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Abstract
Hard models for particle interactions have played a crucial role in the understanding of the
structure of condensed matter. In particular, they help to explain the formation of oriented
phases in liquids made of anisotropic molecules or colloidal particles and continue to be of
great interest in the formulation of theories for liquids in bulk, near interfaces and in
biophysical environments. Hard models of anisotropic particles give rise to complex phase
diagrams, including uniaxial and biaxial nematic phases, discotic phases and spatially ordered
phases such as smectic, columnar or crystal. Also, their mixtures exhibit additional interesting
behaviours where demixing competes with orientational order. Here we review the different
models of hard particles used in the theory of bulk anisotropic liquids, leaving aside interfacial
properties and discuss the associated theoretical approaches and computer simulations,
focusing on applications in equilibrium situations. The latter include one-component bulk
fluids, mixtures and polydisperse fluids, both in two and three dimensions, and emphasis is put
on liquid-crystal phase transitions and complex phase behaviour in general.

Keywords: liquid crystals, phase transitions, hard-body models

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Liquid-crystalline phases

Common states of matter are gas, liquid and crystal. Therefore,
the term ‘liquid crystal’ seems, in principle, a contradiction in
itself. However, liquid crystals have been known since their
discovery by Reinitzer [1] 125 years ago. The name suggests
an intermediate behaviour between liquid and crystal and,
in fact, this is the case: liquid crystals are states of matter
that exhibit liquid and crystal properties simultaneously. They
can flow and form droplets (liquid-like properties) but, at the
same time, they present some kind of long-range molecular
order (orientational and sometimes also partial positional
order) which translates into anisotropic macroscopic optical,
electric and magnetic properties and also elasticity (crystal-like
properties). Liquid crystals are then mesophases, i.e. phases or

states of matter intermediate between liquid and crystal phases
and their properties have been used with advantage in many
technological applications (for an introduction to the subject
see e.g. [2–7]; for a review on applications see the excellent
series of books edited by Bahadur [8]).

The common feature of all liquid-crystalline phases is that
they exhibit orientational order. Liquid crystals are formed by
anisotropic molecules. Orientational long-ranged order means
that molecules align, on average, along a particular direction,
called the director, specified by a unit vector n̂ referred
to the laboratory-fixed reference frame. Distinction between
different liquid-crystal phases comes from the occurrence of
partial positional order. A nematic (N) liquid crystal is a
mesophase characterized by the presence of orientational order
but the lack of positional order; therefore, molecular centres of
mass are completely disordered, see figure 1(a). In a smectic
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(a) (b) (c) (d)

Figure 1. Schematic of four liquid-crystal phases. (a) Nematic. (b)
Smectic A. (c) Smectic C. (d) Columnar.

(S) phase, the centres of mass of the molecules are arranged
in liquid-like layers, so that the system shows 1D positional
order4. In the case that the layers are perpendicular to the
director, figure 1(b), the smectic is called smectic A (SA). In a
smectic C phase (SC), the liquid layers are tilted with respect to
the director, see figure 1(c). Disc-like particles usually form N
phases and, at higher densities, they tend to form the so-called
columnar (C) phase, which consists of a regular 2D array of
liquid-like columns, figure 1(d). A complete description of the
different mesophases can be found, e.g. in [2–4].

1.2. The role of hard interactions in systems of isotropic
particles

In simple atomic or effectively spherical molecular systems
interacting through physical interactions (no chemical bonds),
for example argon or methane at sufficiently high temperatures,
the repulsive part of the two-body interaction at short distances
plays a crucial role in determining the local liquid structure.
In particular, the radial distribution function g(r), which gives
the probability of finding a particle at a distance r from a given
particle at the origin, can be reasonably approximated by that of
a system of hard spheres (HS), a system of spheres interacting
via overlap interactions (no configurations involving overlap
of spheres are allowed in the partition function). Moreover,
computer simulations first [9–11] and theory later [12] showed
that a HS system undergoes a first-order freezing transition
when the packing fraction (fraction of volume occupied by
spheres) of the liquid is equal to ηl = 0.494. This liquid
coexists with a face-centred cubic (f.c.c.) solid of packing
fraction ηs = 0.545. This result is a bit surprising because,
on a first look, it is not easy to accept that a system with no
attractions can freeze. The explanation, of course, relies on
entropy: when the packing fraction is high enough, spheres as
a whole have more free volume available (hence entropy) in
the ordered than in the liquid phase.

In summary, hard-core interactions in simple systems can
qualitatively explain most of their equilibrium properties; the
phenomenon of condensation from a vapour (liquid-vapour
transition) and the dependence of freezing with temperature
are due to the attraction between particles and can be treated
perturbatively. It is therefore not surprising that perturbation
theories for simple systems have given excellent results, even
with quantitative agreement, in the theory of condensed matter,
not only for the liquid [13], but also for the solid phase [14].

4 From the translational point of view, a smectic-A phase consists of a stacking
of liquid-like planes perpendicular to the director.

1.3. Hard interactions in systems of anisotropic particles

One of the first questions one can ask about the equilibrium
properties of liquid crystals concerns the role of anisotropic
hard repulsions between particles in determining the structure
of the system. Is that role similar to that of HS in the
case of simple liquids? The answer to this question is more
complicated than in the case of simple liquids, mainly because
of the coupling between orientational and positional order.
See [15] for an early review about the role of hard particle
models in liquid-crystalline phases.

It soon became clear, thanks to the seminal paper of On-
sager [16], that a system made solely of anisotropic bodies
interacting through hard interactions, e.g. hard spherocylin-
ders (HSC), undergoes an entropy-driven first-order isotropic-
nematic transition when its packing fraction is high enough.
There is an intuitive argument to understand this transition.
Imagine that you want to accommodate needles or matches
into a box. If there are only a few matches, you can arrange
them as you want and you will have a completely disordered
system of needles, i.e. an isotropic phase. But when many
needles have to go into the box they will have to be oriented in
an ordered arrangement in order to fit into the box. Therefore,
packing considerations require the equilibrium phase at high
packing fraction to be a nematic phase.

An equivalent argument to explain the nematic-smectic
transition at yet higher packing fraction is more subtle. If we
consider the nematic-smectic transition as due to the generation
of a 1D positional-order wave in an already perfectly aligned
nematic, then we have to address additional questions such
as the role of the specific particle shape. It is not enough, as
in the case of the isotropic-nematic transition, to demand a
sufficiently anisotropic particle shape since, for example, a
fluid of parallel hard ellipsoids (HE) does not exhibit a smectic
phase, while one made of parallel HSC does when the length-
to-breadth ratio is high enough.

In fact, does the fact that a given model system possesses
some particular stable liquid-crystal phase mean that a hard
interaction is responsible for the stability of such a phase?
Even though many features of phase behaviour can be
explained by hard models, the general answer to this question
is no. But the possibility to fabricate tailor-made colloidal
particles that behave close to size-monodisperse hard bodies
with virtually any shape has revitalized hard-particle models
and their research and applications. Also, because virus
particles are completely monodisperse and their interactions
are known with a high accuracy, they are ideally suited for
testing theoretical ideas and results. Granular matter made of
macroscopic grains that interact through overlap interactions
can also be modelled by hard models where particles interact
elastically. Systems of vibrated grains can in some regimes
behave like hard particles that explore phase space with a
Boltzmann probability and some ordered patterns obtained in
these systems resemble liquid-crystal phases.

In summary, hard-body models in the theory of liquid
crystals may play a role similar to that of the HS model in
the theory of simple fluids. Moreover, carefully prepared and
stabilized colloidal particles may behave essentially as hard
bodies and, therefore, hard-body models for liquid crystals can
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be directly tested experimentally using anisotropic colloidal
particles. Vibrated granular matter made of anisotropically-
shaped grains is another field of exploration for hard models.
The applications of the statistical mechanics of mesophases for
hard models are very numerous in many fields.

1.4. Scope of this review

In this paper we review hard-body models as applied to the
study of the equilibrium properties of liquid-crystal phases.
The scope of the review is on fluids made of convex hard
bodies, with emphasis on liquid-crystalline phases and phase
transitions. Only bulk properties are covered; interfacial prop-
erties and inhomogeneous systems are reviewed in sepa-
rate work [17]. Theories and results for the bulk isotropic
phase will not be reviewed (excellent reviews exist; see e.g.
Nezbeda [18]). Nor will dynamical properties and lattice
models be mentioned. Also, the topic of flexibility, so
important for real liquid-crystal-forming molecules, filamen-
tous viruses and other colloidal particles, is left aside. An enor-
mous volume of literature is devoted to the theory and computer
simulation of the liquid-crystal phases of hard-model fluids; as
a consequence and in order to present a manageable exposition
of the subject, we have referenced only our personal choice of
representative literature. Experimental results are mentioned
insofar as they help to illustrate, motivate or support studies
on hard-body fluids. Some reviews partially cover this subject
[19–22]. For more specific resources on liquid crystals we refer
the reader to the works cited in the introduction.

2. Hard-body models

Let us consider a collection of N particles in a volume V . Let
r(n) be the centre of mass position of the n-th particle with
respect to the laboratory frame and {Ω̂ (n)

i }, with i = 1, 2, 3, a
set of three unit vectors describing its orientation with respect
to the same frame. If the particles are hard bodies, the potential
energy of an arbitrary configuration of the particles can be
strictly written as a sum of two-body potentials,

U(r(n), {Ω̂ (n)
i }) =

∑
n�=m

φ(rnm, {Ω̂ (n)
j }, {Ω̂ (m)

k }),

rnm ≡ r(n) − r(m) ≡ rnmr̂nm. (1)

The two-body potential φ has a simple structure:

φ(rnm, {Ω̂ (n)
j }, {Ω̂ (m)

k })

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞, rnm < σ(r̂nm, {Ω̂ (n)
j }, {Ω̂ (m)

k })
(n and m overlap)

0, rnm > σ(r̂nm, {Ω̂ (n)
j }, {Ω̂ (m)

k })
(n and m do not overlap)

(2)

The function σ(r̂nm, {Ω̂ (n)
j }, {Ω̂ (m)

k }) is the so-called contact
distance, which gives the minimum distance between two
non-overlaping particles at fixed orientations and fixed relative
interparticle vector. This function in fact is sufficient to define
the particle model.

Since the probability of a given configuration is
proportional to the Boltzmann weighting factor exp (−βU),

Figure 2. Some popular models of hard body. From left to right:
spherocylinder, cylinder, ellipsoid and cut sphere.

where β = 1/kT , with k Boltzmann’s constant and T

temperature, all permissible configurations of the N -particle
system will have zero potential energy and the Boltzmann
factor is independent of T . The average internal energy
E at temperature T only contains the kinetic contribution,
E= 3NkT/2 and the equilibrium state of the system, given
by δF = 0, δ2F > 0 (where δ indicates variations with
respect to particle configurations at fixed density ρ0 and T ),
is independent of the thermal energy kT , which appears
as an irrelevant scaling factor in the free energy F/kT =
3N/2−S/k, where the entropy S only depends on the density
ρ0 = N/V . The physical behaviour is solely controlled by the
entropy, which is related to the volume of the configurational
space (hence actual volume) accessible to particles. One of the
fascinating properties of hard-body systems is that all ordered
stable arrangements of particles have an entropic origin. The
only relevant parameter in the canonical ensemble is the density
ρ0 or, equivalently, the packing fraction η, defined as the
fraction of volume occupied by particles; in a monodisperse
system, η = ρ0v, where v is the volume of the particles.

2.1. Particles in 2D and 3D

A virtually infinite number of hard-particle models can be
defined. Here we focus on convex hard particles characterized
by a shape and two aspect ratios. For bodies of revolution only
one aspect ratio, κ = l/d , measuring the length (l) over width
(d) ratio, is necessary. Prolate bodies (‘rods’) have κ > 1,
while oblate bodies (‘platelets’) have κ < 1. In the limit
κ → ∞ all particles are equivalent and the virial coefficients
tend to the same values. The limit κ → 0 corresponds to
infinitely thin platelets; here not all particles are equivalent and
the cross section of the particles is crucial in characterizing the
virial coefficients and statistical mechanics of the fluid.

A popular model for prolate uniaxial particles is the hard
spherocylinder (HSC), figure 2: a cylindrical rod of length L
and diameterD capped by a hemisphere of the same diameter
at each end. The aspect ratio in this case is κ = (L + D)/D.
This was the particle model used by Onsager [16] in his seminal
paper on ordering of hard rods. Onsager considered the limit
κ → ∞ (hard needles), where the exact shape of the rod is not
important. This limit is still used very often but is not realistic.
In the case of a finite and more realistic value of κ (comparable
to that of liquid-crystal molecules or colloidal particles), the
particle shape plays a role. The limit L = 0 corresponds to
the hard sphere (HS).

A second popular model is the hard ellipsoid (HE), with
axes lengths a, b, c, figure 2. If all three axes are different,
a �= b �= c, the model represents a biaxial particle. If the parti-
cle has symmetry of revolution, two lengths are identical, say
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b = c, only a single aspect ratio κ = a/b is relevant and we
have a model for a uniaxial particle. A numerically convenient
approximation for the HE model is the hard Gaussian overlap
model (HGO) [23]. In the limit κ → ∞ the physical properties
of all of these fluids coincide but for even moderate aspect ra-
tios virial coefficients are very close [24–26]. Other models for
prolate particles include hard cylinders (HC, figure 2), chain
spheres, fused spheres, rectangular prisms (boards) and com-
binations of all these. For example, banana-shaped particles
meant to reproduce biaxial nematic phases can be constructed
by attaching two rods by their ends with a fixed angle between
them [27]. When considering rigid models for simple phases,
however, the most obvious choices are HSC, HE, HGO and HC.

In the case of oblate particles, meant to reproduce molec-
ular or colloidal discotic-forming liquid crystals, there is also
a great variety of models. In his paper, Onsager [16] used in-
finitely thin discs (i.e. infinitely flattened cylinders) to compute
the ordering properties of model discotic particles. In real sys-
tems the particle thickness may be small compared to the width,
but in any case finite. An advantage of the HE and HGO models
is that they can also be used for oblate particles when one of
the lengths is very small compared to the others (a � b � c).
Apart from flattened HE or HGO models, workers have used
other models such as hard cut spheres, HCS, i.e. spheres cut
by two planes at the same distance from the equator, figure 2),
HC with L � D and hard square platelets (rectangular prisms
of side lengths l1, l2, l3 with l1 � l2 � l3).

In 2D corresponding models can be defined: hard ellipses,
hard rectangles and hard discorectangles, which are projec-
tions of respectively ellipsoids, cylinders and spherocylinders
on a plane parallel to their uniaxial axes. Fused discs can also
be used. Zigzag or cross particles have been examined by
attaching a number of rods at fixed angles [28, 29].

As we have seen, a huge number of models have been used
to represent real molecular or colloidal systems. The only re-
quirement when defining a model is the possibility to be able to
explicitly or implicitly compute, in an efficient way, the contact
distance σ(r̂, {Ω̂}, {Ω̂ ′}) between two particles. If particles are
not identical (mixtures or size polydisperse systems), contact
distances between all pairs of species must be known. Particles
made of attached units are easily handled since the total con-
tact distance can be obtained from the partial contact distances
between the units.

2.2. Contact with real materials

Hard models are approximate models for systems made of
anisotropic molecules, since they can provide the essential
correlation characteristics originating from the closed-shell
electronic distributions of simple, non-covalent systems and
explain ordering as an entropy effect. However, hard models
are athermal and therefore cannot account for the temperature
dependence of material properties. Even density-dependent
properties are not, in general, quantitatively described by hard
models. For example, calculations of the I–N phase transition
using hard-rod models predict too low a value for the density
gap at the transition as compared to real materials. Properties
related to cohesion cannot be quantitatively described by

overlap interactions and anisotropic attractive interactions need
to be included in the theoretical treatments (either theory or
simulation) of liquid crystals. The effect of these interactions
are usually treated theoretically using perturbation theory,
which requires the correlation structure of the corresponding
hard model. Nevertheless, hard models are useful tools to
qualitatively analyze the properties of molecular matter.

Hard models also find application in stabilized colloidal
suspensions of Coulomb-screened anisotropic particles in a
solvent. In this case the agreement with real materials is more
quantitative. An important field of application is in suspensions
of filamentous viruses. Early investigations on the first virus to
be isolated, the Tobacco Mosaic Virus (TMV), indicated that
it formed a N phase. Onsager [16] explained the formation
of this phase in terms of a solution of charged hard rods of an
effective diameterDeff that depends on the ionic strength of the
solution; the transition was explained solely as a competition
between orientational and correlation entropies. More recent
experiments on virus suspensions are analyzed with hard
models of the same type [30, 31].

Another type of experimental colloidal system, which can
be closely modelled by hard models, is a suspension of mineral
or polymeric particles. Several groups have been working on
these systems for a long time and a huge list of interesting
results concerning phases with orientational and spatial
ordering has been obtained. For example, suspensions of
goethite nanorods have been shown to exhibit liquid-crystalline
ordering [32, 33]. The particle interactions can be made
to be approximately hard by suitable chemical treatments.
Anisotropic particles made from sheets of the layered gibbsite
mineral have been stabilized by layers of grafted polymer, a
method that, in a good solvent such as toluene, produces size
polydisperse platelets which interact approximately through
hard interactions [34]. Various liquid-crystalline phases have
been observed in this system, as predicted by theoretical
models of hard platelets. Other particles made from layered
mineral materials, e.g. ZrP, have also been shown to exhibit
liquid-crystal phases [35]. Also, prolate particles made from
polymeric materials have been synthesized [36] and their
interactions can be closely approximated by hard interactions.

In summary, hard models are very useful to qualitatively
understand phase behaviour in real liquid-crystal-forming
molecular systems. But they can also be used to analyze
colloidal suspensions of anisotropic particles made of viruses,
mineral or polymeric particles, in many cases with quantitative
agreement.

3. Theories and simulations

In this section we make a short revision of the theories for the
liquid-crystal bulk state of anisotropic hard-particle models
in the language of Density Functional Theory (DFT). This
language is essential to understand inhomogeneities and phase
transitions in condensed systems made of hard particles since
the structure and correlations in the fluid are core ingredients
of DFT. For a general, recent review on DFT see [37]. The
physical properties of hard bodies are governed by entropy,
which is related to the volume accessible to particles. Therefore
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DFT theories, which are based on geometry and excluded
volume between two particles, have played an essential role
in the development of the field.

The revision is not extensive but stresses the main ideas
and concepts used to construct theories and the success, or
otherwise, of the resulting theories. The application of the
theories to explain the formation of the different LC phases
is then mentioned, first for the nematic, then for the phases
with spatial order. In accord with the spirit of this review,
we do not mention theories that incorporate soft attractive
interactions (of Maier–Saupe type or perturbation theories).
A more complete review on the fundamentals and applications
of theoretical approaches to a larger variety of models for liquid
crystals can be found in [38].

3.1. Density functional theory for anisotropic hard bodies

3.1.1. Uniaxial particles. The key ingredient of DFT is
the ensemble average local density of particles, ρ(r, Ω̂),
giving the local density of particles at position r and with
orientation given by the unit vector Ω̂ ; this is the orientation
of the symmetry axis of the particle, assuming it only has
one (uniaxial particle); in the case of less symmetric particles,
more vectors are needed. One can define a local orientational
distribution function h(r, Ω̂) by extracting the density
dependence, ρ(r, Ω̂) = ρ(r)h(r, Ω̂). The local orientational
distribution function is normalized,

∫
dΩ̂h(r, Ω̂) = 1. In

the uniform I and N phases there is no spatial dependence,
ρ(r) = ρ0 and one can write ρ(r, Ω̂) = ρ0h(Ω̂).

In DFT the Helmholtz free energy F is written as a
functional of the local density, F [ρ]. In the grand canonical
ensemble, where μ,V, T are fixed (μ is the chemical
potential), one defines the grand canonical functional,

Ω[ρ] = F [ρ] − μ

∫
V

dr

∫
dΩ̂ρ(r, Ω̂). (3)

The equilibrium state of the fluid follows by functionally
minimising the functional,

δΩ[ρ]

δρ(r, Ω̂)

∣∣∣∣
eq

= 0 at constant μ, V and T . (4)

Once the equilibrium local density ρ(r, Ω̂) is obtained,
the equilibrium free energies follow by evaluating the
corresponding functional.

To microscopically characterize orientational ordering in
a uniaxial liquid crystal a set of order parameters {fnm(r)}
is defined in terms of a spherical harmonic expansion of the
orientational distribution function:

ρ(r, Ω̂) = ρ(r)

∞∑
l=0

l∑
m=−l

flm(r)Ylm(Ω̂),

flm(r) =
∫

dΩ̂h(r, Ω̂)Y ∗
lm(Ω̂), (5)

where Ylm(Ω̂) are spherical harmonics. Since
∫

dΩ̂ρ(r, Ω̂) =
ρ(r), the local number density, one obtains f00(r) = 1. It
is common to limit the expansion to the l = 2 level and

define order parameters f1m, with m = −1, 0,+1 and f2m,
with m = −2, . . . , 2, to quantify the orientational order. For
non-polar particles, if one chooses the z axis of the reference
frame along the director n̂, the order parameters reduce to

Q(r) =
∫

dΩ̂h(r, Ω̂)P2(n̂ · Ω̂), (6)

where P2(x) is the second-order Legendre polynomial and
n̂ · Ω̂ = cos θ , where θ is the angle between the molecular
axis and the director.

The standard practise is to split the functional in ideal,
Fid[ρ], and excess (or interaction), Fex[ρ], contributions, so
that

F [ρ] = Fid[ρ] + Fex[ρ]. (7)

Fid[ρ] would be the free energy of a fluid of non-interacting
particles with local density ρ(r, Ω̂). It has an exact expression
and it was first derived by Onsager [16] by mapping the possible
particle orientations onto a mixture of different ‘chemical’
species, each species corresponding to a different orientation
Ω̂ i . With this idea h(Ω̂ i ) is akin to xi , the composition
of the i-th species in a multicomponent mixture, and the
ideal free energy can be built from the mixing entropy of
a multicomponent mixture. Generalizing to systems with
positional order:

βFid[ρ] =
∫
V

dr

∫
dΩ̂ρ(r, Ω̂)

{
log
[
ρ(r, Ω̂)Λ3

]
− 1
}

=
∫
V

drρ(r)

{
log

[
ρ(r)Λ3

4π

]
− 1

}

+
∫
V

drρ(r)
〈
log
[
4πh(r, Ω̂)

]〉
h
, (8)

where 〈· · ·〉h is an angular average weighted by the distribution
function h(r, Ω̂). In the expression above Λ is the thermal
wavelength. The first term corresponds to the positional
entropy, whereas the second is the orientational entropy
(the factor 4π is introduced so that the latter vanishes in
an orientationally disordered fluid). The local orientational
entropy per particle (‘mixing entropy’) in units of the
Boltzmann constant k is defined as

sor(r) ≡ −
〈
log
[
4πh(r, Ω̂)

]〉
h

= −
∫

dΩ̂h(r, Ω̂) log
[
4πh(r, Ω̂)

]
. (9)

For uniform phases, i.e. I or N phases, we have

βFid[h]

N
= log

(
ρ0Λ3

4π

)
− 1 − sor[h]. (10)

The orientational entropy sor is one of the key actors in the
theory of liquid-crystal phase transitions. sor has a maximum
value when particles are disordered, i.e. the I phase, with
h(Ω̂) = (4π)−1.

The other actor is the excess free energy (excess entropy)
functional Fex[ρ], which does not have an exact expression.
Essentially two routes have been followed to construct Fex[ρ]:
the Onsager theory, based on the concept of excluded volume,
and theories based on weighted densities.
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3.1.2. Excluded volume: Onsager theory. In Onsager theory
the excess free energy is written in terms of a central quantity
in hard-body systems, the excluded volume between two
particles. The excluded volume is directly related to the second
virial coefficient. Onsager’s derivation of the excess functional
considers the cluster or virial expansion of the equivalent
multicomponent mixture. One obtains:

βFex[h]

N
= B2[h]ρ0 +

1

2
B3[h]ρ2

0 + · · · (11)

where Bn[h] are the virial coefficients (functionals of the
orientational distribution function), the first of which is

B2[h] = −1

2

〈〈∫
V

drf (r, Ω̂, Ω̂ ′)
〉〉
h

, (12)

where f (r, Ω̂, Ω̂ ′) = exp [−βφ(r, Ω̂, Ω̂ ′)] − 1 is the Mayer
function and r the relative position vector joining the centres
of mass of two particles (or the position vector of one particle,
with orientation Ω̂ ′, assuming the other, oriented along Ω̂ , lies
at the origin). 〈〈· · ·〉〉 denotes double angular average over the
functionh(Ω̂). For two bodies that interact via a hard potential,
the Mayer function is particularly simple:

f (r, Ω̂, Ω̂ ′) =
{ −1, particles overlap

0, particles do not overlap
(13)

As a consequence, the second virial coefficient is directly
related with the so-called ‘excluded volume’:

B2[h] = 1

2

〈〈
vexcl(Ω̂, Ω̂ ′)

〉〉
h

= 1

2

∫
dΩ̂
∫

dΩ̂ ′vexcl(Ω̂, Ω̂ ′)h(Ω̂)h(Ω̂ ′). (14)

vexcl(Ω̂, Ω̂ ′) = −
∫
V

drf (r, Ω̂, Ω̂ ′) is the volume excluded to

one particle because of the presence of the other. We could
approximately obtain the entropy of the system by noting that,
if the two particles were isolated (low-density limit), the total
volume accessible to a particle would be V − N−1

2 〈〈vexcl〉〉h �
V − NB2[h] (the factor 1/2 accounts for the fact that two
particles are involved and the excluded volume has to be shared
by the two). The partition function would then be

Q = Λ3N

N !
(V −NB2[h])N = Qid(1 − ρ0B2[h])N , (15)

and the excess free energy per thermal energy unit βFexc =
− log (Q/Qid) would read

βFexc

N
= − log (1 − ρ0B2[h]) = B2[h]ρ0 + · · · (16)

The first term of this expansion coincides with that of
equation (11). Onsager qualitatively demonstrated that, for
hard rods in the isotropic phase, the ratio B3/B

2
2 →

(D/L) log (L/D) so that, in the limit L/D → ∞, the third
virial coefficient is indeed negligible for very long rods (hard-
needle limit). It is then plausible that higher-order virial coef-
ficients also vanish in the same limit.

Now the excluded volume has to be specified. For HSC
particles, the excluded volume is given by

vexcl(Ω̂, Ω̂ ′) = 8v0 + 2L2D

∣∣∣sin (Ω̂, Ω̂ ′)
∣∣∣ , (17)

where v0 = π
4LD

2 + π
6D

3 is the volume of a HSC. To simplify
the calculations, Onsager considered the excluded volume in
the limit of infinite aspect ratio, κ � 1 (hard needles), i.e.

L � D: vexcl(Ω̂, Ω̂ ′) = 2L2D

∣∣∣sin (Ω̂, Ω̂ ′)
∣∣∣. Applying the

equilibrium condition

δF [h]

δh(Ω)

∣∣∣∣
eq

= λ, (18)

where λ is a Lagrange multiplier ensuring the normalization
condition on h(Ω), one obtains an integral, Euler–Lagrange,
equation for h(Ω̂),

h(Ω̂) = e−ρ0
∫

dΩ̂1h(Ω̂1)vexcl(Ω̂,Ω̂1)∫
dΩ̂3e

−ρ0
∫

dΩ̂2h(Ω̂2)vexcl(Ω̂3,Ω̂2)

. (19)

This is an integral equation, which has to be solved
numerically. In addition, Onsager used a trial function in terms
of a variational parameter, α:

h(Ω̂) = eα cos (Ω̂ ·n̂)∫
dΩ̂ ′ eα cos (Ω̂ ′ ·n̂)

. (20)

In the I phase, α = 0, whilst in the N phase α > 0. Note that, in
the hard-needle limit, the solution only depends on the scaled
density ρ∗ = ρ0L

2D. The theory predicts a first-order phase
transition between the I and N phases for the following values
of packing fraction η = (πD/4L)ρ∗:

ηI = 3.340
D

L
, ηN = 4.486

D

L
. (21)

The density gap becomes smaller as the particles go to the
hard-needle limit. As the ratio L/D is reduced, end-particle
effects in the excluded volume (first term in equation (17))
become important, there is no universal scaled density and the
coexistence values depart from the values (21). The relative
density gap is Δη/ηN = (ηN − ηI)/ηN � 26%, too high
compared with typical experimental values. The value of the
uniaxial order parameter at the transition is QIN = 0.84, also
too high with respect to experiment. Lasher [39] numerically
solved the problem without resorting to the variational function
(20), but by using an expansion in Legendre polynomials. The
study included the 8v0 factor of the excluded volume in the
calculation of the coexistence densities, thus incorporating the
dependence on aspect ratio.

Onsager theory has been more closely examined, from
a numerical point of view, by Kayser and Raveche [40] and
Herzfeld et al [41], focusing on an iterative algorithm to obtain
the solution. This algorithm has been shown to be convergent.
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Also, Stroobants et al [42], examined the convergence
properties of an exponentiated truncated Legendre expansion,

h(Ω̂) =
exp

{ ∞∑
n=0

α2nP2n(Ω̂ · n̂)
}

∫
dΩ̂ ′ exp

{ ∞∑
n=0

α2nP2n(Ω̂ ′ · n̂)
} . (22)

The convergence of the results was studied as a function of
the number of terms included in the expansion. As a main
conclusion, it was found that the coexistence results depend
very much on the form of distribution function used.

The Onsager theory was modified by Zwanzig [43] by
considering an idealized model where rods can only point along
a discrete set of orientations. Despite this drastic simplification,
but as a bonus, Zwanzig could extend the theory to the seventh-
order virial coefficient and study the robustness of Onsager’s
orientational transition. Zwanzig was able to confirm the
transition. However, the convergence of the expansion is
probably poor since coefficients are oscillatory. A later analysis
by Runnels and Colvin [44] used a Padé expansion to limit this
problem and they confirmed in turn Zwanzig’s result.

Calculation of virial coefficients for various models have
been done for the isotropic phase, with a view to constructing
accurate resummations of the equation of state [18, 45–
53]. All of these studies are focused on short particles and
therefore say nothing about the validity of Onsager theory.
Frenkel [54] has calculated the scaled third, fourth and fifth
virial coefficients of hard spherocylinders in the isotropic
phase (i.e. Bn/B

n−1
2 for n = 3, 4, 5) for aspect ratios κ =

L/D in the range 1–106, using Monte Carlo integration.
He concluded that all coefficients vanish in the hard-needle
limit. However, the vanishing limit value is obtained rather
slowly with κ , which means that Onsager theory is not
quantitatively valid for realistic values of aspect ratio. This
does not imply that excluded volume effects are not responsible
for nematic formation in hard-body fluids, but rather that it
is necessary to improve Onsager’s theory in order to obtain
quantitative predictions. To this effect, some proposals have
been considered and are reviewed later.

Calculation of virial coefficients are normally done for a
constant orientational distribution h(Ω̂) = 1/4π or zero-order
parameter Q = 0. In contrast, Velasco and Padilla [26] used
Monte Carlo integration to calculateB3[h]–B5[h] for the HGO
model, in the range κ = 1–105, by parameterizing h(Ω̂) in
terms ofQ, thus obtaining the virial coefficients in the nematic
phase as Bn(Q) in the range Q = 0–1. The vanishing of the
virial coefficients in the hard-needle limit was confirmed and
convergence was seen to be rather insensitive with respect to
the order parameter, indicating that Onsager theory is valid in
the limit κ → ∞.

Onsager theory has played a very important role in our
qualitative understanding of orientational ordering, bringing
the concept of particle excluded volume to the forefront. It
is indeed remarkable that a simple second-order virial theory,
based solely on two-particle interactions, can explain a phase
transition; this is a singular case in the theory of phase

transitions. The virial expansion is useful to connect the ideal
gas to denser gases, i.e. fluids where interactions begin to be
relevant, but in standard fluids of isotropic particles there is
still a long way between the low-order virial expansion and
the real equation of state of a liquid. However, the nematic
phase is a peculiar example where a phase transition to an
ordered state can be understood in terms of the first term in the
virial expansion, i.e. the second virial coefficient.

By the time Onsager presented his theory, computer
simulations of phase transitions for condensed matter were not
feasible. With the advent of powerful computers in the 70s, it
was possible to obtain accurate predictions and put Onsager’s
theory to the test. Up to now many simulations on hard bodies
have been performed, using MC or MD techniques. A good
starting point to review the subject is [19]. Several works
have specifically focused on devising algorithms for efficiently
obtaining contact distances of hard bodies, particularly
ellipsoids [55]. The first simulations of a liquid crystal were
performed by Vieillard-Baron [56] (1972), who used Monte
Carlo simulation to study a fluid of 2D hard ellipses. He
observed the formation of an orientationally ordered phase,
although the system studied was later revealed to be too small
to obtain any quantitative conclusion. Much later, Frenkel et
al [24] (1984) studied a fluid of hard ellipsoids. The entire
phase diagram, including I, N and crystal phases, was mapped
out as a function of density and aspect ratio, including prolate
and oblate particles. For low aspect ratios a plastic phase was
also detected. The smectic phase was not stabilized in this fluid.

In a more extensive simulation work involving free energy
calculations, Frenkel and Mulder [57] studied the density sta-
bility interval of the N phase of hard ellipsoids and concluded
that, for aspect ratio 3, it was very narrow. But the stability
of this fluid was called into question by Zarragoicoechea et
al [58], who concluded from their own MC simulations that
the stability of the nematic phase was due to the small system
size of the samples. In an effort to solve the issue, Allen and
Mason [313] performed MC and MD simulations to examine
the stability of the N phase of hard ellipsoids with aspect ra-
tio 3, using system sizes larger than previously. Although they
recognized the existence of system size effects, the N phase
was observed to be stable. The first simulations of a liquid
crystal exploring the effect of fluctuations was performed in
1987 [60], where dynamical precursors of the I–N transition
in hard ellipsoids were observed. All analyses and simulation
works have concluded that the Onsager theory is qualitatively
valid, but the truncated virial expansion after the second coeffi-
cient is only valid for aspect ratiosL/D � 100 and predictions
for particles with realistic aspect ratios are unreliable [61].

3.1.3. Extended Onsager theories. There have been a num-
ber of attempts to improve Onsager theory, in an effort to make
it applicable to realistic particle lengths. Three approaches
have been proposed. The first incorporates the contribution
of third- and higher-order virial coefficients to the Onsager
functional. In the second, angular correlations are treated at
the Onsager level (second virial coefficient), but spatial cor-
relations are improved using the decoupling approximation.
Mixed theories have been proposed in an attempt to treat the
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coupling of both, spatial and angular correlations, in a more
quantitative fashion. Finally, an approach based on the devel-
opments of Fundamental Measure Theory for HS, extended
to anisotropic bodies, has been proposed. In principle, this
approach improves the spatial-orientational coupling. Except
for the special case of a mixture of freely rotating needles
and discs, it has been applied in the restricted-orientation ap-
proximation, although there have been recent developments to
extend the theory to freely rotating particles, as reviewed later.

Straley [62] calculated B3 numerically for hard rods of
aspect ratios 10–100 and proposed a corresponding model
which approximated its angular dependence. He estimated
the correction of B3 to the results of Onsager’s theory and
concluded that the theory is not accurate for κ < 100. Tjipto-
Margo and Evans [63] considered the incorporation of the
third virial coefficient B3, using hard ellipsoids as a particle
model. For aspect ratios larger than 5, the extended theory
predicts the correct variation of the order parameter with
density as compared with simulations. The results are poorer
in the case of shorter particles. A way to incorporate the third
virial coefficient in the y-expansion of Barboy and Gelbart [64]
was presented and the corresponding results for the transition
densities were seen to agree with the MC simulations of
Frenkel and Mulder [65]. Padilla and Velasco [25] obtained
the virial coefficients B3 and B4 of HGO particles from Monte
Carlo integration, both as functions of the uniaxial nematic
order parameter and used them to study the convergence of the
virial series in terms of the results for the I–N transition. The
series was seen to converge quite fast in the case of κ = 5,
but not for aspect ratio equal to 3. Although theoretically
interesting, all of these approaches are not practical since the
calculation of high-order virial coefficients is intractable for
most hard-particle models.

More recently, You et al [53] calculated virial coefficients
up to seventh-order for the isotropic phases of hard ellipsoids,
spherocylinders and truncated hard spheres for different aspect
ratios, with a view to studying the convergence properties of
the virial series. The radius of convergence was seen to be
close to the close-packing limit for low aspect ratio and to
be considerably less than the close-packed density for higher
aspect ratios.

In the 70s, Cotter and co-workers [66, 67] derived
equations of state for a fluid of perfectly aligned rods, applying
a generalization of the scaled-particle theory (SPT) of Reiss et
al for HS [68] to parallel anisotropic particles. The theory was
then generalized to a set of restricted orientations and results for
the equation of state and the I–N transition were obtained [69].
Lasher [39] modified SPT theory and obtained an extended
Onsager expression that corrected Onsager theory. The results
of the generalized SPT theory, in the low-density limit, were
compared to the then existing theories, including that of Flory
[70] and Alben [71] (formulated on a lattice), by Straley [61]
(a review of these early theories can be found in this reference).
A problem with these theories is that angular correlations are
still considered at the level of two particles but, for short
particles, it is clear that higher-order angular correlations,
represented by virial coefficients beyond the second, are
important. Despite recent efforts in this direction, this question
is as yet unsolved.

SPT and similar theories can be regarded as resummations
of the virial expansion. Barboy and Gelbart [64] introduced
the y-expansion for general hard bodies, a type of truncated
Padé approximant resummation based on the variable y =
η/(1 − η), where η is the packing fraction. This expansion is
closely related with the SPT theory, exhibits better convergence
properties than the usual virial expansion based on the density
and incorporates higher-order virial coefficients in a systematic
way (providing these are known for the model at hand).
The method was applied, in particular, to dumbells and
spherocylinders in the isotropic phase [64], but oriented fluids
(hard parallelepipeds) were studied later, using the restricted-
orientation (Zwanzig) approximation, in [72]. Comparison
with previous virial expansions and Padé approximants was
made, but no clear superiority of the theory, both quantitatively
and in the practical implementation, was inferred.

In the 80s some further proposals in the theory of nematic
ordering were made, using a seemingly different perspective
which at the end was interpreted as yet another resummation
theory providing qualitatively, if not quantitatively, similar
results as previous theories. Therefore, in all of these
approaches angular correlations are kept at the level of the
second-order virial coefficient. Already in 1979 Parsons [73]
made an interesting proposal, considering potentials of the
form φ(r/σ (r̂, Ω̂, Ω̂ ′)), where σ(r̂, Ω̂, Ω̂ ′) is the contact
distance function. He showed that, if the radial distribution
function g(r, Ω̂, Ω̂ ′) can be scaled as

g(r, Ω̂, Ω̂ ′) = g0

(
r

σ (r̂, Ω̂, Ω̂ ′)

)
, (23)

where g0 is the corresponding function for a reference isotropic
fluid, then the orientational and translational degrees of
freedom decouple to all orders in the density expansion of
the free energy. This approximation was proposed for the
first time by Pynn [74, 75] and later used by Wulf [76] for the
direct correlation function in the context of the solution of the
Orstein–Zernike equation for the I–N transition. Interestingly,
as ρ0 → 0, the resulting free energy reduces to that of Onsager.
By using a HS reference system and the corresponding
equation of state, Parsons predicted a I–N phase transition
at a packing fraction which decreased with rod aspect ratio.
Also, using a perturbation theory in the softness m of the
potential φ(r) = ε/rm, predictions for soft potentials were
made and seen to agree with experimental results for m = 12.
Finally, Parsons concluded that most of the features of the I–N
transition are due to the repulsive part of the interactions.

Later, Lee [77] rederived Parson’s theory from a different
but equivalent point of view, giving rise to the now known
as Parsons-Lee (PL) theory. In Lee’s approach the emphasis
is on the equation of state. The approach starts from the
Carnahan–Starling equation of state for HS and generalizes it
to the nematic case using a simple (but a priori purely heuristic)
functional scaling for the excess free energy, as

βFex[h]

N
= ΨHS(η)

B2[h]

B
(HS)
2

, (24)

where B2[h] is the angle-averaged second virial coefficient,

which was defined in (14), andB(HS)
2 = 4v0 is the second-order
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virial coefficient of HS, equal to half the excluded volume of
two HS (v(HS)

exc = 8v0, v0 = π
6 σ

3 being the HS volume). η is
the packing fraction of the actual fluid and of the reference
HS fluid; therefore, the fluid is mapped onto a HS fluid of
equal packing fraction and density consisting of hard spheres
of a volume equal to that of the actual anisotropic particles
and any density-dependent function is scaled with the ratio of
excluded volumes between the actual fluid and the reference
HS fluid. ΨHS(η) is the excess free energy per unit thermal
energy kT and per particle of the HS fluid, obtained from the
Carnahan–Starling theory, ΨHS(η) = (4 − 3η)η/(1 − η)2, or
from any other theory for the equation of state of the HS fluid.
This approximation can be seen to be completely equivalent
to the decoupling approximation of Parsons [73]. The theory
was applied to HSC and good agreement with simulation as
concerns the I–N transition was reported, even for fairly short
particles. Lee also applied the theory to hard ellipsoids of
revolution [78] and compared it with computer simulation.
Again, as the aspect ratio of the particles becomes higher, the
agreement is seen to improve. The theory again reduces to that
of Onsager in the limit of low density.

The PL scaling, equation (24), can be obtained by
approximating the virial coefficients of the fluid Bn[h], which
are functionals of the orientational distribution function h(Ω̂),
in terms of those of the HS fluid, B(HS)

n , as

Bn[h] = B(HS)
n

B2[h]

B
(HS)
2

. (25)

The virial expansion of the excess free energy functionalFex[h]
can then be written as

βFex[h]

N
= ρ0B2[h] +

1

2
ρ2

0B3[h] + · · ·

�
(
ρ0 +

1

2
ρ2

0

B
(HS)
3

B
(HS)
2

+ · · ·
)
B2[h] (26)

= ΨHS(η)
B2[h]

B
(HS)
2

.

which coincides with equation (24). Since ΨHS(η) → 4η as
η = ρ0v0 → 0 and B(HS)

2 = 4v0, we see that βFex[h]/N →
ρ0B2[h] and therefore the PL theory recovers the Onsager
theory (16) in the low-density limit.

By about the same time as Lee but independently, a close
version of the PL theory was proposed by Baus and co-workers
[79, 80], using yet another perspective. These authors started
from the exact excess free energy functional for a general
nonuniform fluid in terms of the direct correlation functional,

c(2)(r, r′, Ω̂, Ω̂ ′) = − δ2βFex[ρ]

δρ(r, Ω̂)δρ(r′, Ω̂ ′)
. (27)

Double functional integration of this equation along a path
joining a reference uniform fluid of density ρ0 and the actual
nonuniform fluid, ρλ(r, Ω̂) = ρ0 + λ[ρ(r, Ω̂)− ρ0], where λ
is a coupling parameter, leads to

Fex[ρ] = F (0)ex (ρ0)−
∫
V

dr

∫
V

dr′
∫

dΩ̂
∫

dΩ̂ ′
∫ 1

0
dλ(1 − λ)

× [ρ(r, Ω̂)− ρ0][ρ(r′, Ω̂ ′)− ρ0]

× c(2)(r, r′, Ω̂, Ω̂ ′; [ρλ]). (28)

Baus et al consider the uniform phases ρ(r, Ω̂) = ρ0h(Ω̂), of
a fluid of HE particles of lengths σ‖ (along the symmetry axis)
and σ⊥ (in the directions perpendicular to the symmetry axis),
aspect ratio κ = σ‖/σ⊥ and volume v0 = πσ‖σ 2

⊥/6. Now one
approximates the direct correlation function by introducing a
decoupling approximation:

c(2)(r, r′, Ω̂, Ω̂ ′) � c
(2)
0

(∣∣r − r′∣∣
σ0

; η̄
)
vexcl(Ω̂, Ω̂ ′)

v0
, (29)

where the reference system is a fluid of HS of diameter σ0 and
the same volume, v0 = π

6 σ
3
0 . This expression has a structure

reminiscent of that in PL theory, see equations (23)–(25). The
angular factor vexc(Ω̂, Ω̂ ′) is the excluded volume of two HE
particles, which is further approximated by that of two hard
Gaussian overlap particles, i.e.

vexcl(Ω̂, Ω̂ ′) =
{

1 − χ2(Ω̂ · Ω̂ ′)2

1 − χ2

}1/2

, (30)

with χ = (κ2 − 1)/(κ2 + 1). The direct correlation function of
the reference HS fluid is taken from the Percus–Yevick approx-
imation. All that remains to specify is the criterion to calculate
the effective packing fraction η̄ where the correlation function
is to be evaluated. In the I phase they take η̄ = η = ρ0v0.
However, in the N phase orientational order leads to an effec-
tive reduction of interactions. This is similar to the situation in
the HS crystal: the highly oscillating spatial structure of the
distribution function comes from the highly peaked periodic
local density and the proper correlation is a smooth function
of the particle positions similar to that of a low-density fluid.
In the N phase, the high anisotropy of the orientational cor-
relations comes mainly from the distribution function h(Ω̂)
and proper orientational correlations are very accurately given
by the two-particle low-density limit. Consequently, in the N
phase we expect η̄ < η. To establish the precise relationship
between η and η̄, Baus et al proposed a criterion based on a
structural scaling condition between the HE and the reference
HS which takes into account the geometric constraints of the
nematic phase. To do that, they assumed that, at contact, the
direct correlation functions of the HS system, evaluated at the
real and at the effective density, are related by,

cPY

( |r|
σ0

= 1; η
)

= cPY

( |r|
σ0

= x(κ); η̄
)
. (31)

σ0, the reference HS diameter, is the average contact distance
of the HE in the isotropic phase, whereas σ0x (with x < 1) is
the average contact distance of the HE in the nematic phase.
Since κ is the natural length scale of the problem, they put
x = κ when κ < 1 and x = 1/κ when κ > 1. The Percus–
Yevick result for the direct correlation function of HS was used
in the practical implementation of the criterion. It is then easy
to realize that the theory of Baus et al reduces to the PL theory:
it is a decoupling approximation with the same orientational
factor, a different density prefactor, the same reference fluid
but evaluated at a different effective density in the N phase.
The theory was applied to the study of the I and N equations of
state and the I–N transition in systems of HE of different aspect
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ratios. Results in fair agreement with the computer simulation
studies were obtained (see original papers for details).

The PL theory and other resummations incorporating
higher-order virial coefficients have been contrasted with com-
puter simulations by Padilla and Velasco [25] for moderately
long particles in the case of the hard Gaussian overlap fluid.
They used DFT to obtain the pressure, order parameter and
I–N transition point and compared this with computer simula-
tion results for aspect ratios 3–5. Different theories were used.
First, a decoupling approximation with an isotropic hard Gaus-
sian overlap fluid instead of a hard-sphere fluid as a reference
fluid was used. The former was seen to give a closer agree-
ment with the simulation, but both overestimate the transition
density since angular correlations are represented at the same
level in both theories. Second, extended decoupling approxi-
mations incorporating B3 and B4, obtained using a technique
similar to that in [63], were seen to give improved results over
the standard decoupling approximation since they incorporate
higher-order angular correlations.

Williamson [81] made a comparison of the results from PL
scaling and related theories with simulation, using an annealing
technique to minimize the functional that does not assume
any particular form for the orientational distribution function.
The original PL scaling was found to give the best results.
Further comparison between Parsons–Lee and MC simulation
was made in [82], where excellent agreement for the isotropic
and nematic branches and reasonably accurate coexistence
densities and pressures were found. Again, the corresponding
orientational distribution function at the phase transition was
not accurately reproduced.

Some of the previous works on calamitic (rod-like) nemat-
ics have been paralleled by corresponding studies on discotic
systems. These systems are made of disc-like particles, which
can also form nematic phases. In fact, many of the studies
have been motivated by, or have motivated, experimental stud-
ies on colloidal suspensions of plate-like particles. Many of
these particles can be synthesized and prepared such that the
particles interact in solution like (or close to) hard particles,
which made it possible to test the predictions of theories for
oblate hard bodies. However, except for the early observation
of nematic ordering in solutions of platelets by Langmuir [83],
the nematic phase of these colloids has been elusive until rel-
atively recently [34, 84], due to the large tendency of these
systems to form gel phases.

In fact, Onsager already made predictions for a model of
oblate particle consisting of infinitely thin circular platelets.
The first simulation of nematic ordering was made precisely
on a system of infinitely thin platelets [85]. Comparing with
Onsager’s theory, this study evidenced the poorer predictions
made by the Onsager theory in the case of platelets. This is
no surprise: Onsager theory neglects virial coefficients beyond
the second, which are very important in the case of platelets.
Discotic liquid crystals will be discussed in more detail in
section 3.2.

3.1.4. Nonuniform phases: extended Onsager and others.
Since entropy alone can explain freezing of the HS fluid into
a stable periodic face-centred cubic structure, it is legitimate

to wonder if anisotropic hard interactions can stabilize the S
phase, the more symmetric liquid-crystalline phase beyond the
N phase. The first attempts to formulate statistical-mechanical
theories to deal with nonuniform liquid-crystalline phases date
back to the 70s [86, 87] and 80s [88]. Hosino et al [86] and Wen
et al [88] investigated a fluid of aligned rods using a second-
order virial approximation and a bifurcation analysis. The first
group also studied the effect of orientational fluctuations [87]
using a discrete-orientation approximation. These works were
the first evidence that hard rods and, consequently, excluded
volume interactions, could induce the formation of liquid-
crystalline phases with spatial order. The origin lies in the
more efficient packing of rods in a layered configuration.
Specifically, the entropy reduction associated with ordering
along one dimension is more than compensated, at sufficiently
high density, by the increased entropy due to an optimized free
volume due to the arrangement of particles into layers.

Some time after the work of Hosino et al, Stroobants
et al [89, 90] studied a fluid of perfectly parallel HSC by
MC simulations and observed a N–S continuous transition,
followed by a first-order S-crystal transition. The formation
of a layered phase in a fluid of parallel HSC is a nontrivial
result, considering that the parallel HE model cannot stabilize
into a layered structure (since its free energy can be exactly
mapped onto that of a HS fluid, which does not possess order
intermediate between the fluid and the crystal). Evidence
that S ordering was robust when free particle orientations
were included came a few years later [91]. Confirmation
of the stability of the smectic phase in colloidal fluids of
approximately hard rods came from the work of Wen et al [92],
who observed layered phases in colloidal suspensions of the
tobacco mosaic virus and in-layer undulational fluctuations.

A few years before, Mulder [93] proposed a virial
expansion for the excess free energy of a fluid of parallel hard
rods, including an Onsager-like, second-order term, and also
the third- and fourth-order virial coefficients, assuming smectic
symmetry. Since particle orientations are assumed to be frozen
along the director, taken along the ẑ unit vector, the full local
particle density can be simplified, ρ(r, Ω̂) = ρ(z)δ(Ω̂ − ẑ).
As usual, the Helmholtz free energy functional is split in ideal
and excess terms, F [ρ] = Fid[ρ] + Fex[ρ]. The ideal part is

βFid[ρ] =
∫
V

dr

∫
dΩ̂ρ(r, Ω̂)

[
log (ρ(r, Ω̂)Λ3)− 1

]

= A

∫
L

dzρ(z)
[
log (ρ(z)Λ3)− 1

]
, (32)

where L is the linear dimension of the system along the z
direction andA the system area in the other two perpendicular
directions. The excess part can be written as a virial expansion:

βFex[ρ] = − 1

2

∫
V

dr

∫
V

dr′
∫

dΩ̂
∫

dΩ̂ ′

× ρ(r, Ω̂)ρ(r′, Ω̂ ′)f (r − r′, Ω̂, Ω̂ ′)

− 1

6

∫
V

dr

∫
V

dr′
∫
V

dr′′
∫

dΩ̂
∫

dΩ̂ ′

×
∫

dΩ̂ ′′ρ(r, Ω̂)ρ(r′, Ω̂ ′)ρ(r′′, Ω̂ ′′)

10
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Figure 3. Phase diagram of a system of freely rotating HSC, as calculated from computer simulation [96], in the density-aspect ratio plane
(density is ρ∗ = ρ/ρCP, where ρCP is the close-packing density). Symbols indicate regions of stability of the phases: I , isotropic; N ,
nematic; Sm, smectic; P , plastic solid; AAA and ABC, different stackings of crystal phases. Shaded regions correspond to two-phase
regions. Reprinted with permission from [96]. Copyright (1997), AIP Publishing LLC.

× f (r − r′, Ω̂, Ω̂ ′)f (r′ − r′′, Ω̂ ′, Ω̂ ′′)
× f (r − r′′, Ω̂, Ω̂ ′′) + · · · (33)

Invoking the translational symmetry of the fluid in the xy plane,
the functional can be written as

βF [ρ]

A
=
∫
L

dzρ(z)
[
log (ρ(z)Λ3)− 1

]

+
∫
L

dz
∫
L

dz′ρ(z)ρ(z′)B‖
2 (z, z

′)

+
1

2

∫
L

dz
∫
L

dz′
∫
L

dz′′ρ(z)ρ(z′)ρ(z′′)

× B
‖
3 (z, z

′, z′′) + · · · (34)

whereB‖
n are projected virial coefficients, the first two of which

are given by

B
‖
2 (z, z

′) = − 1

2

∫
A

dr′
⊥f‖(r′

⊥, z− z′),

B
‖
3 (z, z

′, z′′) = − 1

3

∫
A

dr′
⊥

∫
A

dr′′
⊥f‖(r′

⊥, z− z′)

× f‖(r′
⊥ − r′′

⊥, z
′ − z′′)f‖(r′′

⊥, z− z′′), (35)

and f‖ is the Mayer function of parallel particles. Expressions
for higher-order virial coefficients can be written from
the standard virial expansion (see, e.g. [94, 95]). The
frozen-orientation approximation facilitates enormously the
calculation of the first virial coefficient and Mulder [93]
managed to calculate virial coefficients for parallel HC up to
the fourth. The occurrence of S order was analyzed using a
bifurcation analysis of the free energy functional truncated

at second-order and the effect of the higher-order terms in
the bifurcation point was discussed. A continuous transition
from the nematic to the smectic phase was found, at a density
and smectic period in quite good agreement with computer
simulations of the same model.

The complete phase diagram of hard spherocylinders, in
the density versus aspect ratio κ = L/D plane, has now
been mapped out in detail by simulation [96, 82] for the whole
range of aspect ratios κ = 0 − ∞ and for the freely rotating
model (see figure 3). There exists a terminal aspect ratio, below
which the N phase ceases to be stable and there is direct
coexistence between I and SA phases. For low values of κ
a plastic phase is formed. The crystal phase has AAA or ABC
stacking depending on the aspect ratio.

Esposito and Evans [97] presented an Onsager-like density
functional theory for the nematic-smectic bifurcation point
which was in fair agreement with the simulation data. The
theory incorporated third- and higher-order correlations in an
ad hoc manner and included orientational freedom, which
allowed these workers to present a density-aspect ratio phase
diagram including isotropic, nematic and smectic A phases.
The triple point location coincided with that from the then
existing theories, but the nematic-to-smectic transition was
always found to be of first-order, regardless of the value
of aspect ratio. This is in contrast with predictions from
more sophisticated theories, which found either a continuous
transition or a tricritical point at which the character of the
transition changed from first-order to continuous. Therefore,
this theory indicated that the N–S transition is of first-order and
becomes continuous only in the strict limit of parallel particles.

The reason why a fluid of hard parallel spherocylinders
induces a layered phase is a subtle one, since a corresponding
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system of ellipsoid does not. This point has been investigated
by Evans [98], who considered a PL theory on particles of dif-
ferent shapes: ellipsoids, spherocylinders and ellipo-cylinders
(a particle that interpolates between the latter two). Nematic
fluids of particles with both frozen and free orientations were
considered. All particles formed a S phase, except ellipsoids,
which were revealed as pathological in that respect.

This conclusion was further supported by Martı́nez-Ratón
and Velasco [99] in 2008, who considered systems of parallel
hard superellipsoids of revolution, which can be viewed as an
interpolation between ellipsoids of revolution and cylinders.
The shape of the particles is given by the equation:

(
R

a

)2α

+
( z
b

)2α
= 1, R =

√
x2 + y2. (36)

Particles are characterized by a shape parameter α (with α = 1
corresponding to ellipsoids of revolution, while α = ∞ is the
limit of cylinders. Using computer simulation, it was shown
that above a critical value α > 1.2, the smectic phase is sta-
bilized. This value is surprisingly close to that of ellipsoids.
Also, Martı́nez-Ratón and Velasco used a PL approach com-
bined with free-volume theory for the solid phases to obtain a
complete phase diagram exhibiting regions of smectic, colum-
nar and crystalline ordering (see figure 4). Comparison with
simulation results of Veerman and Frenkel [100] for cylinders
and superellipsoids of different shapes [99] was reasonable.

In 1989, Taylor et al [102] presented a theory for a fluid
of parallel HSC that combined ideas from scaled particle
theory and cell theory. The idea was to decouple the spatial
directions associated with order from those where the system
is disordered and apply a cell theory to the first and scaled
particle theory to the second. Correspondingly the total free
energy was written as a sum of two contributions. The theory
was the first to give a complete phase diagram of the model and
good qualitative agreement with existing simulations [90] was
shown. The layer spacing at the N–S transition, in particular,
was quantitatively correct. However, the theory was limited in
that all phase transitions were required to be discontinuous by
construction, which is incorrect in most instances, in particular
in the case of the N–S transition. Also, density gaps are
overestimated for first-order phase transitions.

In 1992, Baus and co-workers [103] studied the N–S
transition of the same model using their version of the scaled
Onsager theory, together with ideas from the density functional
theory for HS freezing. They start from the exact expression
for the excess free energy functional in terms of the direct
correlation function, given by equation (28). The direct
correlation function is then approximated as that of a spatially
uniform fluid evaluated at an effective density ρ̄,

c(2)(r, r′, Ω̂, Ω̂ ′; [ρ]) = c
(2)
0 (r − r′, Ω̂, Ω̂ ′; ρ̄[ρ]). (37)

Since the determination of the function c(2)0 (r, Ω̂, Ω̂ ′; ρ̄) in the
case of nonspherical particles is a rather complicated problem
by itself, Baus et al proposed a further simplification by
approximating c(2)0 (r, Ω̂, Ω̂ ′; ρ̄) in the case of parallel HSC in
terms of the Percus–Yevick direct correlation function of hard
spheres of diameter σ equal to the contact distance between

Figure 4. Phase diagram packing fraction-inverse shape parameter
α−1 of parallel hard superellipsoids as obtained in [99]. Continuous
lines: coexistence boundaries for the smectic-solid transition using
PL theory for the smectic and free-volume theory for the solid.
Dashed line: nematic-smectic spinodal line from PL theory; dotted
line: nematic-smectic spinodal line from the theory of Mulder [93].
Filled triangles: simulation results for the smectic-solid transition of
parallel cylinders [100] and for liquid-solid coexistence in hard
spheres [101]. Filled square: nematic-smectic spinodal from
computer simulation of Veerman and Frenkel [100]. Open symbols:
simulation estimates for nematic-smectic spinodal (circles),
first-order smectic-solid transition (squares) and for first-order
nematic-solid transition (triangles) [99]. Labels indicate stable
phases: N , nematic; S, smectic; ABC and AAA, crystalline solids
with corresponding symmetries. Vertical dot-dashed line:
approximate limit of degeneracy of ABC and AAA structures within
free-volume theory. Reprinted with permission from [99].
Copyright (2008), AIP Publishing LLC.

two (parallel) HSC. To complete the approximation, a recipe to
determine ρ̄ in terms of the density profile ρ(r) in the different
phases is needed. In the N phase the density profile is constant,
ρ(r) = ρ and, therefore, ρ̄ is also constant and equal to ρ. In
the S phase, however, the density profile has to reproduce the
layered structure. Taking the layers to be perpendicular to the
z direction, the density profile in the S phase only depends on
z and it was parameterized as ρ(z) = ρ [1 + ε cos(2πz/z0)], ρ
being now the mean smectic density, z0 the layer spacing and ε,
with 0 � ε � 1, the amplitude of the smectic-like oscillation.
In the work of Baus et al only a bifurcation analysis was carried
out, studying the stability of the N phase against smectic-like
fluctuations with ε � 1. In that case the density profile ρ(z)
only departs slightly from the mean smectic density ρ and,
thefore, the same approximation ρ̄(z) = ρ was used for the
S phase. The N–S transition of parallel HSC of aspect ratios
up to κ = 5 was studied and good agreement with computer
simulations was obtained.

3.1.5. Weighted density theories. More sophisticated and
accurate theories, incorporating the orientational degrees of
freedom, have been proposed to explain the transition to the
smectic phase and other nonuniform phases such as the colum-
nar. One of the problems with all existing theories was that they
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assumed the parallel particle approximation, which is qualita-
tively valid in the N and S regimes but limits the possibility
of quantitative analysis. Also, density correlations, crucial in
understanding phases with spatial order, are poorly accounted
for in all theories deriving from virial expansions. Some of the
theories have been formulated for general nonuniform fluids
and have also been applied to interfacial phenomena. The new
theories grew out from developments made for HS in an effort
to improve the local density approximation (which is useless to
describe crystallization in the HS model) and used ideas from
the corresponding density functional approximations for HS.
The central quantity in these theories is the average density, a
local density that takes into account the density distribution in
the neighbourhood of a point. The average density is a convo-
lution of the real density and a weighting function which de-
scribes the properties of the environment and whose details are
optimized to give the correct bulk properties of the HS fluid. A
review of these weighted density approximation (WDA) func-
tionals can be found, among other sources, in [104].

In WDA theory for the HS system, the excess free energy
is written as

βFex[ρ] =
∫
V

drρ(r)Ψ(ρ̄(r)), (38)

where Ψ(ρ̄) is the excess free energy per particle of a uniform
isotropic fluid evaluated at the local weighted density ρ̄(r),
which averages the fluid structure within a neighbourhood of
the point r. The weighted density is calculated as a convolution
ρ̄(r) = ∫

V
dr′ω(r − r′)ρ(r′) and the weight function ω(r)

is obtained by imposing the functional to recover a particular
approximation for the equation of state and direct correlation
function of the uniform phase. This function, which has a range
of the order of the sphere diameterσ0, can be made to depend on
the averaged density, which gives a powerful self-consistency
to the theory. Two extensions of the WDA for HS to hard-rod
fluids have been proposed to account for the effects of particle
anisotropy and free orientations.

Poniewierski and Hołyst [105] proposed a weighted
density functional (called the smoothed density approximation,
SDA) for general convex anisotropic bodies, focusing on a fluid
of HSC. This theory used ideas from the corresponding density
functional approximations for hard spheres. Let ρ(r) be the
angle-averaged one-particle distribution function ρ(r, Ω̂), i.e.
ρ(r) = ∫

dΩ̂ρ(r, Ω̂). The orientational dependence in the
model is taken care of by assuming the following form for the
average density:

ρ̄(r) = 1

ρ(r)

∫
V

dr′
∫

dΩ̂
∫

dΩ̂ ′ω(r − r′, Ω̂, Ω̂ ′)

× ρ(r, Ω̂)ρ(r′, Ω̂ ′), (39)

The model is specified by giving Ψ(ρ) and ω(r, Ω̂, Ω̂ ′). The
latter was taken as

ω(r, Ω̂, Ω̂ ′) = − 1

2B(iso)
2

f (r, Ω̂, Ω̂ ′), (40)

where f is the Mayer function of two spherocylinders and
B
(iso)
2 is the second virial coefficient for the isotropic fluid. The

excess free energy density is chosen as

βΨ(ρ) = ρ0B
(iso)
2 +

[
βΨ (CS)(η)− 4η

]
. (41)

Here Ψ (CS)(η) is the Carnahan–Starling excess free energy
per particle of a fluid of HS and the packing fraction is
η = ρ0v0, with v0 the volume of a spherocylinder. This
choice for Ψ(ρ) guarantees that the correct first term of the
virial expansion is recovered when ρ0 → 0 (and hence
the Onsager limit when L/D → ∞). Interestingly, in the
opposite limit L/D → 0 (HS limit), Ψ(ρ) → Ψ (CS)(η) and
Tarazona’s first version of WDA for HS [106] is recovered.
The theory was applied to a fluid of hard spherocylinders with
full orientational freedom. The isotropic-nematic transition
was obtained, using the parameterized form (19). As usual,
the order parameter at the transition is overestimated and the
pressure underestimated. A lower bound L/D = 2.46 for
the existence of a nematic phase was found (to be compared
with 3.7 from the simulations [96]). Also, the nematic-smectic
transition was located using a bifurcation analysis, assuming
the transition was continuous. Lifting this assumption, the
nature of the transition was found to change from first-order
to continuous at L/D = 6, which is then a tricritical point.
For L/D = 5 the results were compared with simulations and
very good agreement was found for the spinodal density and the
smectic spacing at the transition (although the latter exhibits an
unphysical maximum near the transition). More details on the
theory and of its implementation were given later [107]. Hołyst
and Poniewierski [108] also applied their theory to study a
simpler system where orientations are frozen, i.e. a system of
hard parallel cylinders. At the level of a bifurcation analysis,
they obtained the spinodal line for the nematic-smectic A
transition and argued that, at even higher densities, the system
exhibits smectic B, columnar and solid phases.

At about the same time as Hołyst and Poniewierski
but independently, Somoza and Tarazona (ST) [109–111]
proposed an extension of Onsager theory in the line of the
PL approach but valid for inhomogeneous fluids. The basic
idea is that the mapping onto a HS fluid is inaccurate in a
fluid with orientational order since the correlation structure
along the director is very different from that in perpendicular
directions. To correct this, Somoza and Tarazona proposed
a reference fluid consisting of parallel HE of lengths σ‖ and
σ⊥, whose thermodynamics in turn can be mapped onto an
equivalent fluid of HS of diameter σ0. The expression for the
excess free energy is

βFex[ρ] =
∫
V

dr

∫
dΩ̂ρ(r, Ω̂)Ψ(ρ̄(r))

×

⎧⎪⎪⎨
⎪⎪⎩

∫
V

dr′
∫

dΩ̂ ′ρ(r′, Ω̂ ′)f (r − r′, Ω̂, Ω̂ ′)∫
V

dr′ρ(r′)fPHE(r − r′)

⎫⎪⎪⎬
⎪⎪⎭ ,
(42)

where the weighted density ρ̄(r) is calculated from ρ(r) =∫
dΩ̂ρ(r, Ω̂) as in the WDA theory for HS, but with a

weight function ω(r) scaled by the factors σ‖/σ0 and σ⊥/σ0

in the directions parallel and perpendicular to the ellipsoids,
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Figure 5. Results for the phase diagram of hard spherocylinders from the Somoza–Tarazona theory. (a) Parallel particles [109]. (b) Freely
oriented particles [111]. Reprinted with permission from [109, 111]. Copyright (1988, 1990) by the American Physical Society.

respectively. In the N phase, ρ(r, Ω̂) = ρ0h(Ω̂) and ρ̄(r) =
ρ0. Then equation (42) coincides with that from the Parsons–
Lee theory (27), since the thermodynamics of a fluid of parallel
HE is identical to that of HS. Therefore:

βFex[ρ] = ρ0Ψ(ρ0)∫
dr′fPHE(r − r′)

∫
dr

∫
dΩ̂

×
∫

dΩ̂ ′h(Ω̂)h(Ω̂ ′)vexcl(Ω̂, Ω̂ ′). (43)

Note that the factor between curly brackets in (42) is the
ratio between excluded volumes of the actual fluid and that
of a reference fluid of parallel hard ellipsoids with the same
spatial structure ρ(r). The choice of reference ellipsoid can be
made with different recipes (e.g. by demanding equal packing
fraction and equal length-to-breadth ratio of the actual and
ellipsoidal particles). A limited analysis of the theory was
made in the first two papers [109, 110], assuming parallel
particles. The phase diagram for parallel hard spherocylinders
was calculated and remarkable agreement with computer
simulations [90] was obtained, see figure 5(a). The ST theory
was also applied to a fluid of parallel oblique cylinders and a
full phase diagram with respect to the obliqueness parameter
was obtained, containing nematic, smectic A, smectic C and
biaxial (see figure 20 in section 3.3) phases. This work was the
first to show that a transition between smectic A and smectic
C phases was possible in a system of hard particles. A full
implementation of the ST theory was made in [111], where
the complete phase diagram of the hard-spherocylinder model
was presented, figure 5(b). The theory included the isotropic-
nematic transition, which gives the same results as the PL
theory. An important feature of the theory is that it predicts
a first-order nematic-smectic transition for L/D < 50 that
changes over to continuous for L/D > 50, with L/D = 50
a tricritical point. In contrast, the SDA theory of Hołyst
and Poniewierski predicted a tricritical point at L/D = 6.
Although the results for the two transitions at L/D = 5 were

a bit worse than those of Hołyst and Poniewierski, the ST
theory corrected the unphysical feature of the former in the
predicted smectic spacing and also the slope of the nematic-
smectic boundary with respect to the aspect ratio L/D and the
limitL/D → ∞. Overall the ST seems to work better for large
aspect ratios, whereas the SDA theory is slightly more accurate
for shorter particles. A discussion of the comparison between
the SDA and ST theories was made by Poniewierski [112], who
obtained a density functional based on the virial expansion,
including the third-order term, valid in the asymptotic limit
L/D → ∞ but including corrections for finiteL/D. However,
the question on the existence and location of the tricritical point
was not settled, since this point is very sensitive to higher-order
particle correlations.

A more accurate implementation of the ST theory was
done in [113], where the MC results of [96] were contrasted
with the theory. Very good agreement with the simulations was
found for both I–N and N–S transitions and for all the aspect
ratios considered (L/D = 3.5–10).

Graf and Lowën [114] made another proposal for a
weighted density functional, adopting an extension of the
modified weighted density approximation (MWDA) for the
HS system. They write Fex[ρ] as

βFex[ρ] = NΨ(ρ̂), (44)

where ρ̂ is a global density obtained by averaging the average
density

ρ̄(r, Ω̂) =
∫

dr′
∫

dΩ̂ ′ω(r − r′, Ω̂, Ω̂ ′)ρ(r′, Ω̂ ′) (45)

in the whole volume:

ρ̂ = 1

N

∫
dr

∫
dΩ̂ ρ̄(r, Ω̂)ρ(r, Ω̂). (46)

The excess free energy Ψ(ρ) and weighting function
w(r, Ω̂, Ω̂ ′) are chosen as in the Poniewierski and Hołyst
theory, i.e. using (41) and (40). The results of the ST theory
are superior to those obtained by Graf and Lowën [114], since
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the latter theory again predicts a wrong positive slope of the
nematic-smectic phase boundary in the density–L/D phase
diagram. The theory was later modified [115] to incorporate
scaled particle and cell theory concepts, which results in correct
slope and better predictions.

3.1.6. Fundamental measure theories. The Fundamental
Measure Theory (FMT) is a WDA approximation, in that the
free energy is built in terms of weighted densities, but has a
deeper root based on geometrical grounds. The theory makes
use of the concept of weighted densities, but here weighting
functions are measures of one particle (and possibly more
particles), whereas WDA approximations are built on measures
of two particles.

The FMT was first developed by Rosenfeld [116, 117] for
hard spheres. It is naturally formulated for a general mixture
of hard particles. Rosenfeld proposed an excess free energy
functional Fex[{ρν}] (where species are labelled with the index
ν) that depends on a finite set of weighted densities nα(r), the
latter being a sum of convolutions of the local densities ρν(r)
and some weighting functions ω(α)ν (r), i.e.

nα(r) =
∑
ν

∫
dr′ρν(r′)ω(α)ν (r − r′). (47)

The weights, which can be vectors or scalars, depend on the
geometry of a single particle and their integrals result in the
fundamental geometric measures of the sphere: the mean
Gaussian curvature, the surface area and its volume. Let Φ(r)
be the local excess free energy density in thermal energy units,
so that

βFex[{ρν}] =
∫
V

drΦ(r). (48)

To determine the dependence of the function Φ(r) on the
weighted densities {nα}, two requirements were imposed. The
first is related to the uniform limit, which was chosen to be
obtained from the SPT theory [68]. The second requirement
was related to the virial expansion of the direct correlation
function, c(2)μν (r, r

′) = −δ2βFex[{ρν}]/δρμ(r)δρν(r′), which
was demanded to recover the exact first (Mayer function) and
second terms of the uniform limit.

A modified version of FMT for HS was subsequently pro-
posed [118, 119] to correct a serious drawback of the first ver-
sion, namely, the divergence ofFex[{ρν}] as the density profiles
ρν(r) become more and more localized. This problem caused
the theory not to be able to predict crystallization in the one-
component fluid of HS. In the new version the singularity was
removed by redefining the dependence of Φ(r) on the weighted
densities while maintaining the bulk equation of state and the
correct low-density expansion of the direct correlation func-
tion. For a recent review of FMT for HS mixtures, see [120].

Finally, the modern versions of the FMT for HS were
constructed from first principles using cavity theory [121]. The
idea is to impose the fulfillment of an important requirement,
namely the dimensional crossover property: when the density
profile of a D-dimensional system is extremely constrained
along one spatial dimension by freezing the degrees of

freedom of particles in that dimension (for example by
making ρD(x1, . . . , xD) = ρD−1(x1, . . . , xD−1)δ(xD), where
(x1, . . . , xD) are the components of aD-dimensional position
vector), the D-dimensional density functional should reduce
to the D − 1 functional. Also, the same principle holds
for a collection of overlapping cavities with sizes such that
only one particle fits in each cavity. Using this important
property, density functionals for one-component HS [122] and
HS mixtures [123] were obtained and it was realized that,
apart from scalar and vectorial weighted densities, tensorial
densities are also needed [124]. The resulting functional gives
very accurate predictions for the HS crystal and, in particular,
it was shown that the correct cell theory in the high density
limit is recovered [122].

Recently it has been shown that the Rosenfeld functional,
which was originally derived semi-heuristicaly, can be sys-
tematically calculated from the virial diagrammatic expansion
including the clusters that represent particle overlap in one
centre [125]. Further, this formulation has been extended to
any particle geometry in any dimension and for any number
of intersections [126]. Finally, the relation between the struc-
tures of the density functionals obtained from the dimensional
crossover to 0D and from a resummation of a diagrammatic
expansion that only considers certain classes of diagrams, was
analyzed [127]. As a result, the zero-dimensional limit was
reconciled, in an elegant way, with the virial approach.

In principle, the original ideas of Rosenfeld for HS
mixtures could be applied to formulate a FMT functional
for general hard anisotropic convex bodies. The procedure
would involve first to exactly deconvolute the Mayer function
in terms of one-particle weights and then use dimensional
analysis to obtain a free energy as a sum of products of
weighted densities up to third-order in density, ensuring that
the expansion captures the exact first- and second-order terms
of the direct correlation function. Since the free energy can
be made to satisfy the same differential equation as in SPT,
the packing fraction-dependent coefficients of this sum can
be extracted, except for some numerical constants. These
constants could be fixed by demanding the free energy to give
the correct zeroth-dimensional (cavity) limit. In practice, this
programme cannot be followed exactly for general convex
bodies. Therefore, a version of FMT was proposed in the
restricted-orientation or Zwanzig approximation (used before
in some extended Onsager theories, see section 3.1.3) to treat
fluids made of hard parallelepipeds (HP) [128–130]. An
alternative procedure to obtain the density functional was
proposed by Cuesta and Martı́nez-Ratón [129]. They realized
that the free energy density of a mixture of HP can be obtained,
in any dimensionality, starting solely from the exact zeroth-
dimensional functional by applying a differential operator to
it. For dimensionality D= 3 the result is

Φ(3D) = −n0 ln(1 − n3) +
n1 · n2

1 − n3
+
n2xn2yn2z

(1 − n3)2
, (49)

with the usual definitions of weighted densities (47). The
weights ω(α)ν (r) are given by

ω(0)ν (r) = 1

8

∏
τ

δ

(
σ (τ)ν

2
− |xτ |

)
,
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Figure 6. Phase diagrams in the density-aspect ratio plane for prolate (left) and oblate (right) hard parallelepipeds as obtained from a FMT
using the restricted-orientation approximation, from [131]. Labels correspond to isotropic (I), nematic (N), columnar (C), smectic (Sm),
discotic smectic (DSm), oriented solid (OS), plastic solid (PS) and perfectly oriented solid (POS) phases. Shaded areas correspond to
two-phase coexistence regions. Reprinted with permission from [131]. Copyright (2004) by the American Physical Society.

ω(1α)ν (r) = 1

4
Θ
(
σ (α)ν

2
− |xα|

)∏
τ �=α

δ

(
σ (τ)ν

2
− |xτ |

)
,

ω(2α)ν (r) = 1

2
δ

(
σ (α)ν

2
− |xα|

)∏
τ �=α

Θ
(
σ (τ)ν

2
− |xτ |

)
,

ω(3)ν (r) =
∏
τ

Θ
(
σ (τ)ν

2
− |xτ |

)
, (50)

where σ (α)ν = σ + (L − σ)δαν , with L the length of the
parallelepipeds and σ 2 their cross-sectional area. Θ(x) and
δ(x) are the Heaviside and Dirac delta functions, respectively.
A particle of species ν is defined as having its longest axis along
the Cartesian axis ν (with ν = x, y or z). σ (α)ν is the length
of species ν in the direction of the axis α. Integrals of the
weights give the fundamental measures, M(α)

ν ≡ ∫ drω(α)ν (r),
of species ν: M(0)

ν = 1, M(3)
ν = v (with v = Lσ 2 the particle

volume), M(1τ)
ν = σ (τ)ν (the edge-length of species ν parallel

to τ ) and M(2τ)
ν = Lσ 2/σ (τ)ν (the surface area of the sides of

species ν perpendicular to τ ). Note that within the same free
energy density (49), it is possible to describe prolate (rod-like
with L > σ ) and oblate (plate-like with L < σ ) particles.

The above theory was used in 2004 by Martı́nez-Ratón
[131] to investigate the phase diagram of prolate and oblate HP.
Transitions to different nonuniform phases (smectic, columnar,
oriented or plastic solid) were considered. Results are shown
in figure 6. On the left side, the phase diagram of prolate paral-
lelepipeds is shown, while in the right side the results for oblate
ones are presented. As can be inferred from the figure, for
κ = L/σ > 5 (prolate) and κ−1 > 4.5 (oblate) the sequence
of phase transitions from low to high densities is I→N→ S→
OS (prolate) and I→N→ C→ OS (oblate), similar to what is
found for freely rotating particles of other geometries like HSC,
HC and platelets. However, for low values of κ (prolate) or κ−1

(oblate), the phase diagram topology is quite different from that
of freely rotating particles, reflecting the effect of the restric-
tion of orientations on the stability of nonuniform phases. For
example, the model predicts the stability of a so-called dis-
cotic smectic phase (labelled DSm in the figure). This peculiar
phase is a layered structure, like the smectic phase but with the
long (prolate) or short (oblate) axis of the particles lying in the

Figure 7. Phase diagram of freely rotating cuboids with aspect ratio
r in the range 0.25–8, from [133]. Dashed lines indicate
approximate phase boundaries. P1 is a smectic-like phase. C1 is a
columnar. Open squares correspond to approximate boundaries of
the solid-cubatic coexistence region. Reprinted with permission
from [133]. Copyright (2005) American Chemical Society.

layers. Because there is no orientational order of this axis in
the layers, the nematic order parameter takes negative values
at the positions of the density maxima (which correspond to
the position of the layers). FMT predicts a first-order phase
transition from the I phase to the discotic smectic phase. This
is in qualitative agreement with computer simulations of the
Zwanzig model with κ = 5 on a lattice [132], which showed
an I–DSm transition at a density between 0.47 and 0.55. How-
ever, it should be taken into account that the parallelepipedic
geometry, especially for cuboids with 1 < κ � 4, might sta-
bilize the cubatic and the so-called parquet (a smectic with
in-layer tetratic order) phases, as found by John and Escobedo
[133] in recent MC simulations on freely rotating cuboids. The
phase diagram predicted by the simulations is rather complex
(see figure 7).

Martı́nez-Ratón et al [134] devised a differential proce-
dure to generate functionals in higher dimensionalities from
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Figure 8. Equation of state (pressure in reduced units versus
packing fraction) for all the stable phases obtained from the FMT
for parallel HC [135]. These phases are nematic N (for η up to the
point indicated by full rhombus), smectic Sm (from that point up to
the discontinuity) and crystal K (from the discontinuity up to close
packing). The open circles are MC simulation results from [100].
The arrows represent the N–Sm and Sm–K phase transitions as
obtained from simulations. The two insets show the EOS for the
metastable C phase in the neighbourhood of the N–C (left inset) and
Sm–C (right inset) phase transitions. Reprinted with permission
from [135]. Copyright (2008), AIP Publishing LLC.

low-dimensional functionals for parallel particles with con-
stant cross sections. Using the dimensional crossover prop-
erty mentioned above, these authors obtained a functional for
a mixture of parallel cylinders from the corresponding func-
tional for a mixture of hard discs. The theory was used by
Capitán et al [135] to study the phase behaviour of a fluid of
parallel HC and all the possible liquid-crystalline phases, as
well as the crystalline phase, were considered (see figure 8).
The functional was numerically minimized using a Gaussian
parameterization for the density profiles and very good agree-
ment with Monte Carlo simulations [90, 100] was obtained for
the equation of state, particularly for the nonuniform phases.
The main result was that the C phase was found to be metastable
with respect to the S or K (crystal) phases, which explains the
observation in the simulations of a region of stability of the
C phase which disappears with system size. Since the present
functional reduces to the SPT in the uniform phase limit, the
description of the N phase was not as accurate as that of the
nonuniform phases and a deviation between theory and simu-
lations was evident in the location of the N–S transition.

An early attempt to use ideas from FMT for freely
rotating anisotropic bodies was due to Cinacchi and Schmid
[136], who proposed a density functional that interpolates
between the FMT for HS and the Onsager theory for hard
needles. They applied their approximation to hard ellipsoids
and hard spherocylinders. The location of the isotropic-nematic
transition was calculated and compared with simulation and

much better agreement was found than in the case of the
Onsager theory. In fact, the theory was found to be almost
as accurate as the PL theory.

Later, Schmidt extended the FMT formalism to a mixture
of freely rotating particles, proposing a numerically tractable
functional for a mixture of spheres and rods of vanishing
thickness (needles) [137]. He showed that the Mayer function
of spheres and needles can be exactly expressed as a sum of
convolution products,

fsn(r, Ω̂) = [ω(3)s ∗ ω(0)n

]
(r, Ω̂) +

[
ω(2)sn ∗ ω(1)n

]
(r, Ω̂), (51)

where s and n stand for spheres and needles, respectively and
∗ is a convolution product, [a ∗ b](r) = ∫ dr′a(r′)b(r − r′).
The HS scalar and vectorial weights are those of the original
FMT [137],

ω(3)s (r) = Θ(R − r), ω(2)
s (r) = δ(R − r)

r

R
, (52)

with R the HS radius. For hard needles the weights are

ω(1)n (r, Ω̂) = 1

4

∫ L/2

−L/2
dlδ(r + Ω̂L),

ω(0)n (r, Ω̂) = 1

2

[
δ

(
r +

Ω̂L
2

)
+ δ

(
r − Ω̂L

2

)]
, (53)

withL the length of the needles. Note that both weights depend
on the spatial and orientational coordinates of a single needle.
However, recovering the exact Mayer function requires a new
weight:

ω(2)sn (r, Ω̂) = 2|ω(2)
s (r) · Ω̂ |, (54)

which depends on the position r of the HS and the needle
orientation Ω̂ . Therefore, strictly speaking it is not a one-body
weight. Within this approximation, the free energy density
is obtained as Φ = Φs + Φsn (i.e. the sum of the one-
component HS free energy density and the contribution coming
from the interaction between spheres and needles [137]). The
excess part of the free energy functional is then obtained by
integration, βF[{ρμ}] = ∫ dr

∫
dΩ̂ Φ({n(α)μ }).

To improve the theory, Schmidt et al took a step forward
by including rod-rod interactions [138]. In order to do that,
the residual surface of the rods was taken into account, in the
asymptotic limit of high aspect ratios, by approximating the
Mayer function between two rods. A new weight function is
required which depends on the orientations of both needles,
a fact that turns practical applications of this approach into a
demanding numerical task.

In the case of HSC, the correction of order D/L to the
Mayer function deconvolution was taken into account by in-
troducing four new geometric weights which, in turn, define
a new set of weighted densities [139]. The same formal-
ism was also applied to a ternary mixture of HS, hard rods
and hard platelets, with both anisotropic particles having van-
ishing thickness [140]. In particular, the I–N transition of
a one-component hard-platelet fluid was calculated with this
functional and the results compared with MC simulations and
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Table 1. Isotropic-nematic coexistence data for hard platelets of
radius R, as obtained from FMT [140], simulation [85] and Onsager
theory [140].

FMT Simulation Onsager

ρ(iso)R3 0.418 0.473 0.667
ρ(nem)R3 0.460 0.509 0.845
ΔρR3 0.041 0.036 0.178
Snem 0.492 0.370 0.781
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Figure 9. Sketch of two overlapping bodies B(μ) and B(ν) with fixed
orientations given by the unit vectors Ω̂ and Ω̂ ′, respectively. Their
common intersection volume B(μ) ∩ B(ν) is shown. Also, r̂ is a
generic unit vector at the centre of the particle and Rμ(r̂) gives the
distance from the centre to its surface ∂B(μ). ûμ is the corresponding
normal unit vector. The thick solid line represents the curve
∂B(μ) ∩ ∂B(ν).

the Onsager theory. The results compared well with simula-
tions, as shown in table 1.

A new development, along the lines originally proposed
by Rosenfeld [141], has recently been carried out in an attempt
to formulate a general FMT approximation for freely rotating
convex bodies. Again the theory is formulated for a mixture
of hard particles with arbitrary number of species, labelled by
index μ = 1, 2, · · ·. The main idea is based on the observation
made by Rosenfeld that, in general, the deconvolution of the
Mayer function as a product of single particle weights is inti-
mately related to the Gauss–Bonnet theorem of differential ge-
ometry [141]. This idea has been followed by Hansen-Goos and
Mecke [142, 143], who applied the Gauss–Bonnet theorem to
approximately deconvolute the Mayer function of two convex
particles. Figure 9 is a sketch of two overlapping convex bodies
B(μ) and B(ν) which, in general, will be of different species μ
and ν. Let the orientations of the bodies be given by the unit
vectors Ω̂ and Ω̂ ′ and let their centre of mass relative position
vector with respect to a fixed reference frame be Δr. Also, let
∂B(μ) be the surface of body B(μ) and ∂B(μ)∩B(ν) the surface of
this body which is inside the body B(ν). Finally, ∂B(μ) ∩ ∂B(ν)
denotes the curve generated by the intersection between the
surfaces ∂B(μ) and ∂B(ν). Further, let r̂ be a generic unit vector
from the centre of particle μ and Rμ(r̂) the distance from this
centre to a point on the surface of the same particle. The Gaus-
sian and mean curvatures at a point on the surface ∂B(μ) are
Kμ(r̂) = k(1)μ (r̂)k

(2)
μ (r̂) and Hμ(r̂) = 1

2

[
k(1)μ (r̂) + k(2)μ (r̂)

]
,

with k(α)μ (r̂) (α = 1, 2) the principal curvatures of the surface
∂B(μ). These curvatures characterize the intrinsic geometry of

the surface ∂B(μ). The curve ∂B(μ) ∩ ∂B(ν) at a point on the
surface ∂B(μ) is characterized by its geodesic curvature kgμ(r̂).

In the present geometrical construction, the Gauss–Bonnet
theorem can be expressed as∫

∂Bμ∩Bν

Kμ(r̂)

4π
dA +

∫
∂Bν∩Bμ

Kν(r̂)

4π
dA

+
∫
∂Bμ∩∂Bν

(
kgμ(r̂) + kgν(r̂)

4π

)
dl

= −fμν(Δr, Ω̂, Ω̂ ′), (55)

where fμν(Δr, Ω̂, Ω̂ ′) is the Mayer function of the two
particles. The first two surface integrals can be expressed as
the spatial convolutionsω(0)μ ∗ω(3)ν andω(3)μ ∗ω(0)ν , respectively,
with the one-particle weights defined as

ω(0)μ (r) = Kμ(r̂)

4π
δ(Rμ(r̂)− r),

ω(3)μ (r) = Θ(Rμ(r̂)− r). (56)

However, the third integral can only be exactly deconvoluted
in the case of two particle geometries: spheres (or
parallel ellipsoids) and parallel or mutually perpendicular
parallelepipeds. The last integral is a contour integral. The
integral of the first term, kgμ(r̂)/4π , can be split into two
contributions. The first is the integral of a term proportional
to Hμ(r̂). The second is the integral of a term proportional

to
k(1)μ (r̂)−k(2)μ (r̂)

2(1+uμ·uν ) . The presence of the denominator 1 + uμ · uν
is the reason why the last integral in (55) cannot be exactly
deconvoluted. Approximating this denominator by unity (the
lowest order in the Taylor expansion with respect to uμ · uν)
allows for the deconvolution of this contribution in terms of
one-particle weights. The result is:

− fμν = ω(0)μ ∗ ω(3)ν + ω(1)μ ∗ ω(2)ν − ω(1)
μ ∗ ω(2)

ν

− ζ
↔
ω
(1)

μ ∗ ↔
ω
(2)

ν + (μ ↔ ν), (57)

with ω(1,2)μ , ω(1,2)
μ and

↔
ω
(1,2)

μ , the scalar, vectorial and tensorial
weighted densities (expressions for them can be found in
[142, 143]). ζ is an adjustable parameter that allows for the
improvement of the theory (in particular, it has been used
to improve the results for the I–N transition as compared
to simulations). A free energy density, which leads to this
deconvolution of the Mayer function and, also, which recovers
Tarazona’s FMT version for HS [122] (and, therefore, fulfills
the dimensional crossover to 0D) is

Φ = − n0 ln(1 − n3) +
n1n2 − n1n2 − ζTr

[↔
n1

↔
n2

]
1 − n3

+
3

16π

nT
2

↔
n2n2 − n2n2n2 − Tr

[
↔
n

3

2

]
+ n2Tr

[
↔
n

2

2

]
(1 − n3)2

.

(58)

The weighted densities are calculated as

nα(r) =
∑
μ

∫
dr′
∫

dΩ̂ρμ(r′, Ω̂)ω(α)μ (r − r′, Ω̂). (59)
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Figure 10. Results for the I–N transition of the HSC fluid as
obtained from the FMT of Hansen and Mecke [143]. Symbols
indicate simulation results from [96]. Solid and dashed lines were
calculated using different choices of the parameter ζ (see [143] for
details).

The free energy density (58) has the merit of being a function
of one-particle densities and consequently its implementation
is numerically cheaper than those based on the Mayer function.
Also, the functional can be improved by adding more tensorial
weighted densities in the second term of (58) as obtained from
the expansion of (1+uμ ·uν)−1. Note that the term proportional
to ζ is necessary to generate an orientational phase transition;
its absence destabilizes the N phase. The value of the parameter
ζ can be chosen so as to improve the results of the model
compared with computer simulations, as shown by Hansen-
Goos and Mecke [142, 143]. These authors applied the present
functional to study the I–N transition of HSC for general aspect
ratio (see figure 10). The coexisting densities resulting from a
particular value of ζ compare well with the simulation results.
Härtel and Löwen [144] applied the same theory to study the
static and dynamical response of a fluid of HSC subject to the
presence of aligning fields.

3.2. Further studies on spatially nonuniform phases

Hard models have been used to analyze other nonuniform
liquid-crystalline phases different from the smectic and also
some effects and phenomena present in general liquid-
crystal phases, especially concerning peculiar structural and
dynamical effects. One of the latter concerns the presence
of transverse order in smectic phases made of hard rods.
In studies of smectics, one assumes that the orientational
order parameter is high and that, as a result, the orientational
distribution function should be highly peaked in the direction
of the layer normal. The success (or not) of the parallel particle
approximation is based on this expectation. Corrections to
the free energy due to orientational freedom is expected to
be quantitatively small and therefore the coupling between
orientations and positions should be effectively weak, i.e.
ρ(r, Ω̂) � ρ(r)h(Ω). This means that the extremely small
fraction of rods located close to the interstitial region should
also be highly oriented along the layer normal. However,
already at the level of Onsager density functional theory, it was

Figure 11. Configuration of hard spherocylinders in a smectic
arrangement showing interstitial particles with transverse
orientation (from simulations by van Roij et al [145]). Reprinted
with permission from [145]. Copyright (1995) by the American
Physical Society.

found by van Roij et al [145] that the orientational distribution
function h(r,Ω) is strongly modulated. Theory and
simulations indicated that the interstitial particles are oriented
parallel, instead of perpendicular, to the layers (see figure 11).

In more recent work, the related effect of interlayer
diffusion has been studied. It has long been known that, in a
nematic phase, diffusion constants along and perpendicular to
the director are very different [146], with some peculiar effects
found in simulations of the nematic phase of hard ellipsoids
[147], where it was found that the longitudinal diffusion
component increases with density in some density interval just
above the isotropic-nematic transition. Longitudinal diffusion,
which gives rise to interlayer diffusion or permeation in smectic
phases, has been studied more recently. Lamellar phases made
of rod-like viruses were seen to exhibit single particle hops,
which occur by quasi-quantized steps of one rod length; this
one-particle diffusion can be explained on the basis of a simple
model based on the longitudinal diffusion of a nematic phase
in a periodic potential that simulates the lamellar ordering.
Diffusion mechanisms in smectics has been studied in detail,
using computer simulation, by Cinacchi and de Gaetani [148].

The theories for nonuniform liquid-crystalline phases dis-
cussed so far were devised with a view to describing the tran-
sition from the nematic to the smectic phase since the latter is
the simplest nonuniform phase, exhibiting spatial order along
only one coordinate. An additional level of nonuniformity
is presented by the columnar phase, where the local density
depends on two spatial coordinates. Using computer simula-
tion, Stroobants et al [90] studied a fluid of hard parallel sphe-
rocylinders and observed the formation of a columnar phase
(consisting of a 2D hexagonal lattice of fluid columns) between
the smectic and crystal phases for sufficiently large values of
L/D. This phase was later shown to be an artefact of the small
system size of the samples [100]. In fact, there are good reasons
to expect that the columnar phase cannot be stable: in the large
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Figure 12. Phase diagram of the hard cut sphere model from
computer simulation (from Veerman and Frenkel [152]). Reprinted
with permission from [152]. Copyright (1992) by the American
Physical Society.

L/D regime, hard parallel spherocylinders resemble hard par-
allel cylinders and these behave exactly as hard discs if scaled
along the long particle axis. Since hard discs directly freeze
from the fluid into the crystal, there should be no intermedi-
ate phase with partial order in the system of parallel cylinders.
In the corresponding freely rotating model, rotational entropy
plays against columnar ordering and the columnar phase is not
stabilized either.

Therefore, except in mixtures of rods with different
lengths [150] (see section 3.5.1) where columnar ordering
(generated by length bidispersity) was found, we do not ex-
pect to find columnar phases in fluids of (prolate) hard rods.
This is why columnar phases were searched for in fluids of
oblate particles. However, for this purpose the choice of par-
ticle is not simple. The first model of oblate or discotic parti-
cle, the infinitely thin circular platelet discussed by Onsager,
exhibits nematic ordering [85, 151], but it possesses a vanish-
ing excluded volume as particles become increasingly ordered
and, consequently, there is no mechanism to generate spatially
nonuniform phases beyond the nematic. Another model con-
sidered, that of oblate hard ellipsoids, again shows no meso-
genic phases different from the nematic [57, 147], since already
the parallel model scales to the hard-sphere model. To circum-
vent these problems, Frenkel [149] studied a particle model
that favours the piling-up of particles to form columns. This is
the hard cut sphere model, consisting of a sphere of diameter
D where two opposite parts have been removed, leaving a par-
ticle of thickness L < D with two flat surfaces; when L = D

a full sphere is recovered. Frenkel [149] and Veerman and
Frenkel [152] studied this model in detail by computer sim-
ulation. Their complete phase diagram is shown in figure 12.
As expected, a columnar phase, intermediate between the ne-
matic and the crystal phases, was formed for L/D � 0.25.
Interestingly, an exotic nematic phase, the cubatic phase, was
stabilized in a small region of density and aspect ratio. This

Figure 13. Phase diagram of oblate cylinders of aspect ratio L/D as
obtained in [153]. The packing fraction of the system is represented
in the vertical axis. Red lines are results from the theoretical
approximation. Symbols correspond to different computer
simulation studies (see original paper for details). Reprinted with
permission from [153].

phase possesses no positional order but exhibits orientational
order with cubic symmetry.

More recently, further studies on the columnar phase sta-
bility in systems of oblate hard particles have been carried
out by Wensink and Lekkerkerker [153] and by Marechal
et al [154]. Wensink and Lekkerkerker mapped out the com-
plete liquid-crystal phase diagram of oblate cylinders of differ-
ent aspect ratios L/D < 1. They used PL theory to describe
isotropic and nematic phases and a Lennard-Jones–Devonshire
cell model to address the question of the stability of nonuniform
phases (namely, columnar and solid) at high packing fractions.
At low enough aspect ratio (L/D < κt � 0.175) the system
shows I–N and N–C transitions upon increasing its packing
fraction. For aspect ratios L/D > κt the anisometry of the
particles is too small to produce a stable nematic phase and
the system shows a direct transition from the isotropic to the
columnar phase. Results compare satisfactorily with computer
simulations, particularly in the region L/D > κt , as can be
seen in figure 13.

It is interesting to note that, within this model, the N–C
transition does not depend appreciably on the aspect ratio. By
using a Gaussian ansatz for the orientational distribution func-
tion and taking advantage of the fact that nematic order is very
strong close to the N–C transition, Wensink and Lekkerkerker
were able to show that the nematic-columnar transition is, in
fact, universal and independent of particle shape.

Marechal et al [154] used Monte Carlo free energy cal-
culations to obtain the phase diagram of oblate hard sphero-
cylinders (OHSC) as a function of their aspect ratio. Their
result has been reproduced in figure 14. Apart from the crystal
phases, the topology of the phase diagram is qualitatively sim-
ilar to that obtained by Wensink and Lekkerkerker for oblate
cylinders using PL theory (figure 13). At low aspect ratios the
system undergoes I–N and N–C phase transitions as packing
fraction is increased. Above a particular value of aspect ratio,
the N phase is no longer stable and a direct I–C phase transition
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Figure 14. Phase diagram of oblate hard spherocylinders in the
aspect ratio packing fraction plane as obtained by Marechal
et al [154]. The shaded regions at high packing fraction are states
above the close packing limit. Crystalline phases Xtilted and Xaligned,
N and C mesophases and the I phase are stable. Symbols are
coexistence points obtained from the simulations, while lines are
only guides to the eye. Reprinted with permission from [154].
Copyright (2011), AIP Publishing LLC.

Figure 15. Phase diagram of zigzag molecules made out of hard
spherocylindrical sectors with aspect ratio L/D = 2 as a function of
angle between the sectors Ψ , from [157]. Labelled phases are:
isotropic (I), nematic (N), smectic A (Sm A), smectic C (Sm C),
columnar (C), tilted crystal (XT) and crystal (X). Reprinted with
permission from [157]. Copyright (2004) by the American Physical
Society.

takes place. Moreover, the similarity between both phase dia-
grams applies also to the N–C transition at low aspect ratios:
like in the case of oblate cylinders, this transition seems to be
almost independent of L/D.

There have been some studies on phase behaviour in
fluids of rigid particles formed by linked rods. The resulting
particles possess non-convex shapes and nonstandard liquid-
crystalline phases may be stabilized due to nontrivial packing
restrictions. For example, banana-shaped or V-shaped particles
are biaxial bodies and consequently they have been used to
investigate the stability of the biaxial nematic phases (see next
section). However, these particles have been conjectured [155]

to be able to also form smectic phases with antiferromagnetic
arrangement, an effect originating in their polar character (here
polarity has a steric origin associated to the shape). A very
detailed simulation study of zigzag particles was performed
by Maiti et al [157], who considered particles with three
sectors made from three hard spherocylinders attached by their
ends. An amazingly large number of stable phases were found,
including isotropic, nematic, smectic A, smectic C, columnar
and two crystal phases (see figure 15, where the phase diagram
is represented in the plane pressure versus angle between
sectors Ψ ). Figure 16 shows typical configurations of these
phases. The presence of the smectic C phase and a transition
from the smectic A to the smectic C phase is particularly
interesting since it shows, as already demonstrated by Somoza
and Tarazona using density functional theory [109, 110], that
hard-body interactions alone can stabilize different types of
smectic phases and drive transitions between them.

3.3. Biaxial particles

Up to now we have discussed the appearance of liquid-
crystalline order as the direct consequence of the anisotropy
along a single axis of common nematogens. Simple entropic
arguments rapidly lead to the conclusion that the equilibrium
uniform configuration of the system should be a nematic phase
when the density is high enough, as was simply and elegantly
shown by Onsager [16]. But it is clear that molecules of
most liquid-crystal forming substances are not cylindrically
symmetric and, therefore, it should be possible, as first
predicted by Freiser [158] in 1970 in the context of an extended
Maier–Saupe model for thermotropic liquid crystals, to find a
stable biaxial nematic (NB) phase, i.e. a nematic phase that
shows not only long-range orientational order of the long
molecular axis along one direction (the director), as it is the
case in common uniaxial nematics, but also shows long-range
order of the shorter molecular axes along two other mutually
perpendicular directors. In other words, a nematic phase with
three directors about which three molecular axes tend to align.
In figure 17 we have shown common uniaxial nematic phases
N+

U and N
−
U which are usually formed by rod-like molecules

and disc-like molecules, respectively, and a biaxial nematic
phase formed by board-like molecules.

In the case of the uniaxial nematic phases (a) and (b)
shown in figure 17, all the directions perpendicular to n̂ are
equivalent. Therefore, if we look at the system from a direc-
tion parallel to the director, we will find that the molecules
have, on average, a circular cross section while they will show
an elliptical cross section if we look at the system in a direction
perpendicular to n̂. This leads to an axially symmetric ellipsoid
and, hence, this kind of nematic phase is optically uniaxial. In
(a) the largest polarizability is parallel to n̂ and, as a conse-
quence, this uniaxial nematic phase has positive birefringence.
In case (b), however, the largest polarizability is perpendicular
to n̂, resulting in a negative birefringence. But in case (c) there
is another possibility: the existence of a secondary director m̂
perpendicular to n̂ (and, therefore, a third one l̂ perpendicular to
the other two). In this case molecules will show a non-circular
(elliptical) averaged cross section if they are viewed either par-
allel to the main director n̂ or parallel to the secondary one m̂
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Figure 16. Typical configurations in different from Monte Carlo simulations of a system of 400 zigzag molecules, from [157]. From left to
right and top to bottom: crystal (reduced p∗ = 11 and angle between consecutive sectors Ψ = 15◦), smectic A (p∗ = 9 and Ψ = 15◦),
smectic C (p∗ = 8 and Ψ = 65◦), nematic (p∗ = 5 and Ψ = 15◦) and isotropic (p∗ = 1 and Ψ = 15◦) phases. Reprinted with permission
from [157]. Copyright (2004) by the American Physical Society.
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Figure 17. Uniaxial nematic phases of (a) prolate and (b) oblate particles and (c) biaxial nematic phase. See text for discussion.

(or l̂). Therefore, this nematic phase has reduced symmetry and
is optically biaxial. In other words, molecules in the uniaxial
phase are rotationally disordered around the long axis while in
the biaxial phase this rotation is restricted in such a way that
the molecules show a time averaged board-like shape. From
the macroscopic point of view, the biaxial nematic has two
optical axes, i.e. directions along which the optical properties
appear to be cylindrically symmetric [159–161].

The theoretical prediction of the NB phase in 1970 trig-
gered its search since it was immediately recognized that the
existence of NB phases is a problem of great interest, not only
theoretical but also practical, due to the fact that these phases
could be used in the development of fast electro-optical devices
(see the excellent review by Tschierske and Photinos [161,
164]). Consequently, after its prediction by Freiser, a great ef-
fort has been devoted to their theoretical analysis, experimental
observation and computer simulation. The first experimental
observation of the NB phase, in a lyotropic system, was done
in 1980 by Yu and Saupe [165], although their system was a
ternary mixture rather than a pure compound. The occurrence
of the NB phase in mixtures will be reviewed in section 3.5.1.
More recently biaxial nematics have been observed in ther-
motropic liquid crystals made of bent-core organic molecules
[166–169]; however, in this case controversial issues about
the correct identification of the biaxial phase still remain [159,
160, 168–170]. Direct experimental evidence of the existence

of the biaxial nematic phase in a system of particles that can
be considered hard bodies is that found in 2009 by van den Pol
et al [171] in a system of board-like particles. These authors
found both biaxial nematic and biaxial smectic phases in a col-
loidal dispersion of goethite particles. The particles are so big
(254 × 83 × 28 nm on average, with a polydispersity of 20%–
25% in all directions) that they can be regarded, to a very good
approximation, as hard particles. Small angle x-ray scattering
was used to study the structure of the macroscopic domains
formed. Biaxiality is found in a system whose particles have a
shape that is almost exactly in between rod-like and plate-like,
in agreement, as we shall review below, with the predictions
of theoretical models. The results of this experimental study
suggest that biaxial phases can be indeed easily obtained by a
proper choice of the particle shape. Molecular asymmetry is
also expected to have some other influences on the macroscopic
phase behaviour of the system, involving transitions between
non-biaxial phases as has been shown, for example, by Somoza
and Tarazona [172] who used the decoupling approximation
to investigate the isotropic-nematic transition as a function of
particle biaxiality in a system of hard spheroplatelets. Their
conclusion is that the first-order character of this phase transi-
tion is significantly weakened by the molecular asymmetry.

To our knowledge, the first hard-body model approxi-
mation to the biaxial nematic phase is that of Shih and Al-
ben [173, 174]. They used a generalization of Flory’s lattice
model to compute the phase diagram of rectangular plate-like
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Figure 18. (a) Spheroplatelet. (b) Conjectured phase diagram for a system of spheroplatelets from Onsager’s theory as a function particle
geometry and system’s packing fraction. Reprinted with permission from [175]. Copyright (1989) by the American Physical Society.

particles of any length and width. The system consists in a sim-
ple cubic lattice formed byM cells. N rigid rectangular plates
are then dispersed through the lattice. Each one of these plate-
like particles isw cells wide, l cells long and one cell thick and
it is required that the two sides of the plates lie along mutu-
ally perpendicular base-vector directions. Therefore, there are
six possible molecular orientations in this model. There are no
interactions between particles except for the hard-core inter-
action needed in order to avoid overlapping between plates.
The thermodynamic behaviour of the system is then obtained
by considering the number of distinct ways g({α} , N,M) of
packing N molecules into M cells under the restriction that
given fractions αi (i = 1, ..., 6) of the plates have each of
the six possible orientations. In the limit of very large N the
Helmholtz free energy of the system is related to g evaluated
at the set {α} for which it takes its maximum value:

F = −kT ln g({α} , N,M) (60)

Details of the calculation of g({α} , N,M) are to be found in
the original paper of Shih and Alben [173]. The results from
the model are that a biaxial nematic phase is obtained at high
pressure for plates which are neither very square nor very rod-
like in shape. In this phase both the long axes and the flat faces
of the particles tend to be parallel. At lower pressure the biaxial
phase undergoes a second-order phase transition to a uniaxial
phase. The model shows two different uniaxial nematics:
prolate uniaxial states (N+

U) in which the long axes tend to be
parallel and oblate uniaxial states (N−

U) in which the flat faces
tend to be parallel. Prolate uniaxial nematics are stable for rod-
like particles (length/width � 0.3) at intermediate densities
and oblate uniaxial states take place for plate-like particles
(length/width � 0.3) also at intermediate densities. At even
lower pressure the uniaxial nematic phase undergoes a first-
order transition to an isotropic phase showing discontinuities
in the density and the orientational order in going through the
transition. The size of these discontinuities depends strongly
on the aspect ratio of the plates.

A different kind of plate-like particles, namely
spheroplatelets (see figure 18(a)), was considered in 1989 by
Mulder [175] who used, taking advantage of the knowledge
of the explicit expression for the excluded volume between
two spheroplatelets, Onsager’s approximation to investigate
the phase behaviour of a system of such particles. His results
are not conclusive with respect to the precise topology of the
phase diagram since a complete free energy minimization was
not carried out. Instead, a bifurcation analysis with respect
to particle geometry was performed and a conjectured phase
diagram was presented (see figure 18(b)), which showed a
biaxial nematic phase for high enough packing fractions. For
moderate packing fractions, the biaxial phase was assumed to
be stable for particles shaped not too rod- or plate-like.

Spheroplatelets of all possible values of their elongation c
were also analyzed the following year, in 1990, by Hołyst and
Poniewierski [176] using the smoothed density approximation.
A Landau bicritical point, at which a direct transition from the
isotropic phase to the biaxial phase occurs (and as conjectured
by Mulder, figure 18), was found. In fact, a whole line of
these points is obtained when the spheroplatelets elongation
is allowed to vary. A line of bicritical points was also found
for a system of hard biaxial ellipsoids of axes a < b < c

for elongations c/a � 7. Both spheroplatelets and biaxial
ellipsoids show similar scaling at the Landau bicritical point:
b/a ∼ (c/a)1/2, where b/a is the breadth of the ellipsoid or
the spheroplatelet.

The phase diagram of a system of spheroplatelets was
calculated later, in 1991, by Taylor and Herzfeld [177], this
time making use of the scaled particle approximation. In order
to further simplify the calculations, the resulting scaled particle
equations were solved in the Zwanzig approximation, as in the
previous work of Shih and Alben discussed above. Figure 19
shows the phase diagram obtained by Taylor and Herzfeld for
a system of spheroplatelets with c/2a = 5. In the vertical
axis the packing fraction of the system is shown, while the
horizontal axis represents the particle geometry. Panel (a)
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Figure 19. (a) Phase diagram of spheroplatelets with c/2a = 5 from the scaled particle of Taylor and Herzfeld [177]. (b) Same as (a) but
including translationally ordered smectic phases (see text for discussion). Reprinted with permission from [177]. Copyright (1991) by the
American Physical Society.

shows the result obtained from the scaled particle theory solved
in the Zwanzig approximation, considering only the possible
formation of nematic phases. The shaded areas correspond to
first-order phase transitions while dashed lines correspond to
second-order transitions. Two uniaxial nematics are stable,
namely the rod-like uniaxial nematic NU(+) and the plate-like
uniaxial nematic NU(−). For particles that are not too rod- or
plate-like a biaxial nematic, Nbx, is found when the packing
fraction is high enough, in agreement with previous models.

The elusiveness of the biaxial nematic phase led Taylor
and Herzfeld to wonder about the possibility that the biaxial
nematic were pre-empted by translationally ordered phases,
namely by the smectic phase. In order to shed some light on
that issue, they considered the stability of a smectic by using
a cell model to treat the translational order. In that model,
smectic order was imposed by introducing impenetrable cell
walls which divide the system into smectic layers. Each layer
is then treated as a 2D liquid confined within the 1D cell
corresponding to the thickness of the smectic layer, the 2D
density of this fluid being coupled to the 1D cell entropy
through their mutual dependence on the smectic layer spacing.
Three smectic A phases are then possible, depending on which
of the three spheroplatelet principal axes is associated with the
smectic ordering axis. Figure 19(b) shows the phase diagram
obtained when this description of the smectic A ordering is
combined with the scaled particle theory for the isotropic and
nematic phases. Stable smectic A phases are found in the
full range of particle biaxiality (as measured by the value of
b/2a) for packing fractions �0.5. In the rod-like limit (b → 0)
there is a first-order transition from the uniaxial nematic to
the uniaxial smectic SU(+) in which the rod axes are aligned
perpendicular to the smectic layers. In the other extreme, for
plate-like particles in the limit b → c, a first-order transition
between the uniaxial nematic NU(−) and a uniaxial smectic A
phase SU(−) is found. In this smectic phase the short molecular
axes are oriented perpendicular to the smectic layers. In an
intermediate molecular biaxility region of the phase diagram,
a stable biaxial smectic phase, SBX(+), is obtained. In this
phase the long molecular axes are aligned perpendicular to the
smectic layers, like in the uniaxial SU(+) phase, but an in-layer
second-order transition as the molecular biaxility is increased

leads to the ordering of the short molecular axes, resulting
in the biaxial smectic phase. This in-layer order of the short
molecular axes is lost again, via a first-order phase transition,
upon increasing even further the molecular biaxility, giving rise
to the stable uniaxial smectic SU(−). There are two remarkable
aspects in the phase diagram of figure 19(b). The first is the
almost complete disappearance of the stable biaxial nematic
island predicted by this model when no translationally ordered
phases are taken into account (as shown in panel (a) of the
figure). The second is the strong first-order character of all the
nematic-smectic transitions as shown by the wide shaded areas
that separate those phases in the phase diagram. Although it is
expected that the phase diagram predicted in this paper could be
qualitatively correct, one must bear in mind that two different
theories are used to describe the translationally disordered
phases and the smectic one. Moreover, the approximation
used to describe smectic phases will probably overestimate
the stability of the smectic phase since the translational order
is imposed by hand.

A weighted density theory was employed by Somoza
and Tarazona [109, 110] to investigate the phase diagram of
a system of hard particles with a different biaxial shape,
namely oblique cylinders. The phase diagram of the system
was computed, for a system of parallel particles, as a function
of the molecular asymmetry as measured by the parameter
Δ (see figure 20). The transition densities, ρ∗, shown in the
vertical axis of the figure are expressed in units of the close
packing density ρcp = 2/(31/2D2L). Apart from a continuous
nematic-smectic A phase transition for small values of Δ/L,
i.e. for particles with small biaxiality, and a first-order nematic-
smectic C transition, at intermediate molecular biaxialities,
a stable biaxial nematic (region B in the figure) is obtained
for large values of Δ/L. The predicted existence of a biaxial
nematic phase in a system of asymmetric hard particles is in
agreement with the results from previous theoretical models
but, as pointed out by the authors in their conclusions, in this
particular model the biaxial nematic phase could be an artefact
due to the imposed perfect alignment of the cylinder’s axes
which may favour the biaxial order.

A hard-boomerang fluid, formed by hard particles each
one made of two hard spherocylinders joined at their ends at
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Figure 20. Phase diagram of a system of parallel oblique hard
cylinders as obtained from the weighted density theory of Somoza
and Tarazona [109]. Densities in the vertical axis are in units of the
complete packing density. Reprinted with permission from [109].
Copyright (1988) by the American Physical Society.

Figure 21. Phase diagram of a system of hard-boomerang particles
as obtained from the Onsager theory by Teixeira et al [27].
Reprinted with permission from [27].

an angle ψ , has been studied by Teixeira et al [27]. In this
way a biaxial particle is constructed, the value of ψ being a
measure of its biaxility. The Onsager approximation was then
used to obtain the free energy of the system and bifurcation
analysis was employed in order to study the relative stabil-
ity of the isotropic and nematic phases as a function of the
molecular biaxiality. The phase diagram of the system, in the
vicinity of the Landau point where isotropic, uniaxial nematics
and biaxial nematic meet, is shown in figure 21. In that figure
c = (π/4)DL2ρ is the reduced density of the system while in
the horizontal axis molecular biaxiality increases as we move
to the right toward larger values of ψ . The solid line is the

locus of the lowest densities at which the model has uniaxial
nematic solutions. The dotted lines are the loci of second-order
uniaxial-biaxial transitions and the dashed line is the limit of
stability of the isotropic phase with respect to nematic fluctu-
ations. Therefore, at both sides of the Landau point the model
predicts a first-order isotropic-unixial nematic transition, al-
though coexistence was not calculated. At the Landau point
the isotropic phase continuously transforms into the biaxial
nematic upon increasing the density of the system. The phase
diagram qualitatively resembles closely that obtained by Tay-
lor and Herzfeld for hard spheroplatelets (left side of figure 19)
and, as in that case, a uniaxialN+ phase is obtained in the limit
of rod-like particles and a uniaxial nematic N− is stable in the
opposite limit of plate-like particles. A simulation study of a
bent-core molecule made from HSC sectors was performed by
Lansac et al [156]. No biaxial nematic phase was found in this
study, although other interesting features of the model were dis-
covered, in particular the formation of a new class of smectic
phase characterized by the spontaneous formation of macro-
scopic chiral domains (even though the particles are achiral).

A closed model for biaxial particles, composed of hard
spherocylindrical sectors attached by their ends at an angle and
forming a zigzag molecule, was studied by Maiti et al [157]
by means of Monte Carlo simulations. This study, already
discussed at the end of section 3.2, revealed the presence of
isotropic, nematic, smectic A, smectic C, columnar and two
crystal phases. Of interest here is the character of the smectic
and crystal phases, which are biaxial, but not the nematic phase.
Simulations have shown that a biaxial nematic phase made
of hard biaxial ellipsoids require a high degree of biaxiality
[162, 163]. Therefore, it is possible that the zigzag model may
have a stable biaxial nematic phase for some specific molecular
configuration.

Vanakaras et al [178] used Monte Carlo simulations and
Onsager’s theory of biaxial board-like particles with a frozen
long axis and a freely rotating secondary axis. They calculated
the phase diagram of the one-component fluid using simulation
and compared the results with the Onsager theory. The phase
diagram, in the packing fraction versus aspect ratio plane of
the rectangular cross section perpendicular to the frozen axis
(see figure 22) exhibited both uniaxial and biaxial nematic and
smectic phases with phase boundaries all meeting at a single
point. As discussed in section 3.5.1, they also studied a binary
mixture, which was found to stabilize the biaxial nematic
phase.

A more extensive theoretical study of the phase diagram
of a system made of five different biaxial particles, differing in
their cross sections, was done by Martı́nez-Ratón et al [179].
The orientation of the principal molecular axis was kept fixed
along the z axis while the secondary axis can rotate freely.
In this way, the system is able to show a uniaxial nematic
phase with its director along the z axis, a biaxial nematic,
with its secondary director in the xy plane (when long-range
orientational order of the short molecular axes is present)
and a tetratic nematic phase reminiscent of the corresponding
tetratic nematic phase observed in 2D fluids of hard rectangles.
Uniaxial, biaxial and tetratic smectic phases are also possible
within this restricted-orientations model, their orientational
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Figure 22. Phase diagram of the one-component fluid of hard biaxial board-like particles studied by Vanakaras et al [178] in the packing
fraction versus particle aspect ratio plane. See text for a discussion. Reproduced from [178] with permission of the PCCP Owner Societies.

Figure 23. Left: cross section of biaxial particles studied in [179]. Right: phase diagram of a system of particles with R cross section. See
text for a discussion. Reprinted with permission from [179]. Copyright (2008) by the American Physical Society.

properties being those of their nematic counterparts but
showing long-range 1D translational order in such a way that
particles arrange in layers perpendicular to the z direction. The
theoretical approximation used was a fundamental measure
density functional theory applied to parallel hard bodies, as
reviewed in section 3.1.6. The model consists of hard biaxial
particles with characteristic length L along the z axis and σ1

and σ2 in xy plane. Five different transverse sections (see
figure 23) were considered: rectangle (R), semidiscorectangle
(SDR, consisting of a rectangle capped with only one semidisc
in one of its ends), discorectangle (DR, obtained from the
previous one by adding another semidisc at the other end),
ellipse (E) and deltoid (D, composed of an isosceles triangle
and its reflection through its common base). Phase diagrams of
one-component systems made of these particles were obtained
as a function of particle biaxiality as measured by their cross
section aspect ratio κ = σ1/σ2 (σ1 being the largest size) and
the system packing fraction η. The phase diagram of a system

of particles with R cross sections has been reproduced in
figure 23 (a complete report of results is available in the original
paper [179]). Cases (a) and (b) correspond to two different
numerical minimizations of the free energy (a Gaussian
parameterization in (a) and a Fourier expansion in (b) for the
density profile). Continuous curves correspond to second-order
phase transitions while dashed lines show the continuation
of the Sm−SmB and Sm−SmT spinodals. For κ = 18.101
four second-order transition lines meet in a single point. The
existence of this four-phase point at high enough values of κ is
a common feature to all the systems of particles with different
cross sections that have been studied. For aspect ratios of the
cross section below the four-phase point, the system undergoes
second-order N−Sm and Sm−SmB phase transitions upon
increasing the packing fraction of the system. Beyond the four-
phase point, for larger values of κ , the sequence of second-
order phase transitions is N−NB and NB−SB when packing
fraction increases. In the case of the R cross section shown in
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Figure 24. (a) Phase diagram of a system of hard board-like particles with κ2 = 5 as obtained by Martı́nez-Ratón et al [180]. (b) A zoom
around κ−1

1 ∼ 0.2. Labels indicate regions of stability of the different phases, or the type of ordering with respect to which bifurcation
curves are computed. Solid and dashed curves indicate first- and second-order phase transition, respectively. Dotted curves are bifurcation
lines to the corresponding nonuniform phase from the stable bulk uniform phases. The shaded region in (a) corresponds to the estimated
maximum region of stability of the biaxial nematic phase. Reproduced from [180] with permission of the PCCP Owner Societies.

figure 23, there is a region of κ just below the four-phase point
where a re-entrant biaxial nematic is observed: the sequence
of transitions in that region is N−Sm, Sm−SmB, SmB−NB

and NB−SmB as η increases. The existence of this re-entrant
behaviour of the biaxial nematic phase (also seen for some
other cross sections studied, but not for all of them) is a
genuine prediction of this fundamental measure approximation
since Onsager’s theory predicts a monotonic phase boundary
between NB and SmB phases [178].

An additional conclusion from this work is that the loca-
tion of the four-phase point is highly sensitive to the shape of
the particle’s cross section. As concluded by the authors, this
fact suggests that the optimization of the particle geometry
could be a useful criterion in the design of colloidal particles
that can exhibit an increased stability of the biaxial nematic
phase with respect to other competing phases with spatial or-
der. Another relevant difference between different cross sec-
tions is the phase behaviour in the small κ and high η region
where, as shown in figure 23 for the case of R particles, the
SmT phase could be stable. Not surprisingly, the region of sta-
bility of the tetratic smectic phase is found to strongly depend
on the particle’s cross section, the reason being that the ex-
cluded volume involved in a T-configuration (two particles in
a perpendicular configuration, needed in a stable tetratic phase)
crucially depends on the particle cross section. In any case, the
tetratic smectic phase is pre-empted by the crystalline phase,
as the Monte Carlo simulations seem to show [178].

Inspired by the experimental finding by van den Pol et al
[171] of a biaxial nematic phase in a system of goethite parti-
cles (see some details above), Martı́nez-Ratón et al [180] con-
sidered recently a system of board-like particles of sizes σ1 >

σ2 > σ3. As has been pointed out in the preceding paragraphs,
there exists a general consensus among different approaches
and also computer simulations, in that a biaxial nematic phase
in systems of board-like particles (including spheroplatelets
among them) could be stable for particles with σ1/σ2 ≈ σ2/σ3

in such a way that they are not too rod-like or plate-like. In fact,
this is also the case in the van den Pol et al experimental study:
they found a stable biaxial nematic, as compared to the com-
peting smectic and columnar phases, for board-like particles
with σ1/σ2 ≈ σ2/σ3 = 3. Martı́nez-Ratón et al used a fun-
damental measure density functional approximation, solved in
the restricted-orientation approximation. The stability of the
biaxial nematic with respect to smectic and columnar phases
is studied as a function of the particle shape as measured by the
two aspect ratios κ1 = σ1/σ2 and κ2 = σ2/σ3. A systematic
study of the phase diagram of the system has been conducted
by varying κ1 while κ2 is kept fixed. They have found phase dia-
grams which include all the uniform phases: isotropic, uniaxial
rod- and plate-like nematics and biaxial nematic (see figure 24).
Bifurcation analysis of the uniform phases with respect to fluc-
tuations of the smectic, columnar and plastic solid types were
also included in this study. According to their results for differ-
ent values of κ2 (see the original paper for other phase diagrams
apart from that reproduced here), the biaxial nematic phase
begins to be stable for κ2 � 2.5, in agreement with the exper-
imental results of van den Pol et al [171]. Another feature of
the phase diagram obtained from this theory, in agreement also
with previous theories and simulations on biaxial hard parti-
cles, is the existence of a region of biaxiality centred at κ1 ∼ κ2

which widens as κ2 increases. The study of Martı́nez-Ratón et
al was the first to apply fundamental measure theory to biax-
ial particles, going in this way beyond the second-order virial
approximation. That allowed them to obtain a genuine result,
not accounted for by previous studies based on second-order
theories: the prediction that the phase diagram must be asym-
metric in the neighbourhood of κ1 ∼ κ2. Very recent computer
simulations by Peroukidis and Vanakaras [181] for systems of
board-like particles (namely, spheroplatelets) have confirmed
the main conclusions of the work of Martı́nez-Ratón et al.

We end this section by noting that a big computer sim-
ulation effort has been done by different research groups to
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shed some light on the problem of biaxial liquid-crystal phases.
Some of these studies use hard-body models [162, 163]. An
excellent and up-to-date review has been recently published in
this journal by Berardi et al [164]. We refer the reader to this
work for a more complete view on the current state-of-the-art
in the field of biaxial phases in hard-body models.

3.4. Elasticity

Elasticity is a genuine property of liquid crystals and a crucial
factor in determining the response of the material to external
fields. A recent, general overview of the attempts to investigate
liquid-crystal elasticity from the theoretical front has been
written by Ferrarini [182]. Here we discuss the use of hard-
body models to obtain qualitative and quantitative information
on elastic constants of nematic and smectic materials.

Since the nematic phase has a broken rotational symmetry
with respect to the isotropic phase, it presents elasticity. In
practical terms this means that a spatial distortion of the local
director field, n̂ = n̂(r), involves a cost in free energy. At
the macroscopic level one expects this free energy cost to be
related to the square gradient of the director field components,
∂αn̂β , where α, β = 1, 2, 3 denote spatial coordinates. In an
apolar nematic, i.e. one that does not distinguish between n̂
and −n̂ (which is realized in practise when particles have
head–tail symmetry), a general square–gradient expansion
reduces, on applying the relevant symmetries, to the terms
(∇ · n̂)2,

[
(∇ × n̂) · n̂

]2
and

[
(∇ × n̂)× n̂

]2
, meaning that

there are three independent elastic distortion modes, splay,
bend and twist, respectively, each associated to a particular
elastic constant. The general expression for the elastic free
energy, due to Frank [183], is

Fe = 1

2

∫
V

d3r
{
K1(∇ · n̂)2 +K2

[
(∇ × n̂) · n̂

]2
+K3

[
(∇ × n̂)× n̂

]2}
. (61)

This is a purely macroscopic expression, giving the free energy
that has to be added to the non-distorted nematic to obtain
the complete free energy of the distorted nematic. It does not
include any relaxation of the order parameterQ involved in the
distortion, which will certainly exist. The study of this effect
requires a microscopic theory.

The first microscopic theoretical calculations of elastic
constants for model nematics were due to Priest [184], who
used an Onsager theory for hard rods that incorporates a rotated
director field in the long wavelength limit and an expansion
in rotational invariants. Despite using hard rods as a model
particle and Onsager theory (meant to reproduce hard needles),
Priest obtained good agreement with experiment. The order of
magnitude agreement with experimental values is remarkable,
considering that the Onsager model strictly applies to very
long rods. Shortly after this work, Straley [185] derived a
more general expression for the elastic free energy directly
from the Onsager density functional for hard rods, assuming
a functional form for the distribution function but without
any expansion. He obtained numerical values for the three
constants close to the I–N phase transition, in agreement with
the results of Priest.

In seminal work, Poniewierski and Stecki derived general
expressions for the elastic constants of a nematic in terms of
the direct correlation function [186, 187], c(2)(r, Ω̂, Ω̂ ′), of
the undistorted nematic. For splay, bend and twist distortions,
the elastic constants are given by:

K1 = 1

2

∫
drx2

∫
dΩ̂
∫

dΩ̂ ′ρ ′(θ)c(2)(r, Ω̂, Ω̂ ′)ρ ′(θ ′)Ω̂xΩ̂ ′
x,

K2 = 1

2

∫
drx2

∫
dΩ̂
∫

dΩ̂ ′ρ ′(θ)c(2)(r, Ω̂, Ω̂ ′)ρ ′(θ ′)Ω̂yΩ̂ ′
y,

K3 = 1

2

∫
drz2

∫
dΩ̂
∫

dΩ̂ ′ρ ′(θ)c(2)(r, Ω̂, Ω̂ ′)ρ ′(θ ′)Ω̂xΩ̂ ′
x.

(62)

Here ρ(r, Ω̂) = ρ(θ) is the local density distribution of
the undistorted nematic, with cos θ = n̂ · Ω̂ . Numerical
values for the elastic constants were obtained for hard rods,
using a direct correlation function from Onsager theory (i.e.
the Mayer function, which is exact in the low-density limit).
Equations (62) have later been rederived in more direct ways
[188–190]. Also, the contribution from the relaxation of the
distribution function was later evaluated [190] and the relative
contributions from repulsive and attractive interactions have
been assessed [191, 192]. The derivation of general expressions
for Ki in terms of microscopic correlations was an important
step, since it allowed the calculation of elastic constants
from microscopic grounds: given a theory for c(2) for some
particular molecular theory (e.g. a density functional theory,
from which the direct correlation function can be obtained
by functional differentiation), one can evaluate the constants
Ki , which in turn can be plugged into the macroscopic Frank
expression to give predictions about the behaviour of realistic
models of distorted liquid crystals, something which is very
important in technological applications.

Singh and Singh [193] calculated the elastic constants
of hard ellipsoids, using series expansions for the direct
correlation function. Bad convergence properties with respect
to the number of terms in the expansion were found. Lee and
Meyer [194] recalculated the elastic constants for hard rods
using Straley’s method and Onsager theory (hard needles) and
found general agreement with Poniewierski and Stecki. They
used a more accurate orientational distribution function than
previous authors. Also, they noted that reasonable predictions
were obtained when comparing with real data for virus
suspensions, but results were not so reasonable for solutions
of more flexible colloidal particles. Shortly after, Lee [195]
and Somoza and Tarazona [196] made calculations using
different choices for the direct correlation function. Lee used
PL theory to calculate the uniform nematic and obtained the
direct correlation function not from the PL density functional,
but from an independent prescription. Also, he neglected terms
of order D/L and higher in the excluded volume expansion,
which produced the equalityK1 = 3K2, a result not supported
by simulations. In contrast, Somoza and Tarazona obtained
the direct correlation function in a consistent way, i.e. from
the second functional derivative of the free energy density
functional and the same theory was used to obtain the reference
nematic state. Including contributions to all orders, they
obtained much better agreement with simulations (figure 25).
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Figure 25. Results for the nematic elastic constants from the Somoza–Tarazona theory [196] (continuous line) and the Sin-Doo Lee
theory [195] (dotted lines). Simulation results from [197] are given by circles. Reprinted with permission from [196]. Copyright (1989) by
the American Physical Society.

Poniewierski and Hołyst [107] used their proposed version
of DFT for hard spherocylinders to derive the necessary direct
correlation function for the nematic fluid and to calculate
the elastic constants, also in a consistent way. Their results
were similar to those of Somoza and Tarazona and compared
equally well with simulations. Finally, Somoza and Tarazona
incorporated the relaxation of the nematic order parameter in
the distorted nematic [190] and found that this effect reduces
the values of the elastic constants.

On the simulation front, Allen et al used expressions for
the elastic constants obtained from fluctuations of the order
tensor [197] to compute values from simulations of the hard
ellipsoid and hard spherocylinder models [198] (note the factor
9/4 missing in the results, corrected in [199]), finding mod-
erate agreement with the then existing theories [193]. Tjipto-
Margo et al [200] made a detailed analysis of the comparison
between simulation results and the early theories for the di-
rect correlation function; although order of magnitude agree-
ment was found, discrepancies with simulation existed, which
were attributed to the poor description of the function at long
distances.

Later, Singh et al [201] presented a more systematic study
of their expansion method to calculate numerical values for
the elastic constants and included attractive contributions to
the interactions via perturbation, concluding that the repulsive
contribution of the pair interaction is dominant. These authors
also used the same method to calculate values for the twelve
elastic constants of a biaxial nematic fluid [202]. The relative
values of the constants and their behaviour as the biaxial phase
goes to the uniaxial phase were discussed. An interesting result
is that the effect of biaxiality in the orientational ordering on
the elastic constants is small.

The elastic behaviour of smectic phases has also been stud-
ied, although not so thoroughly as for nematic phases. In a
smectic A phase, distortions of the director field must keep the
integrity of the smectic layers intact, which means that bend
and twist distortions are not allowed. Due to the broken trans-
lational symmetry of the smectic A along the director, there

exists an elastic modulus B, associated to layer compressibil-
ity, adding a term 1

2B
∫
V

d3r(∂u/∂z)2 to the elastic free energy.
u is the local displacement field of the layers (similar to the dis-
placement field in 3D solids). Two derivations of expressions
for the smectic elastic constants have appeared in the literature.
Lipkin et al [189] derived expressions for the elastic constants
of a smectic phase as a generalization of the corresponding
expressions for the nematic and including the layer compress-
ibility modulusB. Numerical values for the constants were not
estimated. More recently, Singh et al [203] derived expressions
for the constants in terms of order parameters and estimated
their magnitude. The formalism included tilted smectic phases.
However, in neither of these studies has a serious evaluation,
related to a particle model, been made.

In this section we have mentioned works on elastic con-
stants that make use of hard-body models to represent par-
ticle interactions. Many recent studies have been devoted to
the effect of attractive interactions on the elastic properties
of nematic liquids, mainly through perturbative treatments. In
line with the spirit of the present review, these studies, more
appropriate to establish contact with real materials, are not
mentioned here and we refer the reader to the review works
referenced in the introduction.

3.5. Multicomponent fluids

3.5.1. Binary mixtures. When hard-body particles of differ-
ent shapes are mixed together in different concentrations, new
phenomenology arises in the macroscopic phase behaviour of
the system. Again, since particles are hard bodies, the new
phenomena are due entirely to entropy. In the last 30 years or
so there has been considerable interest in the study of entropy-
driven transitions in mixtures.

Probably one of the first studies was due to Asakura
and Oosawa [204], who showed that the addition of a small
amount of non-adsorbing polymer to a dispersion of (hard)
colloidal particles leads to an attractive interaction between
these particles. The origin of this attraction is, of course,

29



J. Phys.: Condens. Matter 26 (2014) 463101 Topical Review

Figure 26. Phase diagrams of a mixture of rods and plates as obtained by Alben [209] using his mean field lattice model. The effective
temperature shown in the vertical axis is proportional to the temperature divided by the pressure, as it corresponds to a system with
hard-body interactions where the internal energy is, therefore, identically zero. Labels indicate isotropic (i), uniaxial nematics (n(+) and
n(−)) and biaxial nematic (b). Continuous lines correspond to first-order phase transitions while dotted lines are second-order phase
transitions. Reprinted with permission from [209]. Copyright (1973), AIP Publishing LLC.

entropic: polymer molecules maximize their free volume when
the large colloidal particles are close to each other, the so-called
depletion effect. The mixture can be theoretically modelled
in a simplified manner by getting rid of the polymer and
considering this attraction as an effective depletion potential
between the colloidal particles and one can then use all the
theoretical tools available for simple fluids.

This route was followed by some authors in the last quarter
of the last century to analyze the phase behaviour of different
binary mixtures. For example, in 1999 Lekkerkerker and co-
workers used an extension of the free-volume approximation
to investigate the depletion-induced phase separation in mixed
suspensions of colloidal spheres of diameter σ and colloidal
rods of length L and diameter D, in the range L � σ [205].
Later, the same group used the depletion approximation to
conclude that the addition of a small amount of non-adsorbing
polymer significantly modifies the I–N phase boundaries of a
system of sterically stabilized colloidal platelets [206].

Mixtures of colloidal particles with non-adsorbing poly-
mers and also mixtures of colloidal particles of different
shapes, have been extensively studied not only from the the-
oretical point of view, but also experimentally, as shown, for
example, in [207, 208] and references therein. Experimen-
tal studies have probably triggered the interest of many the-
oreticians in modelling mixtures in an effort to predict their
macroscopic behaviour. Models based on the depletion ap-
proximation, like those mentioned above, have been applied
to other mixtures of colloidal particles, but those models will
not be treated in this review since they reduce the problem, at
the end, to a simple system whose particles intereact via an
effective potential that is not a hard-body interaction, a subject
not covered in this review.

One of the earliest approaches to describe theoretically
binary mixtures of anisotropic particles with different shapes
was presented in 1973 by Alben [209]. He made mean field
lattice model calculations of a mixture of rod- and plate-like
molecules. The model is a modification of that originally pro-
posed by Flory to describe steric interaction in polymers. Space
is represented by a cubic lattice of M cells. Dispersed on this

lattice there are a total of N molecules, a fraction 1 − c of
which are rods, each occupying l consecutive cells along one
of the lattice axes. A fraction c of the N particles are square
plates, each occupyingw×w coplanar cells in a plane defined
by two of the lattice axes. Both types of particles are one cell
thick. In this way, there are three possible orientations for each
type of particle, making a total of six orientations. It is as-
sumed that there are no interactions between particles, except
for the hard-core interactions that prevent two particles from
occupying the same cell. The thermodynamic properties of the
system follow by approximating the configurational partition
function corresponding to the ways of placing theN molecules
into theM cells under the restriction that a fraction c are plates
and a fraction 1 − c are rods. Details can be found in Alben’s
paper. The results indicate that the I–N transition can be con-
tinuously changed from first- to second-order and, also, that a
biaxial nematic phase can be stabilized for an appropiate choice
of the dimensions and concentrations of the two components
of the mixture. Some of the results of Alben are reproduced
in figure 26.

A formally exact theoretical approximation for a HS-
HE mixture was developed in 1994 by Samborski and Evans
[210]. They followed the standard route to express, in the
framework of DFT, the free energy of the system in terms
of a functional integral of the direct correlation function. Since
there is no way to determine the direct correlation function
of a system of hard anisotropic particles, even in the one-
component case, Samborski and Evans approximated the direct
correlation function from existing equations of state of fluid
mixtures of hard convex bodies: integrating the pressure, the
Helmholtz free energy of the system is obtained and from
this the direct correlation function can be calculated upon
functional differentiation. The theory was applied to different
HS-HE mixtures, changing the HE elongation and the ratio
between the HS and HE volumes. No demixing was found,
even in cases where the HS volume was considerably smaller
than the HE volume. At high enough density, a I–N transition
was found, accompanied by phase segregation such that the N
phase is richer in ellipsoids than the I phase. It was also found
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that the N phase has a higher-order parameter and a higher
pressure than the N phase of a one-component HE fluid.

Many of the hard-body models applied to binary mixtures
of colloidal particles are extensions, at different degrees
of sophistication, of the Onsager theory for one-component
fluids. Each component i of a binary mixture (i = 1, 2) made
of uniaxial particles is described in terms of a local density
ρi(r, Ω̂). For a uniform fluid ρi(r, Ω̂) = ρ0xihi(Ω̂), where
xi = Ni/N is the fraction of species i, Ni its number of
particles andN = N1 +N2 the total number of particles. hi(Ω̂)
are the orientational distribution functions. By substituting
ρ(r, Ω̂) → ρi(r, Ω̂) in the expression for the ideal free
energy of a one-component system (8), summing over all
species i and using Onsager excess free energy approximation
(16) extended to all pairs of species ij , Lekkerkerker and co-
workers [211, 212] extended Onsager’s second virial theory
to a mixture of hard particles. The resulting expresion for the
Helmholtz free energy per particle is

βF

N
= log (ρ0Λ3

i ) +
2∑
i=1

xi(log xi − s(i)or )

+ ρ0

2∑
i=1

2∑
j=1

xixjB
(ij)

2 [hi, hj ], (63)

where Λi is the thermal wavelength of species i, s(i)or =
−
〈
log
[
4πhi(Ω̂)

]〉
hi

are the orientational entropies per

particle of species i in units of the Boltzmann constant k [which
is a functional of the orientational distribution functionhi(Ω̂)],
while

B
(ij)

2 [hi, hj ] = 1

2

〈〈
v(ij)excl (Ω̂ i , Ω̂ j )

〉〉
hi ,hj

= 1

2

∫
V

dΩ̂ i

∫
V

dΩ̂ j v
(ij)
exc (Ω̂ i , Ω̂ j )hi(Ω̂ i )hj (Ω̂ j )

(64)

represents orientation-averaged excluded volumes of two
particles of species ij . Three different entropy contributions are
apparent in equation (63): mixing, orientation and excluded
volume entropy terms, respectively. The phase behaviour of
the system is the result of a delicate balance between the three
entropic terms. The theory was first applied to a binary mixture
of rods of different lengths [211]. A I–N transition was found,
with the N phase being significantly richer in long rods than
the I phase. The order parameter of the long rods was found to
be larger in the coexisting N phase than in the one-component
fluid made of equally long rods. The order parameter of the
short rods first increased and then decreased with an increasing
mole fraction of the long rods.

In another application, Stroobants and Lekkerkerker [212]
used the theory for mixtures of rods and plates, modelled as
hard cylinders of appropiate dimensions. The results obtained
indicated that, depending on the total concentration of particles
and the fraction of rods and discs, the mixture exhibits, in
addition to the I phase, two uniaxial N phases and a biaxial NB

phase (see figure 27). One of the uniaxial N phases corresponds
to a rod-rich mixture, with the rod director oriented along

Figure 27. Osmotic pressure (�)—fraction of discs (x) phase
diagram of a mixture of rods and discs for the case
B
(11)
2 = B

(22)
2 = B

(12)
2 obtained from the second virial Onsager

theory of Stroobants and Lekkerkerker [212]. Reprinted with
permission from [212]. Copyright (1984) American Chemical
Society.

some direction and the plate director situated in the plane
perpendicular to the rod director (n(+) in the figure). The other
uniaxial N phase is plate-rich with the rod director along the
plane perpendicular to the plate director (n(−) in the figure). In
the NB phase the two perpendicular directors are kept at a fixed
orientation. If we take into account that in figure 27 the vertical
axis is essentially the inverse of the effective temperature
plotted in the vertical axis of figure 26, a remarkable qualitative
agreement between results from the lattice model of Alben and
the Onsager theory of Stroobants and Lekkerkerker is apparent.

In 1994, van Roij and Mulder [213] studied the relative
stability of the NB phase against N–N demixing as a function of
aspect ratio in a symmetric binary mixture of plates and rods
(meaning that the rod aspect ratio is the inverse of the plate
aspect ratio), using the Onsager second virial theory in the
Zwanzig approximation. They found that, for an aspect ratio
equal to 5, the mixture separates into two uniaxial nematic
phases, but with no biaxial nematic phase present. In contrast,
for an aspect ratio equal to 15, a stable biaxial phase was found.

The same problem was analyzed, also using Onsager
theory, by Vanakaras et al [214] (see also [178] where the NB

phase in mixtures of biaxial board-like particles is investigated
using Onsager theory and MC simulations). They concluded
that no stable NB phase is found in mixtures of hard rods and
plates for small aspect ratios (about 5, the typical value for
usual nematogens). Stabilization was predicted, however, at
much higher values of the aspect ratio (30 or higher).

The prediction of a biaxial NB phase in fluids of uniaxial
particles caught the attention of other researchers [215, 216].
In these investigations the rod-plate mixture was modelled by
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prolate HE of finite aspect ratio κ = e (rods) and oblate hard
ellipsoids of aspect ratio κ = 1/e (plates) and equal volume.
Computer simulations were performed for e = 10, 15 and 20.
The same four distinct phases predicted by the theory were
found: I, two uniaxial N and the biaxial NB phases. However,
the region of stability of the NB phase was found to be severely
limited by demixing into two coexisting uniaxial phases, N+

U
and N−

U, the NB phase being stable only in a narrow region of
elongation and mixture composition.

An extension of the Onsager theory to include, in the
spirit of the PL approximation, the contribution from higher-
order virial terms, was also carried out by Varga et al [217].
The Helmholtz free energy excess per particle of the mixture,
giving the contribution from excluded volume interactions, is
written as:

βFex[h1, h2]

N
= ΨHS(η)

2∑
i=1

2∑
j=1

xixjB
(ij)

2 [h1, h2]

B
(HS)
2

. (65)

The HS volume of the reference system, v0, is obtained as
a mole-fraction-weighted sum of the particle volumes of each
species, v0 = x1v1+x2v2. This is, in essence, the generalization
to mixtures of the procedure that improves Onsager theory to
give PL theory for a one-component fluid. Again the density
prefactor accounts for the contribution to the free energy arising
from higher-order virial terms. Compared with the simpler
Onsager’s second virial approach, the application of this
theory to the analysis of HE mixtures improved the theoretical
predictions as compared to simulations [217]. However, in
contrast to simulation results, the rescaled Onsager theory
predicts a symmetric phase diagram with respect to the equally
molar mixture of prolate and oblate ellipsoids, as a result of
the prolate-oblate symmetry of the excluded volume.

The possible existence of the biaxial NB phase in mixtures
of uniaxial particles was further analyzed by other authors
and not only for rod-plate mixtures. In 2000 Kooij and
Lekkerkerker [218] came back to study the problem, this
time experimentally. They used a combination of two systems,
rod-like boehmite (AlOOH) and plate-like gibbsite (Al(OH)3)
colloids, which can be approximated as hard bodies. For the
particular particle sizes used (see original reference for details),
the study ruled out the existence of a NB phase with rods
and plates orientationally ordered in mutually perpendicular
directions. It was found that the biaxial NB phase is unstable
with respect to demixing into an isotropic and two uniaxial
nematic phases, in line with the findings of [215, 216]. The
origin of demixing is the larger excluded volume of a rod-
plate pair compared to the rod-rod and plate-plate excluded
volumes, an effect that compensates the mixing entropy, which
favours the biaxial phase. As concentrations increase, the
excess excluded volume becomes more important and the
system demixes. Nevertherless, a word of caution is needed,
because experimental systems are always polydisperse and its
phase behaviour may be dramatically different from that of
stricty binary mixtures (see section 3.5.2).

The PL theory for binary mixtures was applied in 2001 by
Wensink et al [219] to study the phase behaviour of a mixture

of thin and thick platelets. I–N density inversion (where the I
phase is heavier than the N phase) was found, in agreement
with previous experimental results.

The same theory was applied to different kinds of mixtures
by Jackson and co-workers in an extensive series of works in
the period 2002–2005 [217, 220–222]. The phase behaviour of
a mixture of rods and plates [217], both approximated by hard
cylinders of appropiate dimensions, was studied. In all cases
the plate volume was always orders of magnitude larger than
the rod volume. The authors did not carry out systematic free
energy minimization and phase coexistence calculations for
all the mixtures investigated; instead, they used a combined
analysis based on I–N bifurcation and spinodal demixing
calculations to determine the geometrical requirements for the
occurrence of a demixing transition involving two I phases.
What they found (see figure 28) was that the I phase is unstable
relative to demixing for a wide range of molecular parameters.
The reason is the large excluded volume associated with the
mixing of unlike particles. However, using stability analysis
they found, for certain aspect ratios, that the I–N transition
always pre-empts I–I demixing, irrespective of the particle
diameters. On the other hand, when I–I demixing was found, it
was accompanied by the existence of an upper bound at large
size ratios (Asakura and Oosawa limit) and a lower bound at
small size ratios (Onsager limit), beyond which the system
showed a mixed I phase. The results of the stability analysis
were confirmed by full phase diagram calculations for selected
values of the particle geometrical parameters.

Mixtures of rod-like and disc-like particles were studied
also by Jackson and co-workers [221] using MC computer
simulations in the canonical ensemble and PL theory. Particles
were modelled as HSC of aspect ratio 5 and hard cut spheres
of aspect ratio 0.12, the ratio of diameters being chosen so that
both particles had the same volume. Simulations starting from
a mixed isotropic state showed that, at low total density, the I
phase is stable with respect to ordered states. Coexistence
between two uniaxial N phases and the stabilization of a
disc-rich I phase was found. At high densities the mixture
exhibits N–C and S–C phase coexistence. In agreement with
simulations, no stable biaxial nematic phases were found. The
PL theory used in this work is not suitable for the study of
translationally ordered states, such as C or S phases and,
consequently, the study was restricted to the I and N phases.

The last kind of mixtures studied by Jackson and co-
workers were mixtures of hard rod-like particles. In a first
paper [220], a mixture of HC of aspect ratios 15 and 150 was
considered. The phase behaviour of the mixture was explored
as a function of the ratio d between the diameters of the two
cylinders using again the PL theory. The results obtained
can be summarized as follows: for large enough values of
the diameter ratio, for example d = 50, the mixture shows
only a I–N phase transition driven by the excluded volume
interaction between the large particles. In this case of very
different sizes, big particles can be considered as large colloidal
particles. Since exclusion interactions between particles of the
other component and between unlike particles are significantly
small compared to interactions between large particles, small
particles play the role of a weakly interacting solvent and
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Figure 28. Pressure versus composition phase diagrams of mixtures of plates and rods with aspect ratios 50 and 1/50 and different
plate/rod diameter ratios d, (a) d = 80, (b) d = 60, (e) d = 50, (d) d = 25, (e) d = 18 and (f ) d = 6 as obtained by Jackson and
co-workers using the Parsons–Lee theory [217]. The labels Ir , Ip , Nr , Np denote the rod-rich isotropic, plate-rich isotropic, rod-rich
nematic and plate-rich nematic phases, respectively. x is the mole fraction of rods. Reprinted with permission from [217]. Copyright (2002),
AIP Publishing LLC.

I–I or N–N demixing is not to be expected. However,
when the diameter ratio is reduced, excluded interactions
involving small particles become more important, particularly
those between unlike particles. As a consequence, I–I and
N–N demixing transitions are indeed observed. The precise
topology of the phase diagram of this particular mixture can
be rather complicated and, in fact, it changes significantly with
variations in the diameter ratio d . This is not surprising since
the three excluded volume interactions become more and more

comparable as d is reduced and the final topology of the phase
diagram is the result of a delicate free energy balance from
these contributions. Detailed results can be found in the original
paper [220].

In the last paper of their series [222], Jackson and co-
workers again applied the PL theory of hard-rod mixtures to
model an experimental mixture of thin and thick viral particles,
consisting of charged semiflexible fd-virus (thin rods) and fd-
virus irreversibly coated with the neutral polymer polyethylene
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glycol, fd-PEG (thick rods). The geometrical parameters of the
hard rods were chosen to mimic the experimental system. Thin
and thick particles were modelled as rods of the same length
L = 24Dthick, whereDthick is the diameter of the thick rods, and
different diameters. This particular choice of L corresponds
to the experimental aspect ratio of the thick particles. Phase
diagrams of the mixture for diameter ratios d = Dthick/Dthin

ranging from 3.7 to 1.1 were considered in order to reproduce
the experimental systems. The theory predicts a region of I–I
coexistence which is not observed experimentally. Also, for
small values of d, an I–N phase transition is found at low
concentrations, while at high values of d a N–N coexistence
region, ending in a lower critical point, is predicted. As d
increases, the N–N lower critical point moves to lower rod
concentrations and, upon increasingd even further, a parameter
region is entered where the phase diagram shows an I–N–N
coexistence region capped by a region of N–N coexistence
bounded by an upper critical point and by an additional region
of N–N coexistence bounded by a lower critical point. Finally,
for very large d, these two regions of N–N coexistence coalesce
to form a single N–N coexistence region (see figure 3 in [222]
for details).

The mixture of thin and thick hard rods of the same
length had been previously analyzed by van Roij et al in
1998 [223] using the simple Onsager theory. They found that
the mixtures not only show an I–N transition and the previously
predicted depletion-driven I–I demixing transition, but also a
N–N demixing transition driven by the orientational entropy of
the thin rods. Several cases, corresponding to different values
of the diameter ratio d , were studied and phase diagrams
exhibiting I–N, I–I and N–N coexistence, I–N–N and I–I–N
triple points and I–I and N–N critical points, were obtained.
When compared with experiments [222], these results showed
that Onsager’s second virial theory qualitatively reproduces
the main features of the experimental phase diagram for large
values of d. However, the theory is not able to account for
the phase behaviour evolution from a totally miscible N phase
to a demixed N–N state upon increasing d . The use of PL
rescaling shows that an I–N–N coexistence region is not
required for a region of N–N coexistence to exist, in contrast to
the predictions of the second virial theory. But not everything
is fully understood yet. For example, the N–N upper critical
point, predicted for very long rods by both theories, has not
been observed in the experiments. The effect of a small degree
of flexibility was not taken into account in the theories, but
fd-virus particles are not completely rigid. Therefore, direct
comparison of theoretical predictions with experiments on
mixtures of fd-virus has to be done with care.

All of the above theoretical studies on nematic ordering
in mixtures of hard bodies use Onsager theory or variations
thereof. In contrast, Schmidt [137] used his fundamental
measure-based DFT to calculate the isotropic phase of a hard
needle-hard sphere mixture for different values of the aspect
ratio L/D, where D is the diameter of the spheres. The phase
diagrams produced by the theory were similar to those obtained
from free-volume theory [224], which predicts a demixing
transition ending in a critical point, with each of the demixed
phases rich in one of the components. The sphere-sphere radial

distribution function, as obtained from the theory, was in good
agreement with the Monte Carlo simulation results performed
by the same author [137].

This functional was further extended by Schmidt and von
Ferber [225] to incorporate an amphiphilic-like hard-body
particle formed by a HS with a radially attached hard needle.
The resulting ternary mixture constitutes a simple model for
a water (HS)-oil (needle)-amphiphilic (HS+needle) mixture
where particles interact only via non-overlapping excluded
volumes. While the Mayer functions for a pair of HS or a
pair of hard needles are exactly obtained by convolutions of
weight functions, for a HS and amphiphilic particle or two
of the latter the Mayer functions are only approximate, due
to their non-convex excluded volumes. However, the authors
showed that the deviations of the second virial coefficients
with respect to the exact result are relatively small. Equations
of state for the pure amphiphilic fluid and for the amphiphilic-
needle, amphiphilic-HS and HS-needle binary mixtures (all of
them in the isotropic state) were calculated and compared with
canonical MC simulations carried out by the same authors.
The theory is in remarkable agreement with simulations for
total packing fractions less than 0.3. Also, the equations of
state for a ternary mixture of a particular composition compare
very reasonably, figure 29. The authors calculated analytically
the demixing spinodals of all possible binary mixtures and of
the ternary mixture and showed that the amphiphilic-needle
and amphiphilic-HS binary mixtures are more miscible than
the HS-hard needle mixture, a property exhibited by real
amphiphilic molecules due to their simultaneous hydrophilic
and hydrophobic tendencies.

The same formalism was used by Schmidt and Denton
to treat a ternary mixture of colloidal HS-hard needle-ideal
polymer mixture [226]. The ideal polymer was approximated
by a sphere that interacts via excluded volume with the col-
loidal spheres, but there is no interaction between the polymers.
The effect of the polymer-needle interaction on the phase be-
haviour of the ternary mixtures was studied and different phase
diagrams were calculated by solving the conditions for me-
chanical and chemical equilibrium of the isotropic coexisting
phases. Calculations were carried out for the case where the
HS diameter, the polymer diameter and the needle length are
equal. In the case of no polymer-needle interaction, demixing
between colloid-rich and colloid-poor phases is found. When
the hard needle-polymer interaction is included, rich phase
diagrams, exhibiting three-phase coexistence and re-entrant
demixing behaviour, were obtained. The addition of needles
to the HS-polymer mixture stabilizes the ternary mixture, an
effect due to the competition between the polymer- or needle-
mediated depletion effect and the interaction between them.

More recently, FMT functionals have been devised and
applied to more complicated mixtures. A functional developed
for a ternary mixture of HS, hard needles and hard platelets of
vanishing thickness obtained by Esztermann et al [140], was
later generalized by Philips and Schmidt [227] to study the
phase behaviour of binary mixtures of infinitely thin platelets
with different diametersD1 andD2. Different phase diagrams
were produced for κ = D1/D2 ranging from 1 to 5. For
κ = D1/D2 < 1.7 the phase diagram includes the usual
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Figure 29. Compressibility factor Z as a function of total packing
fraction ηtot of an amphiphilic mixture, according to the theory of
Schmidt and von Ferber [225]. MC simulations (symbols) are
compared with the theory (lines). Straight lines show the low-density
limit governed by the second virial theory. (a) Pure systems; (b)
binary mixtures; (c) ternary mixtures. Reprinted with permission
from [225]. Copyright (2001) by the American Physical Society.

I–N transition, which becomes wider as κ is increased. For
κ > 2 there appears N–N demixing and an associated I–
N–N triple point. No I–I demixing was found. The results
from the present theory were compared with those from the
Onsager theory and three major differences were found: (i) the
FMT predicts a smaller I–N biphasic region, (ii) the transitions

obtained by FMT are located at lower densities as compared
to the Onsager model and (iii) for the same κ , the N–N
demixing region obtained from FMT spans a larger range of
compositions. However, the general phase diagram topologies
predicted by both theories were similar. Fractionation between
coexisting phases increases with κ and big particles in each of
the coexisting phases are more orientationaly ordered.

de las Heras and Schmidt [228] reformulated the FMT
functional of Esztermann et al [140] for a binary mixture of HS
and hard platelets of vanishing thickness, calculating the phase
behaviour of the mixture. They found a strong broadening of
the I–N biphasic region upon increasing the pressure. Also,
for large values of the aspect ratio κ = DP/DHS, N–N
demixing with different platelets concentrations was found. In
the same work, the authors formulate a FMT-based functional
for mixtures of hard platelets of vanishing thickness and
overlapping hard spheres as an approximate model to study
the phase behaviour of platelet-polymer mixtures. For low
platelet-polymer size ratios, aside from I–N and N–N phase
coexistences, the mixture exhibits I–I demixing (not found in
hard-core platelet-sphere mixtures).

In addition to the more or less systematic studies on
positionally disordered phases of mixtures reviewed in the
previous paragraphs, there have been studies of very particular
mixtures using both computer simulations and theoretical
models. For example, Seara et al [229] used Onsager theory
to study the phase behaviour of a binary mixture of rods with
different aspect ratios. By choosing particle sizes adequately,
the values of second-order virial coefficients were adjusted to
be equal. Since virial coefficients are the same, phase diagrams
of the one-component fluids are, at least in the framework of
Onsager theory, identical and independent of the particle aspect
ratio in the hard-needle limit. Therefore, the paper focuses on
the case of mixtures where one component is longer and thinner
than the other and the evolution of the phase diagram topology
is studied as a function of the shape difference between the two
components. The main result is the occurrence of I–I demixing,
with an associated critical point and N–N demixing is also
obtained. There is a N–N critical point that shifts as the shape
difference increases, eventually reaching the I–N transition and
giving rise to a four-phase region (for binary mixtures Gibbs
phase rule permits a maximum of three phases in simultaneous
coexistence, except in special cases of symmetric particles like
the present one).

So far we have discussed the uniform I and N phases of
binary mixtures. When positionally ordered phases, in partic-
ular S and C phases, are considered, is easy to understand that
the already complicated phase diagram topologies previously
discussed will become even more complex. In particular, part
of the phase equilibria involving I and N phases could be pre-
empted by nonuniform phases and become metastable. More-
over, Koda et al [230] performed constant-pressure Monte
Carlo simulations of binary mixtures of hard disc-like parti-
cles with diameter-to-thickness ratios 2.5 and 5.0 and found
strong tendency of the large discs to form clusters with colum-
nar ordering, induced by strong depletion effects due to the
small discs.
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Figure 30. Monte Carlo results of Stroobants [150] for the phase
diagram of a mixture of HSC. One of the species has fixed aspect
ratio κ1 = L1/D = 1. The aspect ratio κ2 = L2/D of the second
species of the mixture is shown in the horizontal axis. The mixture’s
concentration is kept fixed at the equivalence point (i. e. the point at
which partial volume fractions of both components are equal). The
total packing fraction is represented in the vertical axis. Labels are
as follows: Solid (I): substitutionally disordered binary crystal.
Solid (II): phase separated pure component crystals. Open circles:
continuous transition. Solid circles: first-order transition. Lines are
guides to the eyes. Reprinted with permission from [150].
Copyright (1992) by the American Physical Society.

To simplify the analysis, the first attempts to deal with
positionally ordered phases in hard-body binary mixtures as-
sumed perfect orientational order (i. e. systems of parallel
molecules). In 1992, Stroobants [150] performed MC simu-
lations of binary mixtures of parallel HSC. Different mixtures
were considered, keeping the aspect ratio of one of the species
fixed, κ1 = L1/D = 1 and varying the aspect ratio of the
other in the range κ2 = L2/D = 1.3 − 2.1. The diameter of
both particle species was the same. In all cases the compo-
sition of the mixture was adjusted so that the partial volume
fractions of both components were equal. A stable C phase
was observed when κ2 � 1.6. Moreover, for κ2 � 2.1, the
N–S phase transition was found to be pre-empted by a N–C
transition (see figure 30). Since no stable C phase exists in the
one-component systems, the conclusion was that bidispersity
favours C over S order, at least for these particular mixtures.

Two years later, Cui and Chen [231] extended the third
virial coefficient free energy functional approximation of
Mulder for parallel one-component cylinders [93] to mixtures
of the same diameter and different lengths. The theory is
trivially extended by considering two local densities ρi(z),
where the z axis is along the director. The Helmholtz free
energy functional is written as F [ρ1, ρ2] = Fid[ρ1, ρ2] +
Fex[ρ1, ρ2], with

βFid[ρ1, ρ2]

A
=

2∑
i=1

∫
dzρi(z)

[
log (ρi(z)Λ3

i )− 1
]
. (66)

The excess free energy part can be written as a virial expansion:

βFex[ρ1, ρ2]

A
=

2∑
i=1

2∑
j=1

∫
dz
∫

dz′ρi(z)ρj (z′)B
(ij)

2 (z, z′)

+
2∑
i=1

2∑
j=1

2∑
k=1

∫
dz
∫

dz′
∫

dz′′ρi(z)

× ρj (z
′)ρk(z′′)B

(ijk)

3 (z, z′, z′′) + · · · (67)

where A is the area of the layers. The first virial coefficients
are given by

B
(ij)

2 (z, z′) = −1

2

∫
dr′

⊥fij (r − r′),

B
(ijk)

3 (z, z, z′′) = −1

6

∫
dr′

⊥

∫
dr′′

⊥fij (r
′)fjk(r′ − r′′)fik(r′′).

(68)

Cui and Chen [231] truncated the expansion beyond the third
term and calculated B(ij)2 (z, z′) and B(ijk)3 (z, z′, z′′) explicitely
for parallel HC. Conclusions similar to those of Stroobants
[150] were obtained.

At the same time, the simpler Onsager theory, containing
only the B(ij)2 (z, z′) function, was used by Koda and Kimura
[232] to study the N–S phase transition in the same mixture.
Different phase diagrams, in the packing fraction composition
plane and for different values of the length of the long cylinders,
were obtained. The main findings of this work were: (i) the
region of S stability is suppressed or enlarged depending on
the length of the long cylinders and, (ii) two types of smectic
phases exist. In one, smectic layers consist of uniform mixtures
of large and short particles. In the other, microsegregation
occurs with alternate layers of short and long particles.

The stability of the N phase of mixtures of long and short
parallel cylinders against S or C phase formation was also
studied, using Onsager theory, by Sear and Jackson in 1995
[233]. In agreement with the previous studies summarized
above, they found that the addition of cylinders of a different
length decreases the tendency towards S ordering, to the extent
that the N phase can coexist directly with the C phase without
forming a S phase first.

The study of the interplay between N and S phase stability
and the possible microphase segregation was continued with
studies on mixtures of parallel HSC and HS in the second half
of the 90s. In 1996, Koda et al [234] again used Onsager theory,
together with constant-pressure MC simulations, to conclude
that the addition of spherical molecules to a system of parallel
HSC induces the formation of a microsegregated S phase with
alternating layers of HSC and HS. Later on, in 2000, Dogic
et al [235] revisited the problem using computer simulations.
The conclusions of this study were the following: (i) entropy-
driven microsegregation occurs in mixtures of parallel rods
and spheres. (ii) Adding spheres smaller than the rod width
decreases the total packing fraction needed for the formation
of the S phase and therefore small spheres effectively stabilize
the S phase; the opposite is true for large spheres. (iii) The
degree of stabilization increases with increasing rod length.
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Figure 31. (a) Phase diagram of plate–rod binary mixtures of
molecular sizes Lp = 9 and Lr = 13 in the pressure-plate
concentration plane as calculated by Peroukidis et al [238].
Cartoons of molecular organization are shown for the marked points
on the phase diagram. (b) Phase diagram in the packing fraction
plane of rods (ηr )—packing fraction of plates (ηp) corresponding to
the same case shown in (a). Reproduced from [238] with permission
of the Royal Society of Chemistry.

An extra element was included in the contribution made by
Martı́nez-Ratón et al [236] in 2006. In contrast to other works,
these authors incorporated orientational order and carried out
a more systematic study. Mixtures of rods of different aspect
ratios and spheres of different diameters were considered
and treated within Onsager theory (see below). The study
concluded that depletion effects, and consequently S stability,
decrease significantly as a result of orientational disorder in
the S phase when compared with the corresponding data based
on the frozen-orientation approximation.

The work of Koda et al on mixtures of parallel HSC and
spheres was later extended by Vesely [237] to mixtures of
other linear particles (fused spheres, ellipsoids and sphero-
ellipsoids) and HS. Mixtures of HS with shape-anisometric
colloids, namely rod-like and plate-like particles, have been
studied using a lattice model approach by Peroukidis et al [238]
(see figure 31). Also, Varga and co-workers published results
on further extensions of Koda’s theory to mixtures of equally
long but differently wide cylinders [239] and HC of equal di-
ameters but different lengths [240].

In 2004, the authors of this review and their co-workers
published the first of a series of papers devoted to the phase
behaviour of binary mixtures of freely rotating hard-body
particles, paying special attention to the stability and properties
of the S phase [241]. The approach used was a version of

the PL theory suitable for mixtures, but extended to deal with
spatially ordered (nonuniform) systems. The local densities are
now a function of the particle orientations, ρi(r, Ω̂). Let us
formulate the theory without assuming any special symmetry.
The Helmholtz free energy functional is given by

βFid[ρ1, ρ2] =
2∑
i=1

∫
V

dr

∫
dΩ̂ρi(r, Ω̂)

× [log (ρi(r, Ω̂)Λ3
i )− 1], (69)

and

βFex[ρ1, ρ2] = − ΨHS(η)

2B(HS)
2

2∑
i=1

2∑
j=1

∫
V

dr

∫
dΩ̂
∫
V

dr

×
∫

dΩ̂ ′ρi(r, Ω̂)ρj (r, Ω̂)

× fij (r − r′, Ω̂, Ω̂ ′), (70)

where, as usual, η = ρ0
∑2

i=1 xivi is the total packing fraction
of the mixture (which is equal to that of the reference HS
fluid). For uniform phases, ρi(r, Ω̂) = ρ0xihi(Ω̂), this theory
reduces exactly to the PL approximation for mixtures and,
consequently, all results pertaining to the I and N phases
of previous sections apply here. Also, in the low-density
limit and for strictly parallel particles with smectic symmetry,
ρi(r, Ω̂) = ρi(z)δ(Ω̂ − ẑ), the expression for Fex[ρ1, ρ2]
reduces to equation (67) truncated at second-order. However,
the generalized form of the theory can describe spatially
ordered phases of any symmetry, including the S and C phases.
In [241], the theory was applied to the S phase by making
the simplification ρi(r, Ω̂) = ρi(z, Ω̂). Computational details
on free energy minimization to obtain the equilibrium density
profiles and orientational distribution functions (from which
N and S order parameters and thermodynamic and phase
transition properties, can be easily derived) can be found
in [241]. In this paper, binary mixtures of HSC of the same
diameter but different lengths (and, therefore, different aspect
ratios), were considered. Phase diagrams were found to depend
strongly on the aspect ratio of each component and also on their
length ratios. When the mole fraction of long rods is larger, it
was found that layered phases present a S structure with short
rods located at the layers, mixed with long rods. However, in
the opposite case (short rods more abundant than long rods), a
S2 phase is obtained consisting of layers of short rods with long
rods located parallel to the latter but in the interlayer region.

The same kind of mixture was analyzed by Cinacchi et al
in [242]. The special case where one of the components is a
HS was also considered. Particular emphasis was put on the
interplay between S formation versus S–S segregation. It was
found that, in general, S–S segregation occurs in a wide range
of compositions and pressures, except when particles of both
components have similar lengths in which case segregation
appears only at high pressure. When lengths are very different
and the mixture is poor in long molecules, a microsegregated
(but macroscopically homogeneous) phase, where the minority
species is expelled to the interlayer regions, was found to be
stable.
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Figure 32. Phase diagrams in the pressure-composition plane (x being the fraction of shortest particles) for different mixtures, from [243].
(a) Mixture of HSC with the same diameter σ and aspect ratios κ1 = 4.5 and κ2 = 8.0, as obtained from an extended PL approach. (b) Phase
diagram of a mixture of hard parallelepipeds of aspect ratios κ1 = 4.5 and κ2 = 8.0 and cross section σ 2, as obtained from a FMT approach
with a Zwanzig approximation. The continuous lines indicate first-order phase transitions. The shaded regions are two-phase regions of
phase coexistence. The regions of stability are labelled by S (standard smectic formed by layers identical in composition), N (nematic), I
(isotropic), S2 (microsegregated smectic phase with long particles located in the interlayer space) and DS (discotic smectic). The dotted line
is the spinodal line corresponding to the instability of the nematic phase with respect to columnar-type fluctuations. Reprinted with
permission from [243]. Copyright (2005), AIP Publishing LLC.

A more general analysis of the phase behaviour of binary
mixtures of hard rods of different lengths and diameters was
published by Martı́nez-Ratón et al in 2005 [243]. Attention was
focused on the formation of C phases and the relative stability
between S and C phases. Once again the extended PL theory
was used, this time complemented with a restricted-orientation
(Zwanzig) approximation of the FMT for hard parallelepipeds.
This strategy provided a complete picture of the problem:
while the PL theory fully incorporates the orientational degrees
of freedom, but treats spatial and orientational correlations
in an approximate manner, the Zwanzig approximation
of FMT theory considers only orientations along three
mutually orthogonal axes, but correlations are more faithfully
represented. Results for the phase diagram of a mixture of HSC
using the extended PL theory have been reproduced in the left
side of figure 32, results for a mixture of hard parallelepipeds
obtained using FMT within the restricted-orientation Zwanzig
approximation are shown on the right side of the same figure.

The main feature of the phase diagram obtained using PL
theory is the very strong segregation of the smectic phase; it
is in fact so strong that it pre-empts the I–N transition. Apart
from the standard smectic phase, a second kind of smectic
phase, S2, is found to be stable in the region of the phase
diagram corresponding to mixtures rich in the short particles. In
the microsegregated S2 phase, layers of different composition
alternate in such a way that the density distributions of the
two species are shifted one with respect to the other by half a
smectic period. In the case of the Zwanzig model (right side
of the figure), the smectic segregation takes place at a much
higher pressure (as compared, for example, with the location of
the isotropic-nematic transition). As a result, the I–N transition
is not pre-empted. There is no direct I–S phase transition like
the one resulting from the PL theory for a mixture rich in short
particles. Instead, we have continuous N–S transitions and a
first-order S–S2 transition at higher pressure. However, it has
to be noted that when the stability of the nematic phase against
columnar-type fluctuations is taken into account, these results

have to be modified considerably. The nematic-columnar
spinodal line has been represented as a dotted line in figure 32.
As is evident from the figure, the conclusion is that the FMT-
Zwanzig approximation greatly enhances the stability of the
C phase, pre-empting smectic order completely. By contrast,
in the PL model, the C phase may pre-empt a large region of
S phase stability in some mixtures, but some regions where
the S phase is stable remain. Note that the stability against C-
type fluctuations in the PL theory was estimated by computing
spinodal lines; a proper calculation including binodal lines
would probably result in enhanced stability of the C phase.

In a final study using the PL theory, Cinacchi et al [244]
calculated the phase diagrams of a collection of binary mix-
tures of thin and thick HSC. Attention was paid to two cases:
(i) binary mixtures where the two components have the same
length and, (ii) binary mixtures where the two components have
the same volume. Spherocylinders of the same total length and
different diameter tend to demix considerably as soon as the di-
ameter ratio deviates from unity, especially at (high) pressures
such that at least the phase richer in the thicker component is
S. In the case where the two components have equal volumes,
demixing is further increased due to the disparity not only in
particle diameter but also in particle length.

Many of the theoretical studies on mixtures of hard
anisotropic bodies have been inspired by, or have inspired,
experiments on colloidal suspensions of particles. When com-
paring the experimental results with the theories as regard the
stable phases and the different regions of coexistence, it is im-
portant to pay attention to the possible effects of gravity, since
the sedimentation profile is a cross result of phase behaviour
and gravity effects. The sedimentation-diffusive equilibrium
of colloidal liquid-crystal suspensions, either mixtures or poly-
disperse systems, gives rise to a stack of distinct layers with dif-
ferent properties (such as particle composition). This problem
has recently been discussed by de las Heras and Schmidt [245].
They used a Legendre transform on the FMT-based functional
introduced by Esztermann et al [140] to study sedimentation
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of a binary mixture of hard platelets with vanishing thickness
and to account for the effect of gravity on the number of stack-
ing diagrams. The authors found that even simple binary (not
necessarily polydisperse) mixtures produce a stacking diagram
containing six types of stacks with up to four distinct layers.
The extended Gibbs phase rule that determines the maximum
number (Nmax) of sedimented layers reads: Nmax = 3+2(nb−
1) + ni , where nb is the number of binodals present in the bulk
phase diagram, whileni is the number of their inflection points.

3.5.2. Polydisperse systems. In this section we focus on con-
tinuously polydisperse mixtures, i.e. mixtures beyond binary
and ternary that contain an arbitrarily large number of species,
so large that in fact sizes can be characterized by a continu-
ous distribution. Particle size polydispersity is now recognized
as an important actor in the phase behaviour of real colloidal
suspensions of anisotropic particles. Already in binary mix-
tures (section 3.5.1) interesting effects can be identified: (i)
broadening of the coexistence gap, (ii) enrichement of coex-
isting phases in some species (an effect predicted to occur by
Onsager in mixtures with a discrete number of species) and
(iii) exotic phase equilibria, such as re-entrant nematic phases,
nematic-nematic coexistence or even three-phase, isotropic-
nematic-nematic coexistence. These effects have experimental
evidence. Size polydispersity is a realistic feature of real flu-
ids and has to be taken into account in theoretical treatments.
Polydispersity adds an extra element of complexity which may
entail richer phase diagrams. In particular, as the number of
components increases without limit, Gibb’s phase rule allows
for the possibility of an unlimited number of phases to coexist.
However, the theoretical analysis of polydisperse anisotropic
fluids is not easy, as subtle questions arise concerning particle
size distributions, lack of accuracy of perturbation treatments
and numerical issues.

The experimental realization of polydisperse mixtures of
hard particles consists of suspensions of colloidal synthetic
particles (natural particles such as viruses are usually monodis-
perse) in an aqueous environment at high Coulomb screening
conditions. The latter condition ensures that particle interac-
tions will faithfully be represented by overlap or hard inter-
actions. Many experimental procedures have been devised to
synthesize colloidal particles with different geometries and
shapes (a topic not covered in the present review). All of these
procedures lead to samples containing particles of different
sizes in all particle dimensions. Theoretical treatments of the
resulting suspensions necessarily have to incorporate polydis-
persity. The polydispersities in each dimension are typically
poorly controlled in the experiments and have to be measured
by different means (dynamical light scattering, direct optical
visualization, etc.)

Polydisperse fluids of hard rods were first considered in
the context of Onsager theory. Onsager already outlined the
possible generalization of his theory to discretely polydisperse
systems in length and advanced the broadening effect on the co-
existing gap for the isotropic-nematic transition. Later, several
experimental studies motivated the analysis of these systems.

McMullen et al [246] generalized Onsager theory to polydis-
perse micelles (approximated by hard rods), considering a sim-
ple aggregation model where all rods are in chemical equilib-
rium and the distribution is obtained from the model itself.
Later Odijk et al [247] and Sluckin [248] and Chen [249] fur-
ther used Onsager theory with slight differences, considering
an expansion valid for narrow size distributions. The first at-
tempt to study continuously polydisperse fluids forming liquid-
crystalline phases for general (not only small) polydispersity
coefficient was made by Clarke et al [250]. More recently, an
approximate but consistently more accurate procedure, the mo-
ment method, was used by Speranza and Sollich [251]. Before
reviewing the results, we present the theory and then discuss
the different implementations. Finally, we will review other
works on polydispersity focused on particle shapes other than
hard rods; these works use different versions of fundamental
measure density functional in the Zwanzig approximation.

We consider hard rods of length L and breadth D and
introduce the variables σ1 = L/ 〈L〉 and σ2 = D/ 〈D〉,
denoted collectively by σ ≡ (σ1, σ2). Here 〈L〉 and 〈D〉 are
the averaged particle sizes (note that σi are dimensionless
quantities, but the definition of polydisperse variables is not
universal and some authors use different definitions). If one
or more of these variables are continuously distributed, the
local density distribution ρ(r, Ω̂) has to be generalized to
ρ(r,σ, Ω̂). The present definition of polydisperse variables
guarantees that the local distribution is a density, in the
sense that its normalization is

∫
dσ
∫

dΩ̂ρ(r,σ, Ω̂) = N .
Assuming for the moment that there is no spatial dependence,
we have ρ(r,σ, Ω̂) = ρ(σ, Ω̂) = ρ(σ)h(σ, Ω̂). These
functions satisfy the normalization conditions

∫
dσρ(σ) = ρ0

(with ρ0 the total mean density of the polydisperse mixture)
and

∫
dΩ̂h(σ, Ω̂) = 1. It is also convenient to introduce

ρ0(σ) = ρ0f (σ), the total density distribution function,
where f (σ) is the so-called parent distribution function,
which reflects the particle size distribution obtained from the
particular experimental procedure used to synthesize particles.
Polydispersity is usually quantified in terms of polydispersity
coefficients Δi which give the standard deviation of the size

distribution function, Δi =
√

〈σ 2
i 〉/〈σi〉2 − 1 with 〈σni 〉 =∫

dσσni f (σ).
The extended Onsager theory for the polydisperse mixture

is [247, 248]

βF[ρ]

V
=
∫

dσ

∫
dΩ̂ρ(σ, Ω̂)

{
log
[
ρ(σ, Ω̂)Λ3(σ)

]
− 1
}

+
1

2

∫
dσ

∫
dΩ̂ρ(σ, Ω̂)

∫
dσ′
∫

dΩ̂ ′ρ(σ′, Ω̂ ′)

× Vexc(σ,σ
′, Ω̂, Ω̂ ′), (71)

where Vexcl(σ,σ
′, Ω̂, Ω̂ ′) is the excluded volume between a

pair of particles with dimensions σ, σ′ and orientations Ω̂ , Ω̂ ′,
respectively and Λ(σ) is the thermal wavelength of the species
with dimensions σ. Minimization with respect to the function
h(σ, Ω̂) provides the self-consistent equation

h(σ, Ω̂)

= e−
∫

dσ′ρ(σ′)
∫

dΩ̂ ′h(σ′,Ω̂ ′)Vexc(σ,σ
′,Ω̂,Ω̂ ′)∫

dΩ̂ ′e−
∫

dσ′′ρ(σ′′)
∫

dΩ̂ ′′h(σ′′,Ω̂ ′′)Vexc(σ,σ′′,Ω̂ ′,Ω̂ ′′)
, (72)
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from which the degree of orientational order for species σ can
be obtained:

Q(σ) =
∫

dΩ̂P2(Ω̂ · n̂)h(σ, Ω̂). (73)

Here n̂ is, as usual, the nematic director. Isotropic, Q(σ) = 0
and nematic, Q(σ) �= 0, branches can be obtained from these
equations.

The calculation of phase equilibrium for polydisperse
mixtures is not a trivial task, since there is in general a whole
region in the thermodynamic phase diagram where two or more
phases can coexist and the density of particles of a given size
changes depending on the coexistence point (giving rise to
fractionation). Let ρα(σ) be the density of particles of size σ
in phase α and μα(σ) the corresponding chemical potential. If
m phases are in chemical equilibrium, all chemical potentials
of a given species σ should be equal toμ0(σ), a function which
is determined by the conservation of the number of particles
(lever rule):

ρ0(σ) =
m∑
α=1

γαρα(σ),

m∑
α=1

γα = 1, (74)

The coefficients γα , with 0 � γα � 1, represent the frac-
tion of volume occupied by the phase α. Calculating the chem-
ical potentials from equation (71) and using (72) and (74) gives

ρα(σ) = ρ0(σ)

×
∫

dΩ̂e−
∫

dσ′ρα(σ′)
∫

dΩ̂ ′hα(σ′,Ω̂ ′)Vexc(σ,σ
′,Ω̂,Ω̂ ′)

×
⎧⎨
⎩

m∑
β=1

γβ

∫
dΩ̂ ′e−

∫
dσ′′ρβ(σ′′)

∫
dΩ̂ ′′hβ(σ′′,Ω̂ ′′)Vexc(σ,σ

′′,Ω̂ ′,Ω̂ ′′)

⎫⎬
⎭

−1

(75)

Fixing ρ0 and solving (75) and (72) for each phase α we can
find all the functions hα(σ, Ω̂) and ρα(σ). The latter gives
information on particle fractionation. The m− 1 independent
coefficients γα are calculated through the mechanical equilib-
rium conditions

p1[ρ1; {γτ }] = p2[ρ2; {γτ }] = · · · = pm[ρm; {γτ }], (76)

with βpα[ρα; {γτ }] = ρα + βFex[ρα]/V (valid for Onsager’s
second virial theory). Here ρα = ∫

dσρα(σ) is the number
density of phase α. For the case of two-phase coexistence, say
between I and N phases, the onset of order is calculated by
fixing γN = 0 (a vanishingly small amount of N phase, with
the I phase occupying the whole volume). Solving the equa-
tions for chemical and mechanical equilibrium, the so-called
I-cloud and N-shadow densities, ρ(c)I and ρ(s)N respectively, can
be found. In the other limit, γN = 1 (vanishingly small amount
of I phase), the same coexistence equations provide the N-
cloud and I-shadow densities, ρ(c)N and ρ(s)I , respectively. Usu-
ally phase diagrams are presented plotting the total number
density ρ0 as a function of the polydisperse coefficients. In
the case where only the particle length L is polydisperse, the
I-cloud and N-cloud curves in the ρ0 − ΔL plane define the
boundaries of the two-phase I–N coexistence.

The calculation of coexistence parameters, even for the
simplest two-phase transition, is a daunting task: equa-
tions (72) and (75), which include integrations on angular
and polydispersity variables, have to be discretized and a huge
number of grid points (and, therefore, of unknowns) have to
be used. Therefore, some approximations are needed. Sluckin
[248] and later Chen [249] were the first to study the effect of a
small amount of polydispersity (i.e. the limit Δ → 0) on the co-
existence densities of the I–N transition and the pressure values
at the cloud and shadow points. They used the Onsager model
for length-polydisperse hard rods, i.e. rods withL0/D0 → ∞,
fixed D0 and polydisperse length L, with L0 = 〈L〉 the mean
length. Sluckin [248] used the Gaussian parameterization for
the orientational distribution function proposed by Odijk,

h(σ, Ω̂) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α(l)

4π
exp

[
−α(l)

2
θ2

]
, 0 � θ � π

2

α(l)

4π
exp

[
−α(l)

2
(π − θ)2

]
,

π

2
� θ � π,

(77)

with l ≡ L/L0 and considered the polydispersity coefficient Δ
as a perturbation parameter, obtaining transition densities, ori-
entational order parameter and fractionation in terms of Δ. As
in binary mixtures, he obtained a broadened density gap (more
evident in the I-cloud-N-shadow boundary) and an enrichment
of long rods in the nematic phase. Chen [249] developed a
second-order perturbation theory without assuming any partic-
ular parameterization. Results were somewhat in disagreement
with those of Sluckin, in that, for small Δ, the biphasic gap was
predicted to be narrower than in the monodisperse fluid, a re-
sult attributed to the fact that the theory was valid only for small
polydispersity. It might be that this apparent disagreement is
due to the fact that Chen focused on the I-shadow-N-cloud
boundary.

Speranza and Sollich [251] reconsidered the problem of
length-polydisperse hard rods in the Onsager limit, in an
effort to generalize the theory to general size distributions
(not necessarily narrow). Also, they calculated the whole
phase diagram and discussed the conditions for the appearance
of exotic features such as three-phase I−N−N coexistence
regions and N–N transitions. In order to make the problem
tractable, Speranza and Sollich used a spherical harmonic
expansion, truncated to second-order, of the excluded volume
Vexc(l, l

′, Ω̂, Ω̂ ′) = 2L0D
2
0 ll

′| sin γ |, (with γ the angle
between the unit vectors Ω̂ and Ω̂ ′). Within this approximation,
the free energy depends only on two generalized one-particle
moments, n0 and n2, where

nk =
∫ ∞

0
dl l
∫ π

0
dθ sin θPk(cos θ)ρ(l)h(l, θ), (78)

and ρ(l) is the density distribution function scaled by the factor
πL2

0D0/4. Speranza and Sollich used the moment method to
calculate the I–N phase coexistence. In this method the ideal
free energy is projected onto a subspace generated by a finite set
of moments. For a truncatable (with respect to the moments)

40



J. Phys.: Condens. Matter 26 (2014) 463101 Topical Review

excess free energy density Φex({nk}), the ideal part of free
energy density in reduced thermal units

Φid =
∫ ∞

0
dl
∫ π

0
dθ sin θρ(l, θ)

[
log

ρ(l, θ)

f (l)
− 1

]
, (79)

is minimized with respect to ρ(l, θ), with the constraint of
having fixed values for the generalized moments nk . Note
that the factor f (l) (the parent size distribution) inside the
logarithm does not affect the phase behaviour but it is
useful to derive the coexistence equations. The constrained
minimization results in the following expression for the total
free energy density

Φ({nk}) =
∑
k

λknk − n0 + Φex({nk}), (80)

where λk are the Lagrange multipliers that guarantee the
constraints. As can be seen from (80), the total free energy
depends on the generalized moments nk , which can be
viewed as densities of quasiparticles corresponding to a
multicomponent mixture. Thus, if the excess part of the
free energy density depends on two moments, the usual
thermodynamic formalism for binary mixtures can be applied
to calculate the phase coexistence between the I and N phases.
We should note that the method is exact for the calculation of
coexistence between a phase that occupies a vanishingly small
part of the volume (shadow phase) and another that spans the
whole volume (cloud phase). For a more formal discussion on
the method of moments see [252–256].

Speranza and Sollich analyzed the consequences of
assuming both unimodal and bimodal length distribution
functions in the phase behaviour. The latter was written as
a combination of two Schultz distributions of variance Δ0

centred at two lengths L1 and L2, with r = L2/L1. The phase
diagram was calculated in the ρ0 − Δ0 plane. For a unimodal
distribution, broadening of the density gap between the I and
N cloud curves as Δ0 is increased was obtained. Also, strong
fractionation was observed, with the N-shadow phase being
more populated by long rods (first moment n1 much higher
than that in the I-cloud phase). For high enough Δ0, the zeroth
moment (number density) of the N-shadow phase becomes
lower than that of the I-cloud phase, i.e. the vanishingly small
coexisting N phase has less rods (although they are longer).
Also, three-phase I−N−N coexistence did not occur in fluids
with unimodal (Schultz) length distributions, according to the
truncated Onsager theory.

The results for a bimodal length distribution were
compared with those for a binary mixture (for which the
distribution function is a sum of two delta functions and I–N–N
and N–N coexistences occur) of the same length asymmetry
r . When the polydispersity Δ0 is large enough, the I−N−N
and N−N coexistencies disappear, while the re-entrant N
phase is still present. The authors concluded that the bimodal
distribution function should be sufficiently asymmetric and
with two clearly visible peaks for the three-phase coexistence
to exist [251].

In another work, Speranza and Sollich [257] used the
same model but with a parent distribution function exhibiting

Figure 33. (a) I-cloud and (b) N-shadow curves in the polydispersity
versus scaled density plane for length-polydisperse rods with
Schultz distribution function truncated at lmax = 50 (solid) and 100
(dashed), from [258]. The dotted lines in both figures represent the
limiting case lmax → ∞. Insets in (a) and (b) show details of the
main figures about the kink (a) and the discontinuity (b) of the cloud
and shadow curves respectively. Reprinted with permission
from [258]. Copyright (2003) by the American Physical Society.

a so-called fat-tail (i.e. a lower-than-exponential decay at large
lengths, which needs to be truncated at a cut-off lmax to avoid
divergences of the mean length in the N-shadow distribution
function).

Now the phase behaviour in the ρ0 − Δ plane is different:
for small Δ the fluid exhibits the usual I−N phase transition,
but beyond some value Δ∗ the I-cloud curve possesses a kink.
At this point the N-shadow curve has a discontinuity, since
the coexisting N becomes bimodal with a second maximum at
lmax that moves to lower values as γN is increased. Above but
close to Δ∗, the fluid exhibits a narrow region of three-phase
I−N−N coexistence, limited above by I−N coexistence. When
the cut-off lmax is increased, the value of Δ∗ decreases [257].

To confirm the results given by the truncated Onsager
theory, Speranza and Sollich [258] also obtained the exact
numerical solution to the I-cloud–N-shadow coexistence
equations. The other set, the N-cloud–I-shadow equations,
was not solved due to its inherent numerical complexity.
Only unimodal (fat-tailed and Schultz) length-distributions
were used. The existence of kinks and discontinuities in the
cloud and shadow curves confirmed the existence of three-
phase coexistence in a narrow interval of polydispersities for
both distributions, while the cloud-point density at the kink
was seen to decrease to zero as the cut-off length tends to
infinity in the case of the fat-tail distribution. Contrary to the
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Figure 34. Phase diagram in the scaled density
c
(0)
0 = ρ0πD0L

2
0/4–polydispersity � plane for length-polydisperse

rods with a log-normal density distribution function truncated at
lmin = 0.01 and lmax = 10, from [259]. Thin solid and dotted lines
correspond to the I–N-cloud and the I–N-shadow curves,
respectively. Thick lines enclose the region where one of the
nematic phases loses stability with respect to the second nematic (so
that the three-phase I–N1–N2 coexistence should be inside this
region). The horizontal line represents the polydispersity at which
the I-cloud curve exhibits a kink. Reprinted with permission
from [259]. Copyright (2003), AIP Publishing LLC.

truncated Onsager model, the Schultz distribution predicts both
a kink in the I-cloud curve (implying I–N–N coexistence)
and a finite value for the cloud-point density at the kink as
the cut-off length increases. Figure 33 is a plot of the I-
cloud and N-shadow curves in the ρ0 − Δ plane resulting
for the truncated Schultz distributions with two different cut-
offs lmax = 50, 100. These results indicate that exponentially
decaying distributions separate the functional space of size
distribution functions in those that give three-phase I–N–N
coexistence for finite lmax and those which do not.

Although three-phase I–N–N coexistence was confirmed
for fat-tail distributions, explicit calculation of coexistence
boundaries was not carried out in the above works. In order
to do this, the three-phase coexistence equations have to be
solved well inside the I–N coexistence region. Taking γN1 =
γ �= 0 (γI = 1 − γ ) and taking γN2 = 0, the point in the
ρ0 − Δ phase diagram for which there appears a vanishingly
small fraction of the coexisting N2 phase in the already phase
separated I–N1 mixture can be calulated. The other point is
calculated by setting γN2 = γ �= 0 and γN1 = 0. This region
was approximately obtained by Wensink and Vroege [259]
by plotting the pressure p at the two-phase I–N coexistence
as a function of γN , searching for the two values of γ (i)N
(i = 1, 2) for which dp/dγN = 0. When γN is between
these values, the pressure is a decreasing function of γN,
indicating the instability of the original N phase with respect
to phase separation between two different nematics. The I-
cloud and N-cloud curves and the phase diagram calculated by
Wensink and Vroege is shown in figure 34. A Gaussian function
for the orientational distribution was used in the I–N phase
coexistence calculations, with an analytic expression obtained
for the free energy in the limit of high order. The approximate

three-phase coexistence is delimited by two consulate points,
the lower one located at a value of polydispersity below the
kink of the I-cloud curve. Use of a Schultz distribution did
not produce any indication for three-phase I–N–N coexistence.
It can be concluded that the calculations with exponential
distribution functions are very sensitive to the approximation
used for the angular distribution function.

The study of freely rotating polydisperse particles other
than rods has not been carried out yet due to the inherent
numerical difficulties involved in solving the coexisting
equations in the context of the presently available DFT
approaches. To circumvent this problem, restricted-orientation
(Zwanzig) approximations have been used for particles with
different shapes. For example, the FMT-based DFT can be
recast into a form where the weighted densities depend only
on one-particle weights, which makes the problem numerically
tractable. Within this approximation, the bulk behaviour of
polydisperse plate-like particles has been analyzed [35, 260,
261]. Also, bimodal polydisperse mixtures of rods and plates
[262, 263], polydisperse fluids of biaxial board-like particles
[264] and parallel hard cylinders [265, 266] have been studied.
In general, studies of this type aim at calculating the limits
of two- or three-phase coexistences between uniform phases
and in some cases also their instabilities against spatial density
fluctuations with different liquid-crystal symmetries.

The FMT formalism for hard board-like, biaxial particles,
in the Zwanzig approximation, can be easily generalized for
the polydisperse case. The theory is written in terms of the
density profiles ρ(i)μν(r,σ) (μ �= ν = x, y, z), which gives
the density of particles in the ith phase at point r with the
main axis pointing along the Cartesian axis μ and secondary
axis pointing along ν. The edge lengths σ = (σ1, σ2, σ3)

are continuously polydisperse. The particle weights have to
be redefined in order to consider the particle biaxiality. The
constrained minimization of the total free energy per unit of
volume βF (i)/V corresponding to the phase i (in coexistence
with the otherm−1 phases) with respect to the density profiles
ρ(i)μν(r,σ), together with the lever rule constraint (74), provides
an equation for these profiles, which is solved numerically.
Use of Fourier transforms usually simplifies the problem.
To find the spinodal instability of a uniform phase, say a
biaxial nematic phase, with respect to nonuniform periodic
modulation of a given wave vector q, one may apply a standard
bifurcation analysis. Onsager theory has also been used in the
Zwanzig approximation to treat hard-board particles in the
polydisperse case.

Using these techniques, some effort has been devoted to
the study of the biaxial nematic phase NB in polydisperse fluids.
As mentioned in section 3.3, binary mixtures of uniaxial hard
rods and plates with high enough asymmetry can stabilize the
biaxial nematic phase with respect to the ocurrence of N+

U−N−
U

demixing. The NB phase has not been observed in experimental
rod-plate colloidal suspensions. Although particles can be
prepared to closely resemble hard bodies, they are inevitably
polydisperse, not only in size, but also in geometry. In a
series of two papers, the effect of polydispersity on the
stability of the NB phase with respect to N+

U−N−
U demixing has

been investigated by Martı́nez-Ratón and Cuesta [262, 263],
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Figure 35. (a) x − ρ phase diagram of a polydisperse mixture of
Zwanzig rods and plates for κ0 = 5, with x the fraction of rods [262].
The thickness and width polydispersities are Δ2/3 = 0.610 and
Δ−1/3 = 0.302 respectively. Different stable phases and two-phase
coexistences are correspondingly labelled. (b) A detail of the phase
diagram shown in (a). Reprinted with permission from [262].
Copyright (2002) by the American Physical Society.

using hard board-like particles of square cross section and
dimensions (L, σ, σ ). The volume of particles was set to unity
and the polydispersity variable was the aspect ratio κ = L/σ ,
which accounts for both size and geometry polydispersity and
a bimodal parent probability distribution function was chosen,
with peaks at κ0 > 1 (rod sector) and κ−1

0 (plate sector).
The phase behaviour of the mixture was studied as a function
of the aspect ratio κ0 and polydispersity. The main result of
this model is the enhanced stability of the NB phase with
polydispersity. For example, for κ0 = 5 in the bidisperse limit,
the binary mixture, just above the Landau point, exhibits a N+

U–
N−

U demixing. However, when some polydispersity is added,
the NB becomes stable against N+

U-NU
− demixing [262] (see

figure 35). For κ0 = 15, for which the binary mixture exhibits
a region of NB phase stability, polydispersity gives rise to a
rather complex phase diagram. Above the NB there appears a
region of three-phase N+

U–N−
U–NB coexistence surrounded by

a stable NB phase (below), a two-phase N−
U–N+

U coexistence
region (above), a N+

U–NB two-phase region (left) and finally
a N−–NB coexistence region (right) [263]. The coexisting
phases also exhibit strong fractionation, more pronounced in
the shadow coexisting phases. In both studies the instability
of the uniform phases with respect to density modulations
of given symmetries (like C and S) were estimated via the
calculations of spinodal curves in the x − ρ plane [262, 263].

Van den Pol et al [171] have recently managed to obtain ex-
perimentally the elusive biaxial nematic phase in colloidal sus-
pensions of mineral board-like biaxial particles, polydisperse

in the three lengths L > W > T (length, width and thickness,
respectively) but with approximately the same shape. The ef-
fect of polydispersity on the stability of the NB phase has been
studied theoretically by Belli et al [264], focusing on the pre-
vious experimental results and using Onsager theory in the
Zwanzig approximation. Belli et al showed that, under cer-
tain conditions, polydispersity can enhance NB stability. The
conditions are: (i) the shape parameter ν = L/W −W/T for
all particles should be approximately the same and close to
zero (the value for a perfect particle biaxiality) and (ii) poly-
dispersity is taken on the particle volume. To match the ex-
perimental conditions, the authors chose L/T = 9.07 and
W/T = 2.96 (which results in ν = 0.1) for all species. 21
species with different Gaussian-distributed lengths T , char-
acterized by mean value 〈T 〉 and polydispersity coefficient Δ
(again fixed in accordance with experiments), were chosen and
the phase diagram in the total packing fraction polydispersity
plane was calculated, neglecting the fractionation of particles
between different coexisting phases (this is justified if phase
transitions are continuous or of weakly first-order). While the
one-component fluid exhibits the sequence I–N+

U–S (where N+
U

is a uniaxial nematic phase with the longest side of particles
pointing on average along the nematic director), polydisper-
sity (see phase diagram in figure 36) stabilizes the NB phase
in a region bounded below and above by the N+

U and S phases,
respectively. At some particular polydispersity, a tetracritical
point appears, where I, N+

U, NB and a new N−
U phase (with the

shortest particle axes pointing in the direction of the nematic
director) meet. For larger values of Δ, the NB phase is bounded
below and above by the N−

U and S phases, respectively.
The smectic phase is usually found to be stable at high

density in colloidal suspensions of close-to-monodisperse rod-
like particles. It is known from theory and experiment that
length-polydispersity in suspensions of particles with close-to-
monodisperse widths can destroy smectic ordering and favour
columnar ordering [267]. Intuitively one would expect that
plate-like particles of approximately constant thickness will
not form the columnar phase if the polydispersity in diameter is
sufficiently high and that smectic ordering will result instead.
The elusive platelet smectic phase was recently obtained in
colloidal suspensions of mineral plate-like particles made of
α-Zirconium phosphate [35]. These particles are completely
monodisperse in thickness L, while their polydispersity in
diameter σ is high and interact through a complex long-range
repulsive interaction due to the surface charges and solvent
effects. The suspensions exhibit a first-order I–N transition
with a wide density gap at low densities and a continuous or
possibly weak first-order N–S transition at high density [35].
A DFT in the Zwanzig approximation was used by the same
authors to rationalize these experimental findings, considering
polydisperse hard cylinders of constant effective thicknessLeff

and mean diameter σ0. A second virial approximation was
used to study the I–N transition, as the experimental mean
aspect ratioL/σ0 of the particles was very small. The effective
thickness Leff was chosen to match the volume fraction η of
the experimental I-cloud point. For diameter polydispersities
Δ between 0.3 and 0.5, both the density gap and the curvature
of the function γN(η0) (the fraction of the sample volume
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Figure 36. (a) Phase diagram in the packing fraction polydispersity plane of a polydisperse fluid of hard board-like biaxial particles with
L/T = 9.07, W/T = 2.96 and polydispersity in the length T , according to Onsager theory in the Zwanzig approximation [264]. The solid
lines show the boundaries limiting the stability regions of uniform phases (I, N±

U and NB, accordingly labelled in the figure). The dashed line
shows the instability of uniform phases with respect to periodic modulations with smectic symmetry (the smectic phase is denoted Sm in the
figure). (b) and (c) details of (a) around the crossing point between the N+–NB transition curve and the N–S spinodal curve and (b) around
the tetracritical point shown with circle. Reprinted with permission from [264]. Copyright (2011) by the American Physical Society.
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Figure 37. Theoretical results for a suspension of length-polydisperse hard cylinders of the same thickness [35]. (a) N–S spinodal packing
fraction η0 as a function of diameter polydispersity Δ. (b) Equation of state (reduced pressure versus packing fraction) of the N and S phases for
Δ = 0.52. Open circles represent the relative, experimental values of the packing fractions of the N phase with respect to the bifurcation point,
while black circles correspond to the S phase with the same osmotic pressure. (c) Density profiles ρ(z, r) as a function of z in reduced units for
r = 1.5 (solid line), 0.4 (dashed line) and 0.8 (dotted line). (d) Normalized density distribution function, defined in the text, as a function of
z/d for the same values of r as in (c) and with lines having the same meaning. In (c) and (d) the packing fraction and the period of the S phase
are ηs = 0.452 and d/Leff = 1.211, respectively. Reprinted with permission from [35]. Copyright (2009) by the American Physical Society.

occupied by the N phase as a function of the packing fraction)
were correctly estimated [35]. As regards the N–S transition,
a parallel hard-cylinder model treated with a FMT approach,
suitably extended to consider polydispersity in diameter, was
used. The parallel alignment approximation is justified here
due to the high nematic ordering of colloidal particles at
packing fractions close to that of the N–S transition. Setting Δ
to the experimental value, equations of state for nematic and

smectic phases were calculated. The N–S transition was found
to be continuous, while the packing fraction at the transition
turned out to be a decreasing function of Δ (see figure 37 (a)).
The experiment provided the value of packing fraction η∗

0 at
which there first appears a small amount of smectic. Slow
kinetics prevents one from observing fully developed smectic
domains when the sample packing fraction η0 is increased and
the smectic packing fraction ηS as a function of the sample
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Figure 38. Regions of stability of the S (blue) and C (orange) phases as obtained from a bifurcation analysis of a fundamental measure
theory of polydisperse hard platelets [261]. The difference Δη = ηs − ηc between the packing fractions of S and C bifurcations from the N
phase is plotted as a function of polydispersities in side-length δl and thickness δh in colour code (scale bar at right). Blue, orange and black
circles represent the values of polydispersities corresponding to experimental samples in the S (blue), C (orange) and S–C (black) phases.
Reproduced from [261] with permission of the PCCP Owner Societies.

packing fraction could not be directly measured. However,
it was indirectly estimated from the theoretical equations of
state for the nematic and smectic phases, figure 37(b). The
ratio Leff/L was determined as a function of η0 from the
knowledge of L/d from experiments (with d the smectic
period) and d/Leff given from the theory. The extrapolation
of Leff/L as a function of η0 to the value for the I–N transition
provides a value almost identical to the one giving the best
fit of the curve γN(η0). Finally, the theory predicted a strong
microsegregation in the S phase, with maxima of the local
fraction of wider particles located at the layers and maxima
of small particles located at interstitials. This is shown in
figure 37(d), where this effect is illustrated through the function
h(z, r) = ρ(z, r)/

∫∞
0 drρ(z, r), where r = σ/σ0 and ρ(z, r)

is the smectic density profile of species with relative diameter r .
Mejia et al [84] performed further studies on the above

experimental system in order to study more systematically
the effect of polydispersity on the two-phase I–N coexistence.
Samples with different polydispersities and mean aspect ratios
were prepared and phase diagrams in the total packing fraction,
η0, versus fraction of the sample volume occupied by the
N phase, γN, plane were calculated. The more polydisperse
sample exhibits a huge coexistence gap and strong nonlinearity
in the function γN(η0), results which were rationalized
by Martı́nez-Ratón and Velasco [260] using a FMT-based
theory for polydisperse oblate parallelepipeds in the Zwanzig
approximation. A value for the effective aspect ratio Leff/σ0

was chosen to account for the effective repulsive interactions
between platelets and the parent size-distribution function was
chosen to be unimodal or bimodal. While samples with small
polydispersity are well described by a unimodal distribution,
large polydispersities require marginally bimodal distributions
(i.e. distributions made from two overlapping peaks such that

no second maximum is visible). Bimodal distributions with two
clearly separated maxima can give rise to a loop in the function
γN(η0). Thus the fraction of total volume occupied by nematic
exhibits a non-monotonic behaviour, not related to the presence
of three-phase I–N–N coexistence, a genuine prediction of the
model which is expected to be confirmed in future experiments.

As mentioned before, synthetic mineral particles cannot
be made completely monodisperse in all their characteristic
lengths. For example, in studies on colloidal platelets [267],
particles are usually highly polydisperse in both diameter
and thickness and, to our knowledge, only in one case [35]
has the platelet thickness been perfectly controlled to exactly
one monolayer. Diameter-polydispersity in platelets of equal
thickness can destabilize the columnar phase with respect to
the smectic phase, while rod-like, length-polydisperse par-
ticles exhibit the opposite behaviour. The effect of length-
polydispersity on the relative stability of smectic and colum-
nar phases in fluids of hard parallel cylinders was studied
through coexistence calculations [265] and bifurcation anal-
ysis [266]. However, realistic models meant to reproduce ex-
perimental results must take into account both polydispersi-
ties, a programme recently followed by Velasco and Martı́nez-
Ratón [261]. These authors considered hard board-like parti-
cles of square section l × l and thickness h, with main axes
along a common direction and polydisperse in both lengths but
with decoupled size distribution. A FMT theory, extended for a
general polydisperse fluid, was adopted. Fixing the two poly-
dispersity coefficients (δl, δh), bifurcation theory was used to
obtain the N–(C,S) bifurcation packing fractions ηC,S, comple-
mented with free energy calculations. Results are plotted in fig-
ure 38, with symbols representing experimental data collected
from the literature. Colours of symbols represent the nature of
the different phases obtained in experiments (blue for S, orange
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Figure 39. Phase diagram in the scaled density ρ∗ versus
polydispersity coefficient Δ for the freely rotating HSC model, as
obtained from simulation [268]. Reprinted with permission
from [268]. Copyright (1998), AIP Publishing LLC.

for C and black for S–C coexistence). The model correctly de-
scribes the interplay between C and S phase stability as a func-
tion of both polydispersities. Free energy relative differences
between smectic and columnar phases confirm the scenario ob-
tained from bifurcation theory: at high enough density and for
δh � δl , the C is more stable than the S phase, while for δl � δh
their relative stability changes. There are values of (δl, δh) for
which the two branches cross at a density ρ∗

0 larger than the two
bifurcation points: for ρ0 < ρ∗

0 the smectic is more stable, with
the opposite behaviour for ρ0 > ρ∗

0 . Finally, the microsegre-
gation mechanism already observed in the smectic phase was
also confirmed for the stable C phases: particles located at the
sites of the square lattice have a side-length distribution similar
to the global one, while particles at interstitial points exhibit a
size distribution centred at much smaller values.

Computer simulations of polydisperse systems are tech-
nically difficult to perform and consequently there are very
few studies. In 1998, Bates and Frenkel [268] studied the ef-
fect of length-polydispersity on the phase behaviour of freely
rotating HSC in the limit of infinite aspect ratio. Their phase
diagram in the density versus polydispersity coefficient plane
is represented in figure 39. The authors found that when the
polydispersity parameter Δ is less than 0.08, the phase be-
haviour is unchanged with respect to the one-component case,
namely the phase transition sequence N–S–K is obtained. For
polydispersities in the range 0.08 < Δ < 0.18 the window
of stability of the S phase shrinks, while those of the N and
C phases (bracketing the smectic region) become wider. Fi-
nally, for Δ > 0.18, the S phase is no longer stable, since
rods have a high dispersion in length and they are unable to
arrange into periodic layers. The N phase exhibits a direct
first-order transition to the C phase, which seems to be stable
up to close packing. The same authors studied the I–N tran-
sition in a fluid of hard freely rotating palatelets of vanishing
thickness [269]. Semi-grand canonical Gibbs ensemble sim-
ulations were performed to study particle fractionation as a
function of diameter-polydispersity. Larger particles tend to
populate the coexisting N phase, while the I phase is richer in

small platelets. Also, large platelets are more orientationally
ordered than small platelets in the N phase.

3.6. 2D fluids

2D systems have attracted a lot of interest for a long time,
mainly because of their peculiar properties relating to their low
dimensionality. Also, these systems are a simple realization
of real materials forming monolayers adsorbed on a substrate
or self-assembled structures on fluid interfaces. 2D fluids may
also serve as models for biological or synthetic membranes and
the understanding of the assembling properties of molecules
of different shapes on a surface is becoming an increasingly
important topic in condensed matter physics and cross-
disciplines such as physical chemistry and biophysics.

The peculiar properties of 2D crystals and the asso-
ciated liquid-crystal freezing transition (existence of bond-
orientational order and the hexatic phase, absence of true
long-range positional order, etc.) for fluids made of isomet-
ric or effectively isometric particles have their counterpart in
mesophases possessing orientational order. There are indica-
tions that the I–N transition in 2D fluids might be governed by
a Kosterlitz–Thouless mechanism, similar to the one thought
to operate in the liquid-hexatic transition of an isotropic fluid.
Since the order parameter of a nematic is a tensor quantity,
there are subtle questions on the existence of order and its de-
pendence on the dimensionalities of the order parameter matrix
and of the physical space. A good introduction to these top-
ics can be found in the book by Lubensky and Chaikin [270].
Another important difference with respect to the 3D case is
the apparent nonexistence of smectic order in 2D, which is
probably associated with the effect of 2D fluctuations on the
emergence of spatial order along one direction.

The question of the existence and nature of orientational
order in 2D fluids is an old one [271]. Evidence based on
simulations [272] and experiments [273] indicate that, similar
to spatial order in 2D crystals, true long-range orientational
order does not exist in 2D nematics and thatD = 2 is the lower
critical dimensionality in nematics. As with many other 2D
systems, the nematic state presents anomalously large thermal
fluctuations which result in a highly fluctuating nematic
director. Assuming that the free energy can be described
by a Frank-type elastic model in the one elastic constant
approximation,

Fe = 1

2

∫
A

d2r
{
K1(∇ · n̂)2 +K3

∣∣∇ × n̂
∣∣2}

= 1

2
K

∫
A

d2r |∇θ |2 , (81)

(where n̂ = (cos θ, sin θ)), the fluctuations in θ , the director
tilt angle with respect to a fixed reference direction, would
depend on the number of particles N as

〈
θ2
〉 ∼ logN ,

with a vanishing order parameter in the thermodynamic limit,
q2 = 〈cos 2θ〉 ∼ N−kT /2πK and an orientational correlation
function gn(r) = 〈cos [nθ(r)]〉 ∼ r−n2kT /2πK that would
decay algebraically rather than presenting long-range order.
All of these results imply that, strictly speaking, the ordered
nematic phase does not exist in the thermodynamic limit
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Figure 40. Typical models for 2D fluids made of anisotropic
particles. (a) Hard discorectangles, with L the rectangle length and
σ the width (note that the total lenght is L + σ ). (b) Hard rectangles
of length L and width σ .

N → ∞, although the dependence is slow and even large
nematic samples, or confined nematics, will be well ordered.
This property, stemming from fluctuations, calls into question
the very existence of the usual Frank elastic constants [271],
which should be regarded to adopt values renormalized by
fluctuations [274].

Concerning the nature of the I–N transition, an interesting
property of 2D nematics is that, for apolar particles exhibiting
head–tail symmetry, a general Landau expansion in the order
parameter Q cannot depend on its sign, so that the I–N
transition can be of first- or second-order; this is in contrast with
3D nematics, for which the Landau expansion contains cubic
terms which drive the transition to be first-order (although
weak as seen experimentally). Simulations of hard ellipses
[275] have indeed found the presence of a tricritical point
separating first-order from continuous I–N transition as a
function of aspect ratio.

As in many other ordering phenomena in condensed
matter physics, the role played by hard-body models in the
investigations of orientational order in 2D has been crucial.
Figure 40 shows two of the more popular particle models.
The orientational transition in 2D was initially explained using
entropy arguments. Straley [271] investigated Onsager theory
for a 2D nematic and found it to predict a I–N transition.
However, there is an important subtlety. The argument Onsager
used to truncate the virial expansion at second-order for 3D
rods is not valid in 2D since virial coefficients higher than
the second are much more important in 2D than in 3D. Rigby
[45] calculated higher-order virial coefficients for 2D isotropic
fluids made of elliptical and discorectangular particles with a
wide range of aspect ratios, including the hard-needle limit. He
reported negative values for B4 and B5 for large elongations
but, in the case of ellipses, B5 becomes negative already for a
length-to-breadth ratio of 1:6. Therefore, Onsager theory is not
strictly valid even in the long-particle limit and results should
always be taken with caution.

The first evidence by simulation of nematic ordering,
due to Vieillard-Baron [56], was in fact in a 2D fluid. But
the results were not conclusive. Later Frenkel and Eppenga
[272] studied the same system and concluded that the nematic
phase exhibits quasi-long-range order (with algebraically
decaying orientational correlations). Cuesta et al [276] used
density functional theory to describe the I–N and the freezing
transitions. The theory was an extension of one used previously

for hard ellipsoids. For uniform phases it has the same structure
as the PL theory for 2D fluids, but at low densities it does
not reproduce the exact second virial coefficient, which is
especially problematic for ellipses with large aspect ratio.

In more extensive work, Cuesta and Frenkel [275] inves-
tigated the transition by constant-pressure MC simulation. In
these simulations the N phase appeared to be stable for aspect
ratios κ > 2, with a crystal phase at high density. The order
of the transition seemed to change from first-order to continu-
ous as the aspect ratio increased, pointing to the existence of a
tricritical point. For κ = 6 the transition proceeded via discli-
nation unbinding. Cuesta and Frenkel also proposed a rescal-
ing of the excluded volume to remedy the deficiencies of the
Cuesta et al theory [276] and obtained a correct second virial
coefficient. Comparison with the MC results was satisfactory
for both the equation of state and the location of the transition.
Figure 41 shows particle configurations of the system at dif-
ferent packing fractions for the case κ = 4, where isotropic,
nematic and solid phases are stabilized. The configuration cor-
responding to the unstable nematic phase, panel (b), shows the
presence of nematic domains, which herald the formation of a
stable nematic phase at higher densities. It is also clear from the
configuration pertaining to the solid phase that particles are not
very localized and large positional fluctuations exist. One im-
portant point is that the computer simulations have not found a
smectic phase in fluids of hard convex bodies [272, 275, 277],
which is an important difference with respect to the 3D case
and could be associated with the reduced dimensionality and
the amplification of spatial fluctuations that destroy smectic
order. 2D smectics have been observed, though, in adsorbed
monolayers of molecules on graphite [278].

Bates and Frenkel [277] investigated in more detail the
nature of the continuous isotropic-nematic transition using
Monte Carlo simulation of a fluid of hard discorectangles.
Analysis of the orientational correlations, which decay
algebraically (quasi-long-range order) with distance, seemed
to confirm a Kosterlitz–Thouless scenario for the continuous
transition, governed by a disclination unbinding mechanism.
For rods of low aspect ratio the isotropic phase changes to a
crystal phase via a first-order transition. The isotropic phase
exhibits strong short-ranged particle correlations in position
and orientation. More recently, Khandkar and Barma [279]
performed grand canonical Monte Carlo of hard needles and
confirmed the quasi-long-range nature of the nematic phase.

The Onsager theory for 2D hard needles was investigated
in more detail by Chrzanowska [280]. She made a careful
analysis of the theory based on bifurcation theory and a detailed
comparison of the order parameter and the thermodynamics
with the available computer simulations of Frenkel and
Eppenga [272] and Chrzanowska and Ehrentraut [281] and
from her new MC data [280]. The agreement is very good,
which is attributed to two causes: the small system size of
the simulations, which prevents the appearance of director
distortion and point defects and the fortuitous cancellation of
virial coefficients due to some of them being negative. Also, it
was conjectured that the disclination unbinding mechanism
associated with the Kosterlitz–Thouless transition observed
in the simulations takes place after the transition, i.e. in the
nematic region.
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Figure 41. Snapshots of typical particle configurations of hard ellipses in different phases from simulations by Cuesta and Frenkel [275] for
aspect ratio κ = 4. (a) Isotropic phase, at packing fraction η = 0.440; (b) unstable nematic phase, η = 0.785, obtained by compression from
the isotropic phase; (c) stable nematic phase, η = 0.761; (d) solid phase, η = 0.809. The last two states were obtained by expanding a solid
phase. Reprinted with permission from [275]. Copyright (1990) by the American Physical Society.

Extended Onsager theories à la Parsons–Lee have been
proposed for hard rods in 2D. Varga and Szalai [282] studied
the isotropic-nematic transition for hard ellipses using two
versions of PL theory. In one, the reference fluid was taken to be
the hard-disc fluid, whereas in the other the isotropic phase of
hard ellipses was used. In general, PL theory gives reasonable
agreement with MC data, but the order of the transition is not
correct in the narrow range of aspect ratio about κ = 4. A
PL theory for hard discorectangles was also proposed by de
las Heras et al [283], using parallel hard ellipses as a reference
fluid. Results were compared with the MC simulations of [277]
for κ = L/D = 15 and very good agreement was found for the
equation of state. In the case of the transition density the results
were not in such an agreement, since the theory predicted an
isotropic-nematic transition at a packing fraction η = 0.257,
compared with 0.363 from the simulations. However, there is
an interesting observation. de las Heras et al also calculated
the two elastic constants of a 2D nematic (splay K1 and bend
K3), using the same theory and expressions for the elastic
constants similar to those for the 3D nematic. For κ = 15, the
ratioK1/K3 decreases very quickly with density as the system
goes into the nematic phase, which raised doubts about results
based on the common one-constant approximation K1 = K3

(note that there are no estimations of elastic constants in 2D
based on simulations). Also, Bates and Frenkel [277] estimated
the transition density by assuming a Kosterlitz–Thouless-type
transition and applying the condition Kc = 8kT /π for the

value of the renormalized constant. Taking K = (K1 +K3)/2
and values from the DFT calculation, one obtains η = 0.36, in
good agreement with the simulation value.

Hard ellipses and hard discorectangles have topologically
similar phase diagrams, with I, N and K phases. The character
of the I–N transition seems to depend delicately on the particle
geometry and particle aspect ratio. However, beyond the type
of transition, there are important subtleties associated with the
particle shape. One example is the formation of oriented phases
with different symmetries and recently interest has focused on
the phase behaviour of particles with shapes different from the
simple ellipsoidal or discorectangular shape. One of the most
studied is the rectangular shape, which may be considered as a
deformation of the ellipsoidal shape, given on the xy plane by
(x/a)n+(y/b)n = 1 withn = 2, in the limit when the exponent
n → ∞. The hard-rectangle model has received a lot of
attention due to the possibility that the so-called tetratic phase
might be stabilized. The tetratic phase is a nonstandard nematic
phase possessing two, instead of one, equivalent and mutually
orthogonal directors and it is equivalent to the cubatic phase
in 3D. Therefore, the tetratic phase has four-fold symmetry,
even though the particles possess two-fold symmetry. In
the tetratic phase the angular distribution function h(ϕ), with
0 � ϕ � 2π , exhibits peaks not only at ϕ = 0 and π , but
also at π/2 and 3π/2 and all of these directions are equally
probable. The formation of these nontrivial arrangements in
self-assembled suspensions of colloidal rectangular particles
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could be important in relation to the creation of patterned
templates which could give rise to new layered materials
of technological importance [284]. Therefore, the theoretical
description of spontaneous ordering derived from packing
(entropic) problems in nontrivial structures is a very relevant
problem and the use of hard models is very adequate.

The first indication for the existence of a tetratic phase
in fluids of rectangular particles came in 1998 from the work
by Schlacken et al [285], who used SPT theory to study the
orientational transition in fluids of hard ellipses and rectangles.
For the case of ellipses they discussed the results for the
equation of state and the transition densities and compared
with the existing Monte Carlo results for ellipses of Cuesta and
Frenkel [275]. In the case of hard rectangles they used the same
theory, but with a different excluded area and a tetratic phase
was found to be stable for low aspect ratios, in a small region
is the density-aspect ratio plane. The phase diagram was found
to depend on the value of aspect ratio. For κ ≡ L/σ > 5.44
(withL the length andσ the width of the rectangle) the isotropic
fluid was predicted to change to a uniaxial nematic phase via
a continuous phase transition. However, for 2.62 < κ < 5.44
the transition changed to first-order. Finally, for κ < 2.62 a
direct (continuous) transition from the isotropic phase to the
tetratic phase was predicted to occur at a rather high density.
At even higher densities the tetratic phase was conjectured to
exhibit a second continuous transition to the uniaxial nematic
phase (no explicit spinodal calculations were performed).

The reason why the tetratic phase can be stabilized lies
in the existence of sharp corners in the particle shape. We
do not expect to find tetratic phases for particles such as
ellipses or discorectangles (the 2D version of spherocylinders).
The reason is that there is a fundamental difference between
rectangles and models with smooth corners. This difference
can be appreciated by looking at the angular dependences of the
excluded area, vexc(ϕ), of the two models, with ϕ the relative
angle between the long axes of two particles. In the case of hard
discorectangles there are minima at ϕ = 0◦ and 180◦, but for
hard rectangles there are additional, relative minima atϕ = 90◦

and 270◦, which the fluid can use in order to compensate for
the loss of orientational entropy. The existence of tetratic order
was ruled out for hard discorectangles in a Monte Carlo study
by Bates and Frenkel [277].

Wojciechowski and Frenkel [286] studied the hard-square
fluid in 2004. The fluid did not appear to freeze from the
isotropic phase, but an intermediate phase with quasi-long-
ranged (algebraic) orientational order and no positional (faster
than algebraic) order appeared; this phase corresponds to a
tetratic phase, although it cannot be considered a proper liquid-
crystal phase since the particle does not differentiate the usual
nematic phase from the tetratic phase.

A year later, Martı́nez-Ratón et al [287] performed
a detailed study of the ordering properties of the hard
discorectangle and the hard rectangle models using, as in the
work of Schlacken et al [285], the SPT theory to describe
spatially uniform phases, but extending and correcting the
work of the latter authors. However, this theory predicts tetratic
ordering at rather high values of packing fraction, η � 0.85,
in a region where phases with spatial order should be stable.

Figure 42. Phase diagram of the hard rectangle system in the
packing fraction aspect ratio plane as obtained by Martı́nez-Ratón et
al [287] using scaled particle theory. Reprinted with permission
from [287]. Copyright (2005), AIP Publishing LLC.

Therefore, Martı́nez-Ratón et al also studied the formation of
spatially nonuniform phases using an extended SPT theory
that incorporated elements from fundamental measure theory,
giving a reasonable account of spatial correlations. The results
are shown in figure 42, which represents the SPT phase
diagram of the model including only uniform phases. These
results complement those of Schlaken et al [285] in that not
only instability lines were calculated, but also the full phase
equilibria. A complex phase behaviour in the region where
the tetratic phase begins to be stable was found. In the interval
2.21 < κ < 5.44 the isotropic-uniaxial nematic transition is of
first-order. For κ < 2.21 the tetratic phase begins to be stable,
with a stability region bounded by a continuous isotropic-
tetratic transition below and by a tetratic-uniaxial nematic
transition above; this transition is of first-order for 1.94 < κ <

2.21 and continuous for 1 < κ < 1.94. This means that there
are two tricritical points: one at κ = 5.44, already predicted by
Schlacken et al and a second one at κ = 1.94 whose calculation
requires a proper bifurcation study from the tetratic to the
uniaxial nematic phase. The spinodal line corresponding to
the instability of the isotropic phase against spatial fluctuations
was also calculated from this extended SPT theory. This line,
not shown in the figure, is located in the range 0.5 � η � 0.6,
a long way below the predicted stability for the tetratic phase,
which would mean that, even though tetratic correlations may
be large, they are not sufficient to stabilize the tetratic phase.

The hard-rectangle system was explored in detail for
the case κ = 3 by Martı́nez-Ratón [288]. His aim was
to investigate layering and commensuration transitions in a
confined set-up (hence the choice of an aspect ratio that ensured
that the columnar phase was the stable phase at high density),
but the bulk phase sequence was calculated as a preliminary
step. The theory used was a FMT for hard rectangles in
the Zwanzig approximation, considering orientations along
two perpendicular axes. A number of phases were found:
isotropic, nematic, two different smectic phases, a plastic solid,
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a perfectly oriented crystal and a columnar phase (note that
this theory cannot describe a tetratic phase). However, the
equilibrium sequence of phases was isotropic and columnar,
with a direct first-order transition between the two.

Parallel with these developments, experiments on vibrated
quasi-2D monolayers made of (macroscopically-sized) gran-
ular rods have been performed. Vibration induces motion of
the grains which is similar to thermal motion in statistical sys-
tems. Although the nature of vibrated granular matter is very
different from that of thermal systems, they are both partially
controlled by overlap (entropic or packing) interactions and in
some regimes they are expected to generate similar types of
structures, either steady (granular matter) or equilibrium (ther-
mal matter) states. In fact, Narayan et al [289] performed ex-
periments on vibrated monolayers of anisotropic grains, such
as basmati rice, pinrolls and steel cylinders. Pinrolls exhibit ne-
matic phases, while basmati rice grains have smectic ordering.
But cylinders, which have sharp corners, form nematic phases
with strong tetratic correlations. These conclusions were ob-
tained directly from visible inspection of real images, but also
from the proper orientational correlation functions. In par-
ticular, defining correlation functions by gn(r) = 〈cos nφ(r)〉
(whereφ(r) is the angle of the long axis of a particle at distance
r relative to another particle fixed at the origin), nematic or-
dering is measured by g2(r), while g4(r) controls the presence
of tetratic order. One interesting thing is that tetratic correla-
tions were seen to be substantial for rather large aspect ratios
(κ = 12.6). In contrast, SPT predicts that tetratic order should
be small for aspect ratios κ � 2.21.

At high packing fractions hard rectangles would be
expected to crystallize with particles pointing in the same
direction and with their centres of mass arranged on a
rectangular lattice (the metastable phase obtained by Martı́nez-
Ratón [288] in his density functional study mentioned above).
But in the case κ = 2 two such rectangles can form a dimer
with square shape and a definite axis (the long sides of the
rectangles). A collection of such square dimers can arrange to
form a crystal with dimers lying at the sites of a square lattice
and with a close-packing limit at η = 1 (perfect packing), but
with residual entropy associated with the random orientation of
the dimer axis. Therefore, a nonperiodic degenerate solid phase
could be the lowest free energy phase. This is an interesting
scenario explored by Wojciechowski et al [290] in 1991 using
hard-disc dimers. In effect, they identified a nonperiodic crystal
at high density, but the underlying lattice was triangular.

In 2006 Donev et al investigated hard rectangles of aspect
ratio κ = 2, i.e. particles that can form square dimers [291].
They demonstrated that this system exhibits both phases with
tetratic order and nonperiodic solids at high density. The lat-
ter is a nonperiodic tetratic phase made of a random tiling
of dimers forming a square lattice, with a residual entropy of
1.79k per particle and a possibly glassy character. The results
of Donev et al are consistent with a two-stage transition sce-
nario of the Kosterlitz–Thouless type, with an isotropic-tetratic
liquid transition followed by a tetratic-solid transition. The ro-
bustness of these results was checked by using two complemen-
tary approaches: a Monte Carlo simulation on hard rectangles
and a molecular dynamics simulation using rectangles with

rounded corners. These results suggest that hard-rectangle
fluids show a strong tendency to form clusters and that theo-
ries based on two-body correlations [285, 287] should not give
accurate results for their structure and thermodynamics.

Therefore, Martı́nez-Ratón, Velasco and Mederos [292]
revisited the problem of the stability of the tetratic phase
using a modified SPT theory that incorporates the third virial
coefficient, thus including three-body correlations that should
be important to describe clustering of hard rectangles. A phase
diagram was calculated using a variational procedure. The
range of stability of the tetratic phase was found to be increased
with respect to the standard SPT approach based solely on two-
body correlations, both in density and particle aspect ratio. The
same group studied the problem with a focus on clustering
[293], using Monte Carlo simulation as a guide to construct
a model based on stable polydisperse clusters of rectangles.
Clustering was seen to greatly enhance the relative stability of
the tetratic phase with respect to the standard, uniaxial nematic
phase. In particular, it was predicted that square clusters have
a dominant contribution to the free energy.

An important experimental study on the issue of the
tetratic phase was performed, using colloidal particles, by
Zhao et al [294]. A solution of PMMA discs, with κ � 6.4,
were prepared standing on edge on a planar surface and their
ordering properties were analyzed. The system should be
similar to a fluid of hard rectangles. Almost smectic behaviour
was observed at high densities but, more interestingly, a
single Kosterlitz–Thouless transition from the isotropic to the
nematic phase was found. Nematic order seems to be destroyed
by wall defects, which lead to strong short-range tetratic order
on the isotropic side of the transition.

More recently, Geng and Selinger [295] have investigated
the conditions for tetratic order to appear. They used a soft-
potential, Maier–Saupe-type model, analyzed with a mean
field theory supplemented with Monte Carlo simulations.
The model included an anisotropy coefficient that reflects
the amount of two-fold symmetry breaking. Although a soft-
potential model, the results are interesting also to interpret
hard-body studies. An important finding is that the tetratic
phase can exist up to a relatively high value of the anisotropy
coefficient which, when transferred to a hard-particle view,
points to rather high particle aspect ratios. Also, the phase
diagram obtained is surprisingly close to that predicted by
Martı́nez-Ratón et al [287] for the hard-rectangle fluid,
including the different phases, the nature of the phase
transitions and even the existence of tricritical points. This
result indicates that the phase behaviour is very generic and
independent of the particular interactions.

In a very complete MC simulation work, Triplett and
Fichthorn [284] studied the hard-rectangle fluid with a range
of aspect ratios and densities. For large aspect ratios the results
compared even quantitatively with the results of [287] for the
isotropic to uniaxial nematic transition. For a moderate value,
κ = 7.5, a detailed study of angular correlations showed strong
tetractic ordering, but not sufficiently large to give a stable
tetratic phase with long- or quasi-long-range order.

The ordering properties of 2D hard squares have recently
been revisited by Avendaño and Escobedo [296], who went
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Figure 43. Typical configurations of V-shaped hard-needle particles in 2D as obtained from simulations [29]. (a) Isotropic (reduced
pressure p∗ = 15, number of particles in the simulations N = 1000); (b) nematic (p∗ = 40, N = 1000). (c) deformed nematic (p∗ = 60,
N = 2000), all for a bending angle between the neddles of α = π/8 (linear configuration would have α = 0). (d) Antiferroelectric smectic
(p∗ = 55, N = 1000) for α = 3π/8. See original article for details.

a step further from the simulations of Wojciechowski and
Frenkel [286] for hard squares. Avendaño and Escobedo
considered a fluid of rounded hard squares and investigated
the evolution of phase behaviour with respect to a roundness
parameter, using rather large system sizes. For this system there
is still some debate on the true mechanism of orientational and
positional ordering, which in some sense parallels that around
the freezing transition in the hard-disc fluid (a debate not
completely closed, see [297]). Experimental studies on hard
colloidal platelets of square and pentagonal shapes [298, 299]
in part motivated this study, together with simulation work
on pentagons [300]. In general, the crystal phases predicted
by the simulations are not observed in the experiments, a
result that has been associated with roundness effects and
periodic boundary conditions. Avendaño and Escobedo found
that the shape roundness is a very important factor and that the
experimental phases can indeed be observed in the simulations.
For a particular range of roundness parameter, the tetratic
mesophase mediates the phase evolution from the isotropic
to the crystal phase.

As mentioned before, there is evidence, based on
computer simulations, that the smectic phase is not stable in 2D
fluids of hard ellipses and hard discorectangles [272, 275, 277]
and that, in these fluids, the only mesophase between the

isotropic and crystal phases is the nematic. In an effort to
search for other mesophases in different, not necessarily
convex, bodies, Varga et al [28] considered the fluid of zigzag
needles introduced in [301] and applied Onsager theory. The
study was motivated by computer simulations of Peón et al
[302], who collected evidence for the stabilization of the
smectic phase and the existence of isotropic-nematic, nematic-
smectic and isotropic-smectic transitions. Crystal structures
cannot be formed in this system, as in any other system of
particles without volume. Varga et al included the rotational
freedom of particles to describe the isotropic and nematic
phases, but considered a parallel particle approximation for the
smectic phase. The results were seen to agree reasonably with
the simulations. The stabilization of the smectic phase was
associated with the effect of increased particle terminal line
segments or bent angle of the zigzag. Its structure is peculiar,
since the central core of the zigzag is tilted with respect to the
layer normal, an optimized arrangement that maximizes the
free volume inside the layers.

Bisi et al [155], based on packing arguments, have
speculated on the formation of antiferroelectric smectic phases
in V-shaped particles due to a shape-polarity effect similar to
that taking place in real dipolar molecules. More recently,
Martı́nez-González et al [29] have considered the simpler
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V-shaped needles and performed Monte Carlo simulation
and calculations based on Onsager theory. They observed
the formation of deformed, stable nematic phases consisting
of orientationally ordered polar domains with bent director
orientation, but with zero overall polarization. Using Onsager
theory, it can be shown that the V-shaped particle geometry
favours bend deformations due to a free energy reducing
bend torque, while splay deformations have an associated
free energy cost. As pressure is increased, these polar
domains become smaller and transform into linear arrays with
alternating polarity, i.e. an antiferroelectric smectic phase. The
theoretical results were seen to be in good agreement with the
simulations. A sequence of typical configurations can be seen
in figure 43.

Mixtures of anisometric particles in 2D have also been
investigated. One of the important issues is the possibility
of nematic-nematic demixing phenomena. In 2005, Martı́nez-
Ratón et al [303] used scaled particle theory to study binary
mixtures of hard discorectangles and hard rectangles, with a
view to exploring possible liquid-crystal demixing scenarios
in two dimensions. Using a bifurcation analysis from the
isotropic phase and coexistence calculations, it was shown that
both isotropic-nematic phase separation and nematic-nematic
demixing ending in a critical point was possible in a binary
mixture of hard discorectangles and also in mixtures of hard
discs and discorectangles. In addition, an isotropic-nematic-
nematic triple point for a mixture of hard discs and hard
discorectangles was found. Similar demixing phase diagrams
were obtained when one or two of the species have an elliptical
shape, as shown in [304]. The elliptical shape enhances the
demixing gap since, for a given aspect ratio, the ellipse is the
more convex body in two dimensions.

de las Heras et al [305] used scaled particle theory to
study binary mixtures composed of hard rectangles and other
particles not possessing stable tetratic order by themselves
(either hard discorectangles or hard discs). Due to packing
frustration associated with particle shape, the tetratic phase in
hard rectangles of low aspect ratio is destabilized when the
second component is added, leading to demixing involving
a second phase (uniaxial nematic or isotropic). The effect is
minimized for hard squares. The effect is also observed when
the second component is a hard rectangle of different aspect
ratio but the same particle area or different particle area but the
same aspect ratio. When the size ratio is sufficiently large,
isotropic-tetratic or tetratic-tetratic demixing was obtained
in mixtures of hard squares. Figure 44 shows a pressure-
composition phase diagram for a mixture of hard rectangles
with aspect ratio κ1 = 1.5 and width σ1 = 1 and hard
discorectangles of aspect ratio κ2 = 2 and same particle area as
a rectangle of aspect ratio equal to 2 and unit width. The phase
diagram includes a lower critical point terminating a region
of uniaxial nematic demixing, an azeotropic point and two
tricritical points separating first-order from continuous phase
transitions. Isotropic I, uniaxial nematic NU and tetratic NT

phases were found, with corresponding regions of stability
shown in the figure.

Finally, we mention some applications of hard-body
models to systems whose properties are in the region between

Figure 44. Phase diagram for a hard rectangle/hard discorectangle
mixture in the scaled pressure versus composition of the
hard-rectangle component, from [305]. Values of the shape
parameters are: aspect ratio κ1 = 1.5 and width σ1 = 1 for the
rectangles and aspect ratio κ2 = 2 and same particle area as a
rectangle of aspect ratio equal to 2 and unit width for the
discorectangles. The open circle indicates the critical point, the
shaded circle denotes an azeotropic point, while the filled circles
indicate tricritical points. Two-phase regions are indicated by the
grey areas. Reprinted with permission from [305]. Copyright (2007)
by the American Physical Society.

two and three dimensions and that share some characteristics
with 2D and 3D fluids. A very important example is that
of Langmuir monolayers. These systems are composed of
liquid-crystal-forming molecules located at an approximately
2D surface (usually flat but with possibly substantial thermal
fluctuations in case the surface is a liquid interface) and with
molecular axes that can freely rotate in 3D. Experimentally
these monolayers are observed to undergo an amazingly
complex variety of phase transitions [306], including positional
ordering, chain freezing and expanded-to-condensed phase
transitions and tilt transitions. These transitions are associated
with orientational order of the molecules, conformational
changes in the molecular chains and positional order of the
centres of mass. Some of these transitions are possibly
explained, partially or totally, in terms of excluded volume.

A model of hard rods (in the Onsager limit) grafted to a flat
surface was analyzed by various authors [307–310]. Contrary
to the full 3D case, this system does not possess a discontinuous
nematic-like transition. Somoza and Desai [311] used the same
model to examine the possibility that the fluid may exhibit a
transition to a tilted nematic phase. In agreement with previous
findings the totally repulsive model was not shown to exhibit
such a tilt transition, although a bifurcation analysis to a phase
with a broken azimuthal symmetry showed a tendency towards
the tilted phase. In order to induce a phase transition, an
external field [310] or interparticle attractive interactions had
to be incorporated and Somoza and Desai [311] obtained a
rich phase diagram using simple model attractions between
the rods.
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Table 2. Summary of hard-body models and applications.

Models Theories Applications

Hard ellipsoids Onsager Uniaxial & biaxial nematics
Hard Gaussian overlap Extended Onsager

Simulation
Hard cylinders Onsager

Scaled-particle theory Nematics
Extended Onsager Smectics
Bifurcation Mixtures
FMT (parallel particles) Columnar
FMT (freely rotating with vanishing thickness)
Simulation

Hard spherocylinders Onsager
Scaled-particle theory I-N-S-K transitions
Bifurcation Plastic phase
Extended Onsager Elastic constants
FMT Mixtures
Simulation Polydisperse fluids

Hard cut spheres Extended Onsager Columnar
Simulation Cubatic

Mixtures
Hard boards Onsager Uniaxial & biaxial nematics

FMT (Zwanzig approx.) Smectics
Cell theory Exotic phases
Simulation Polydisperse fluids

Hard ellipses (2D) Scaled-particle theory I-N-K transitions
Extended Onsager Nature of I-N transition
Simulation Effect of particle geometry

Hard discorectangles (2D) Scaled-particle theory I-N-K transitions
Extended Onsager Nature of I-N transition
Simulation Mixtures

Hard rectangles (2D) Scaled-particle theory Tetratic nematics
Extended Onsager I-N-T-K transitions
Simulation Clustering

Mixtures
Effect of particle geometry

More recently, Martı́nez-Ratón et al [312] used a
fundamental measure density functional to study a monolayer
of particles consisting of hard uniaxial boards of sizesL×σ×σ
with centres lying on a flat surface. The aim was to study the
existence of a phase transition from a uniaxial to a biaxial
nematic phase for both prolate (L > σ ) and oblate (L < σ )
geometries. Since the Zwanzig approximation (with three
possible orientations of the distinct axis) was used, the 3D one-
component fluid can be mapped onto a 2D fluid mixture of three
components consisting of hard squares and two hard rectangles
pointing along perpendicular directions (these 2D bodies are
the projections of the 3D particles on the surface). The authors
found that, for oblate particles and κ−1 ≡ σ/L > 3.5, there
exists a planar NU (with the same number of rectangles pointing
along the two perpendicular directions) to NB (with more
rectangles pointing along one direction) continuous phase
transition, which is bounded above by a stability region of
a nonuniform phase (with some kind of spatial order, be it
columnar, smectic or crystal). In contrast, for κ < 3.5, there
is a direct transition from the NU to a nonuniform phase. For
prolate particles, but only for κ = L/σ > 21.34, is there
a (re-entrant) NB phase, surrounded by regions of NU-phase
stability.

4. Conclusions

For more than a century, hard-core models have been playing
a crucial role in understanding the structure and phase
behaviour of condensed phases of matter. In particular, since
the pioneering work of Onsager, hard bodies have been used
to qualitatively understand the formation of orientationally
ordered phases (see table 2 for a summary of models and
applications). Even though anisotropic hard interactions
are enough to explain the stability of nematic, smectic,
columnar and many other mesophases, this does not mean
that they are essentially responsible for the stability of liquid-
crystalline phases in real materials. However, their study is
very important insofar as they play an essential role in theories
that incorporate more realistic molecular interactions. Also,
many real colloidal systems (e.g. naturally occurring virus
particles) have interactions which can be approximated by hard
interactions. The actual possibility to fabricate tailor-made
colloidal particles of different shapes has recently revitalized
the attention on hard-particle models and research on theories
that quantitatively solve their statistical mechanics is still very
active. Coupling between orientational and positional order,
crucial in mesophases that exhibit partial-spatial order, gives
rise to nontrivial issues that these theories have to face. Most
theories proposed so far rely on Onsager theory, which only
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considers two-body correlations and different schemes have
been proposed to go beyond this approximation, with limited
success. Perturbative treatments on hard-body models have
reached some predictive power in some instances, but lack
of knowledge on correlations functions of hard-particle fluids
is a serious drawback in these applications. The recently
developed FMT version of density functional theory as applied
to freely rotating anisotropic particles opens up a promising
avenue of research on hard-body models (as exemplified by
a recently proposed hard-helix model producing screw-like
nematic phases [313, 314]) and in the future we expect
important activity both in the use of new hard-body models
and in the development of new theoretical tools.
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Note added in proof. Since submitting this review, a new
version of DFT in the FMT formalism that provides a correct
scaling for extremely anisotropic hard bodies (which is not
fulfilled by equation (58)) and simultaneously accounts for the
right dimensional crossover, has recently been formulated by
Wittmann et al [315]. Using this version, the phase diagram
of the HSC model, including I, N, and S phases, has been
calculated.
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Dimensional crossover and the freezing transition in density
functional theory J. Phys.: Condens. Matter 8 L577

[119] Rosenfeld Y, Schmidt M, Löwen H and Tarazona P 1999
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