a simple
fluid (or Ising magnet) between identical parallel walls,
a distance L apart. In three dimensions (3D), the fluid
exhibits coexistence between liquid and vapour-like phases
but the first-order boundary and critical point are shifted
(see figure 1). Below the bulk critical temperature Tc, vapour
condenses at a pressure pco(L), less than that at saturation psat.
For large L, the shift δpco(L) = psat − pco(L) is described by
the Kelvin equation [2–5]

δpco(L) =
2σ cos θ

L
+ · · · (1)

where σ is the surface tension and θ is the contact angle. This
equation is usually derived by balancing free energies [4],
but also has a simple geometrical interpretation; it identifies
the radius R = σ/δp of a circular meniscus that meets each
wall at an angle θ [6]. Coexistence ends at a capillary critical
point, where the distinction between the phases vanishes and
the correlation length diverges. Finite-size scaling implies that
the capillary critical temperature Tc(L) satisfies [7, 8]

Tc − Tc(L) ∝ L−1/ν (2)

where ν ≈ 0.63 is the critical exponent of the 3D bulk
correlation length. The amplitude of the shift depends weakly
on the surface fields, implying that the wetting properties
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Figure 1. Schematic illustration of the location of first-order
capillary condensation δpco(L) for a fluid between parallel walls. Tw
is the wetting temperature of the substrate.

Figure 2. Overlaid adsorption (black) and desorption (red)
isotherms (T = 85 K) for argon on the sculpted silicon substrate
shown in the inset. The grooves have width L ≈ 90 nm and depth
D ≈ 500 nm.

of the walls are not crucial. This is not the case if gas
is preferentially adsorbed at one wall and liquid at the
other, for which interfacial localization determines phase
coexistence [9–12].

Modern techniques allow the fabrication of structured
substrates in the laboratory, which has led to investigations
of the influence of geometry on adsorption [6, 13–16]. For
example, the inset of figure 2 shows an array of parallel
grooves covering an area of about 1 cm2 fabricated using
nanoimprint lithography, wet etching and plasma etching in an
inductively coupled plasma [17]. If the depth D is much larger
than the width L, it is natural to expect that the adsorption is
similar to that of the parallel plate geometry. However, recent
theoretical studies reveal a surprising feature: for walls that are
completely wet (θ = 0) the condensation is continuous rather
than first-order [18–22]. This change is due to the formation
of a meniscus whose position moves from the cap to the open
end as p is increased. An experimental verification of this is
illustrated in figure 2, which shows the final portion of an
adsorption isotherm taken with a torsional microbalance [23].
The attached sample is a thin silicon wafer with a side of about
1 cm and patterned with the rectangular wells shown in the
inset. The vertical axis represents the moment of inertia of
the adsorbed film as a function of the relative vapor pressure
p/psat of argon at T = 85 K. The red symbols indicate the
experimental adsorption isotherm (adding gas to the sample

Figure 3. Total magnetization (in arbitrary units) versus bulk field h
in a capillary of L = 20 and D = 200 (in units of the bulk correlation
length) for different partial and complete wetting conditions at the
side walls and cap. The numerical values of the bulk field at
condensation (CO) and the spinodal (SP) are shown as vertical lines.

cell), while the black symbols indicate the experimental
desorption (removing gas). The capillary continuously fills
with liquid at a pressure close to that predicted by the Kelvin
equation with no hysteresis.

This leaves us with a number of questions: what happens
if the contact angle θ is non-zero, or if the cap is made
of a different material? The first point to recognize is that
in a macroscopically deep groove there are two distinct
transitions: condensation as p → pco(L)−, and evaporation
as p → pco(L)+. Here, we use mean-field theory, effective
Hamiltonian methods and scaling arguments to determine the
order of these transitions, general critical behaviour and phase
boundaries. We concentrate on systems with short-range
forces and, for simplicity, choose walls that exhibit critical
wetting. However, similar behaviour occurs for first-order
wetting and long-range forces [23]. We have investigated the
phase equilibria in a periodic array of grooves using a Landau
theory similar to that used for the parallel plate geometry [7,
8, 10]. We use a magnetic notation, and determine the
magnetization m(z, x) by minimizing

F[m] =
∫∫

dx dz
(

1
2 (∇m)2 +8(m)− mh

)
+ Fs (3)

where 8(m) = (m2
− t)2/8, t ∝ Tc − T , and h is the bulk

field (analogous to p − psat). Thus, the bulk magnetization is
m0(T) = ±

√
t for T < Tc. The surface integral along the walls

is Fs =
∫

ds(cm2/2 − hsm), where the surface enhancement
c is larger than the inverse bulk correlation length, ensuring
critical wetting boundary conditions, and the surface field is
hs = h1 except at the cap (hs = hcap). These two values of
hs lead to distinct contact angles: θ at the side walls and
θcap at the cap. In particular, the wetting temperatures for
the side and capped walls are determined by cm0(Tw) = h1
and cm0(T

cap
w ) = hc, respectively [24]. Far above the capillary

opening, the magnetization is fixed to −m0, modelling a bulk
vapour.
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Figure 4. Schematic condensation phase diagrams for capillaries
with the same walls as in figure 1 but different caps: (a) the cap is
the same material as the walls, (b) the liquid completely wets the
cap and (c) the liquid wets the cap at a higher temperature than the
side walls. Solid, dashed and dotted lines represent first-order
condensation, continuous condensation and spinodal lines,
respectively.

Our results are as follows.
(1) The order of the capillary condensation is determined

by the wetting properties of the capped end. Macroscopically,
the transition is first-order if the liquid partially wets the cap,
while it is continuous if θcap = 0. The wetting properties
of the sides only determine δpco(L), as for the parallel
plate geometry. This is illustrated by the different adsorption
isotherms in figure 3. The corresponding condensation phase
diagrams are shown in figure 4, where the dashed and solid
lines lie on the condensation curve for the parallel plate
geometry of figure 1. The dashed lines represent continuous
condensation, and extend from Tc(L) to T∗(L) ≈ Tcap

w , while
the solid lines below T∗(L) represent first-order coexistence.
Examples of coexisting phases are shown in figure 5 and show
separate menisci forming at the corners.

(2) The gas phase has a metastable extension ending
in a spinodal line ps(L) (figure 4). This instability has
a geometrical interpretation similar to that of the Kelvin
equation, and occurs when the circular menisci coalesce in the
middle of the groove (see figure 5(c)). Provided ps(L) < psat,
the width of the metastable region,1p(L) = ps(L)−pco(L), is

1p(L) =
2σ sin θcap

L
+ · · · (4)

and accurately describes the numerically determined spinodal
for L larger than about 20 bulk correlation lengths. Note that

Figure 5. Numerically determined magnetization profiles for a
capillary with θ = θcap = 46.6◦, L = 20 and D = 200 (in units of
the bulk correlation length). Here, (a) and (b) are the coexisting
vapour-like and liquid-like phases at p = pco(L), while (c) and (d)
correspond to the gas and liquid spinodals, respectively.

1p(L) vanishes as T → Tcap
w , signalling that the condensation

becomes second-order. When the walls and cap are the same,
capillary condensation is continuous above Tw and first-order
below it. However, if Tcap

w < Tw, the first-order line is reduced,
and is eventually suppressed when θcap = 0. On the other
hand, if Tcap

w > Tw, the continuous condensation line is
reduced and is suppressed when θcap ≥ π/2, recovering the
condensation phase diagram of the parallel plate geometry.
Equation (4) is only valid for T > Tf, where Tf is the corner
filling temperature at which θcap + θ = π/2 [25–29]. For
T < Tf, the adsorption at the corners is microscopic [23].

(3) On approaching T∗(L) along pco(L), the corner
menisci merge to form a single stable meniscus, the
height of which, `m, diverges continuously. Thus, T∗(L)
acts as a wetting temperature for the unbinding of the
meniscus [30]. At mean-field level, the shift of T∗(L) from
Tcap

w is exponentially small in the slit width, and `m ≈

−ξl(L) ln(T∗(L) − T). Here, ξl(L) is the correlation length of
the capillary liquid phase, although, away from the vicinity
of Tc(L), this is indistinguishable from the correlation length
of the bulk liquid ξl. However, these mean-field predictions
are incorrect, due to crossover from 3D to 2D unbinding.
This can be understood using an interfacial model H[`] =∫

dy(σeff
2 (d`/dy)2 + Wcap(`)), where `(y) is the height of

the meniscus along the groove. The bending of the meniscus
along the groove is resisted by an effective stiffness σeff ≈ σL,
while the binding to the cap is modelled by an attractive
potential Wcap of depth σLθ2

cap and range Lθcap. Solution of
this model shows that the meniscus unbinds when Lθ∗cap ≈√

kBT/σ . This is equivalent to

Tcap
w − T∗(L) ∝ (ω−

1
2 L)−1/ν‖ + · · · (5)

where ω = kBT/4πσξ2
l and ν‖ is the exponent of the

parallel correlation length for 3D short-range critical wetting,
ξ‖ ≈ (T

cap
w − T)−ν‖ . In Ising model simulations [31], the

observed value of this exponent is ν‖ ≈ 1.3, which is slightly
larger than the mean-field prediction but much smaller than
the non-universal, ω dependent, value predicted by simple
interfacial models [30]. This is likely due to non-local
interfacial interactions [32, 33]. The wetting temperature
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Figure 6. Detail of the experimental adsorption isotherm of figure 1
close to continuous condensation. The solid lines show the
theoretical prediction for the adsorption arising from the wetting
films alone (lower curve) and including the additional contribution
from the corner menisci (upper curve).

shift (5) may be an alternative route to measuring ν‖ in
Ising model simulation studies. As T → T∗(L), the meniscus
height changes from the 3D-like logarithmic growth to `m ∝

(σL (T∗(L) − T))−1 although, for wide slits, the asymptotic
regime will be small. The scaling law (5) refers to the limit
L→∞. However, T∗(L) tends to Tc(L) for fixed L, as θ →
π/2. This can be understood from surface scaling theory [7,
34]; we find Tc(L) − T∗(L) ∝ Lφh2

cap as hcap → 0. Here,
φ = (211 − 1)/ν, where 11 ≈ 0.45 is the 3D surface gap
exponent, implying φ ≈ −0.16. The power-law dependence
on L means that T∗(L) is determined by Tcap

w for all but the
weakest fields hcap.

(4) The continuous condensation occurring for Tc(L) >
T > T∗(L) exhibits different regimes, showing the influence
of geometry, intermolecular forces and fluctuation effects as
p → pco(L). At a macroscopic level, the adsorption arises
from the two corner menisci, which merge exactly at p =
pco(L) and precipitate the filling of the capillary. The easiest
way of incorporating interactions is to combine this with the
adsorption from the microscopic wetting films which coat
the substrate [6]. Indeed, away from the immediate vicinity
of the condensation transition, this accurately reproduces the
experimental adsorption isotherms (see figure 6). In a very
narrow regime sufficiently close to pco(L), the menisci merge
forming a single meniscus. This occurs when the menisci are
at a distance ξ‖ apart, corresponding to the parallel correlation
length for the wetting layer of the cap. At mean-field level,
this occurs for pco(L)− p�

√
σ 2ξl/L3, and the height `m of

the single meniscus diverges as

`m ≈ −ξl ln(pco(L)/p− 1) (6)

where the logarithmic growth is characteristic of short-range
3D complete wetting transition. Beyond mean-field and
even closer to condensation (pco(L) − p � (kBT)2/σL2),
fluctuations in the height of the meniscus along the groove
lead to crossover to 2D-like complete wetting and alter this
to `m ∝ L−2/3

|pco(L) − p|−1/3 [20]. The line of continuous
condensation ends at Tc(L), where the meniscus disappears,
and there is critical adsorption from the long-range decay of
the profile away from the cap.

(5) In a macroscopically deep groove, the evaporation
transition is continuous for all T and independent of the
cap properties. However, the divergence of the meniscus
depth ˜̀m = D − `m from the top of the groove is very
different above and below the wetting temperature Tw.
Mean-field calculations show that the meniscus unbinds as˜̀m ≈ −ξg(L) ln(p/pco(L)− 1), where the coefficient ξg(L) is
the correlation length of the confined gas phase. Far below
the wetting temperature of the side walls, ξg(L) is similar
to the correlation length of the bulk gas. However, above
the wetting temperature, ξg(L) is determined by the parallel
correlation length of the complete wetting layers [35], so that
ξg(L) ≈

√
σξl/δp. On making use of the Kelvin equation, it

follows that

˜̀m ≈ −

√
ξlL

2
ln (p/pco(L)− 1) (7)

compared with (6) for the condensation side. Therefore,
for θ = θcap = 0, the adsorption isotherms will be strongly
asymmetric about pco(L).

We mention that similar phenomena occur in grooves of
finite depth D. When D � L the transition order is again
determined by the wetting properties of the capped end.
Above a certain temperature T∗(L,D) . T∗(L), the capillary
fills abruptly but continuously as p is increased through pco(L)
(figure 3(a)). Below this temperature, there is coexistence
for p ≈ pco(L) between two distinct phases in which the
meniscus is either pinned near the groove bottom or near
the top. The coexisting states become indistinguishable at
T∗(L,D), which represents a critical point (belonging to
the 2D Ising universality class) rather than the meniscus
unbinding transition occurring for the infinitely deep groove.
The phase equilibrium is therefore very similar to that
occuring for fluids between competing walls [9–12], where
the meniscus plays the role of the delocalizing interface, but
occurring in one dimension lower. When the grooves are no
longer deep, D ≈ L, one may lose first-order condensation
entirely, similarly to studies of wetting on corrugated and
striped walls [36–38].

Finally, if we consider a single groove instead of an
array, similar phenomena occur although, of course, phase
coexistence and criticality are rounded beyond mean-field
because the geometry is pseudo-one-dimensional. Thus, for
T . T∗(L,D), domains will form along the groove in which
the meniscus is pinned to the bottom or top. However, the
characteristic size of these domains scales as eσLD/kBT , so
that the rounding of the first-order condensation will be
unobservable.

In summary, we have shown that the condensation of
vapour in a capillary groove is controlled by the wetting
properties of the cap. The location of the transition is given
by the Kelvin equation, but its order is determined by a
complementary result, due to the behaviour of corner menisci.
We anticipate that the shape or roughness of the cap is also
important, and that this may allow the further tuning of the
transition order.

CR and AOP acknowledge support from grants MODELICO
(Comunidad de Madrid) and FIS2010-22047-C05-04 (Minis-
terio de Educación y Ciencia).
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