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1. Introduction

Density functional theory (DFT) has proved to be a very suc-
cessful tool to predict the phase behaviour of bulk and confined 
classical fluids [1, 2]. Since the local-density approximation 
is not appropriate for classical fluids, early versions of DFT 

for the hard-sphere (HS) system included correlations through 
averaged local densities, the effective density approximation 
[3] or the weighted density approximation [4, 5] being two 
widely used versions. Since then, DFT for HS has evolved 
to converge to a more sophisticated class of approximations: 
the so-called fundamental measure density functional theory 
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Abstract
We study a fluid of two-dimensional parallel hard squares in bulk and under confinement in 
channels, with the aim of evaluating the performance of fundamental-measure theory (FMT). 
To this purpose, we first analyse the phase behaviour of the bulk system using FMT and 
Percus–Yevick (PY) theory, and compare the results with molecular dynamics and Monte Carlo 
simulations. In a second step, we study the confined system and check the results against those 
obtained from the transfer matrix method and from our own Monte Carlo simulations. Squares 
are confined to channels with parallel walls at angles of 0° or 45° relative to the diagonals 
of the parallel hard squares, respectively, which allows for an assessment of the effect of the 
external-potential symmetry on the fluid structural properties. In general FMT overestimates 
bulk correlations, predicting the existence of a columnar phase (absent in simulations) prior 
to crystallization. The equation of state predicted by FMT compares well with simulations, 
although the PY approach with the virial route is better in some range of packing fractions. 
The FMT is highly accurate for the structure and correlations of the confined fluid due to the 
dimensional crossover property fulfilled by the theory. Both density profiles and equations of 
state of the confined system are accurately predicted by the theory. The highly non-uniform pair 
correlations inside the channel are also very well described by FMT.
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transfer matrix method, Percus–Yevick approximation, highly confined fluid
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(FMT). This theory was proposed by Rosenfeld in the 1980s 
[6, 7], went through a period of refinement (in an effort to ade-
quately describe HS crystallization [8]), and current versions 
adequately describe crystal anisotropies at high densities [9] 
or the HS equation of state (EOS) for fluid phases [10, 11]. 
Competent reviews of FMT for mixtures of HS and other hard 
particle systems can be found in [12] and [13] respectively.

The first FMT functional for anisotropic particles was 
developed for mixtures of parallel hard squares (PHS) in 2D, 
mixtures of parallel hard cubes (PHC) in 3D, and also for a 
ternary mixture of hard rectangles (2D) or parallelepipeds 
(3D) with restricted orientations (Zwanzig approximation) 
[14–16]. These density functionals were used to calculate the 
phase diagrams of the one-component fluid, binary mixtures 
of hard cubes [17], and also prolate and oblate Zwanzig par-
ticles [18]. Recently they were also applied to the study of 
the phase behaviour of hard biaxial board-like particles [19], 
polydisperse mixtures of highly oriented hard platelets [20], 
and Zwanzig particles confined in a square cavity [21] or in 
geometrically structured three-dimensional (3D) surfaces [22].

FMT density functionals were also obtained for binary or 
ternary mixtures of freely rotating needles, platelets of van-
ishing thickness, and HS [23–25]. These functionals were 
applied to study the demixing behavior [23] and more recently 
the stacking phase diagrams of binary mixtures of anisotropic 
particles [26]. An FMT functional for mixtures of parallel 
hard cylinders of finite thickness has been obtained within the 
dimensional crossover property [27]. More recently, numer-
ically-tractable versions of FMT functionals were obtained 
for freely rotating anisotropic particles which exploited the 
approximate decomposition of the Mayer function as con-
volutions of one-particle weights [28–30], an idea originally 
proposed by Rosenfeld [31]. These versions were successful 
in the analysis of structural properties of platonic solids in 
contact with hard walls [32], and in the study of the bulk phase 
behaviour of hard spherocylinders including also the smectic 
phase [29]. For a recent review on DFT applied to the study of 
hard body models see [33].

It is usually accepted that a density functional fulfilling 
the dimensional crossover property should provide accurate 
predictions for the structure of highly confined fluids. The 
dimensional crossover property means that a functional for 
D-dimensional particles reduces to that for D  −  1-dimensional 
particles if density profiles are constrained from the higher to 
the lower dimension, provided both functionals were obtained 

separately from the same formalism. With this property alone 
FMT functionals for HS and hard disks (HD) can be obtained 
[34]. The FMT functionals were proved to be very accurate in 
the description of HS in high confinement [35–39], but there 
is not enough evidence of that for other anisotropic particles. 
Also, the FMT accurately predicts the properties of HS crys-
tals [40] and of the fluid-crystal interface [41, 42].

In the present article we study the performance of FMT in 
the description of 2D fluids of confined PHS. Even though HD 
may be considered to be geometrically simpler than PHS at 
first sight, in fact the dimensional-crossover-compliant FMT 
functional of HD contains a complicated two-body weighted 
density, in contrast with that of PHS, which features only 
one-body weighted densities. We numerically implement the 
FMT functional for PHS to study the thermodynamics (EOS), 
structure (density profiles) and correlation (pair correlation 
functions) of the confined fluid and check these results against 
the transfer matrix method (TMM) and our own Monte Carlo 
(MC) simulations5. Particles are confined in a narrow channel 
with parallel hard walls, such that only two particles can fit in 
the transverse direction of the channel, figure 1. Two different 
channels, corresponding to two different symmetries of the 
external potential representing the walls, will be studied: (i) 
a channel with walls parallel to one of the sides of the PHS, 
figure 1(a), and (ii) a channel with walls at an angle of 45° 
with respect to the particle sides, figure 1(b). The results pre-
sented here confirm the expectation that the FMT functional 
accurately describes the structure of highly confined fluids.

However one could expect that, as the channel thickness 
becomes larger and the bulk limit is approached, the results 
will become progressively worse. For the purpose of evaluating 
the predictive power of the present functional in the descrip-
tion of the bulk system, we performed a minimisation using a 
Gaussian parametrization (note that a free-minimization was 
recently performed for the same functional in [43], which 
concluded that the Gaussian parametrization accurately 
describes the EOS and the phase transitions), and check the 
resulting EOS against molecular dynamics (MD) simulations 
[44]. Alternatively, the EOS from the Percus–Yevick (PY) 
approximation, both from virial and compressibility routes, 

Figure 1. Schematic of the two channels studied. (a) A channel with walls parallel to one of the sides of the squares. (b) A channel with 
walls at an angle of 45° with respect to the particle sides. σ is the side-length of the squares. H is the channel thickness. W is the length  
(in units of σ) available to the centres of mass of the squares in the transverse direction. The relation between H and W is ( )σ= +H W 1  in 
(a), and σ= +H W 2( )  in (b).

5 All MC simulations were performed on systems with 400–1000 hard 
squares, using typically 105 MC steps for equilibration and 106 MC steps for 
averaging. The effect of system size was checked by doubling the number 
of squares at the same density. Contact values of the correlation functions 
were extrapolated using fittings to quadratic polynomials with respect to two 
arguments.
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were also obtained and compared with simulations. Finally, 
pair correlations functions were calculated from (i) the same 
PY approximation, (ii) from the Ornstein–Zernike relation 
together with the direct correlation function obtained from 
the FMT functional, and (iii) from the test-particle route 
(which involves functional minimisation with a particle fixed 
at the origin). Apart from predicting a spurious columnar (C) 
phase (already reported in [21, 43]), and overemphasising 
pair correlations, the agreement between FMT and simu-
lations is acceptable, especially regarding the EOS at high 
densities and the prediction of a relatively high percentage 
of vacancies in the crystal (K) phase, an issue recently con-
firmed by simulations [45, 46].

Finally, we would like to motivate the use of simple hard 
models in low and restricted geometries. In principle, the 
hard-square and hard-cube systems can be simply regarded 
as purely academic models where the tools of statistical 
mechanical can be applied with great simplicity [47, 48]. 
However, advances in the design and synthesis of colloidal 
particles of different shapes have allowed the realisation of 
experiments on colloidal hard cubes (with rounded edges [49, 
50]). Colloidal particles can be nano-confined with the help 
of external potentials to form a single monolayer. This was 
done recently with HD standing on edge [51]: the system so 
obtained behaved like freely-rotating hard rectangles which 
formed a nematic phase with tetratic symmetry [51], a phase 
also found in simulations [52, 53]. Recent experiments on 
monolayers of hard cubes with rounded edges observed hex-
agonal rotator and rhombic crystal phases [54], whose sta-
bility was also confirmed by simulations on 2D hard squares 
with rounded corners [55]. When the degree of roundness is 
small, the monolayer can be viewed as an effective 2D hard-
square fluid, which at high packing fractions behaves like a 
PHS system.

2. Fundamental measure density functional for 
parallel hard squares

In this section  we briefly describe how to obtain the FMT 
functional for a mixture of PHS. For more details see [15] 
and [16]. The formalism used here can be applied in any 
dimension, but the main ingredients are already present in two 
dimensions. The Mayer function for two PHS of edge-lengths 
σµ and σν parallel to the x and z axes can be decomposed as a 
sum of convolutions:

( )

( ) ( )( ) ( ) ( ) ( )
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where x( )Θ  is the Heaviside function. We use the notation 
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with x( )δ  the Dirac-delta function. Using these weights, we 
define the weighted densities:

r rn ,( ) [ ] ( )( )∑ ρ ω= ∗α
µ

µ µ
α

 (6)

so that the low-density expansion of the excess free-energy 
functional, with second functional derivatives given by (1), is

r r r r rn n n nd ,x zexc 0 2 1 1[{ }] → [ ( ) ( ) ( ) ( )]∫β ρ +µF (7)

( k T1
Bβ ≡− ) which in turn constitutes the second virial expan-

sion of the FMT functional we are looking for.
Second, the excess free-energy density of a uniform mix-

ture of PHS according to scaled-particle theory (SPT) [56] is
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1

,0 2
1
2

2

( )ξ ξ
ξ

ξ
Φ = − − +

−
 (8)

where

1, , ,0 1 2
2∑ ∑ ∑ξ ρ ξ ρ σ ξ ρ σ= ⋅ = ⋅ = ⋅

µ
µ

µ
µ µ

µ
µ µ (9)

are sums of the number densities multiplied by the funda-
mental measures of particles. The spatial integrals of the 
weight functions (2)–(5) produce the same fundamental 

measures: r rd ( )( )∫ ω σ=µ
α

µ
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( x z1 , 1β = ). Therefore, identifying the weighted densities of 
non-uniform mixtures with their values iξ  for uniform density 
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2

1 1→ ( ) ( )ξ  and rn2 2→ ( )ξ , we finally obtain 
the excess free-energy functional whose low-density expan-
sion is given by (7):
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An important property fulfilled by this functional is the 
dimensional crossover, i.e. when the particle centres of mass 
are constrained to the x axis, i.e. r x z( ) ( ) ( )ρ ρ δ=µ µ , the exact 
Percus density-functional for hard segments is recovered:
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In the present work we use (10) with the weighted densities 
(6) for the one-component case (i.e. there is only one density 
profile r( )ρ ) as the FMT excess density functional. The ideal 
part is, as usual

r r rd log 1 .id[ ] ( ) [ ( ) ]∫β ρ ρ ρ= −F (14)

The total free-energy density functional id exc[ ] [ ] [ ]ρ ρ ρ= +F F F  
is minimized at fixed mean density 0ρ  to obtain the equilib-
rium density profiles for the non-uniform phases in bulk. For 
the confined fluids one minimises the grand potential,

r r rvd ,ext[ ] [ ] ( ) [ ( ) ]∫ρ ρ ρ µΩ = + −F (15)

where μ is the bulk chemical potential, while rvext( ) is the 
external potential acting on the particle centres of mass. Also 
we calculate the longitudinal pressure of the confined fluid as
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where A is the total area of the box.
We will consider two different external potentials rvext( ), 

reflecting two different symmetries for the channel:

 (i) The hard walls of the channel are parallel to one of the 
sides of the squares along the x axis, figure 1(a):

rv
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2
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 (ii) The walls are at an angle of 45° with respect to any of the 
two particle sides, figure 1(b):
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H is the thickness of the channel. For the parallel case we will 
consider channels with H2 3⩽σ σ< , while for the oblique 
case H2 3 2⩽σ σ< ; in both cases the free area available 
to squares only allow two particles to fit along the transverse 
direction.

3. Transfer matrix theory for confined fluids

As mentioned in section 1 we have focused our interest on 
channels that can hold two particles at most in the trans-
verse direction, mainly because for these small systems 
the TMM can produce exact results. It is still a great chal-
lenge to extend the list of exactly solvable models in the 
direction of confined fluids starting from the 1D Tonks-gas 
[57], where the particles interacts with only few neigh-
bours. The problem arises from the appearance of addi-
tional positional freedoms, which gives rise to increasing 
number of interactions. Therefore the successful 1D 

methods must be extended for pair interactions with a 
finite number of neighbours. Along this line the TMM has 
been proved very successful to get exact results in very 
narrow pores [58].

Even if the formalism of the TMM is transparent the 
equations  to obtain the eigenfunctions and eigenvalues 
(from which we can obtain the thermodynamical and struc-
tural properties of the fluid) can be obtained in analytic 
form only for few model systems such as the classical spin 
models on one and 2D lattices [59, 60], 1D gas of some rotors  
[61, 62] and the 1D fluid of hard rhombuses in very 
narrow pores [63]. However, the equation  for eigenfunc-
tions has been solved numerically for several continuum 
models in the past, where only nearest neighbour inter-
actions are present. The most important examples are the 
system of HD confined between two parallel walls [58, 
63–66] and that of hard spheres in cylindrical channel 
[58, 67, 68]. The application of the TMM has proved to 
be a formidable task for those systems, where the particles 
can interact with m  >  1 neighbours. The first numerical 
transfer matrix solution for parallel hard squares confined 
between soft walls (periodic boundary walls), where both 
first and second neighbour interactions are present, is due 
to Percus and Zhang [69]. Recently the method has been 
applied successfully in the presence of hard walls for both 
HD [70] and PHS [71].

The basic idea of TMM is to find the configurational part 
of the partition function as a trace of the matrix products of 
low dimensional matrices. In the case of 2D confinement, 
where particles are confined between two parallel walls (see 
figure 2), it is useful to change from the canonical to the iso-
baric ensemble, where the longitudinal pressure p is chosen 
to be the independent variable. In this new ensemble, one can 
perform changes of variables in particle positions and find the 
size of the minimal cluster (m) to simplify the isobaric parti-
tion function as much as possible.

Without going into details, one can show that the configu-
rational part of the partition function can be written as

Z K K Kd d , , Tr ,N m N m
N m

NpT 1 / 1 2 / 1
/( ) ( ) ( )∫ ∫χ χ χ χ χ χ= … =�

 (19)
where the kernel function is defined as

K X, e d .i i
U X pHX

i i1
0

, ,
, 1i i i i i i1 , 1 , 1( ) [ ( ) ]∫χ χ = β χ χ

+

∞
− +

++ + + (20)

Here iχ  is a short notation for all the internal positional vari-
ables of the ith cluster, i.e. the m pieces of transverse coordi-
nates and m  −  1 pieces of relative longitudinal coordinates of 
the m particles of the ith cluster. Furthermore, Xi, i+1 is the dif-
ference between the longitudinal coordinates of the centres of 
the neighbouring (ith and i  +  1th) clusters, U X, ,i i i i1 , 1( )χ χ + +  
is the whole potential energy of particles form the ith and 
i  +  1th clusters, which is infinity if any two particles overlap 
and zero otherwise. We also mention that the matrix product is 

defined as K K K, d , ,i i i i i i i
2

1 1 1 1( ) ( ) ( )∫χ χ χ χ χ χ χ=− + − + .
In the derivation of equation  (19) we emphasize that the 

size of the minimal cluster is equal to the number of pos-
sible interactions of a chosen particle with the other ones if 
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the positional order of the particles are kept fixed along the 
longitudinal direction (x x xN1 2< <� ). This is equivalent to 
the statement that all particles can interact with 2m neigh-
bours only (m neighbours in forward and m neighbours in 
backward directions along the pore). In addition to this, the 1χ  
and N m/ 1χ +  coordinates are the same in (19). The size of the 
minimal cluster depends on the particle–particle interaction 
and the width of the channel. Figure 2 represents a case where 
a system can be divided into clusters of ten particles. Since the 
result of the trace operation in equation (19) does not depends 
on the basis used, it is worth determining the eigenvalues and 
the eigenfunctions of the kernel function (K) to obtain the par-
tition function, as follows:

Z KTr ,N m

n
n
N m

NpT
/ /( ) ∑λ= = (21)

where nλ  and nΨ  are the nth eigenvalue and eigenfunction of 
the following integral equation:

Kd , .i i i n i n n i1 1 1( ) ( ) ( )∫ χ χ χ χ λ χΨ = Ψ+ + + (22)

As can be seen from equation  (20), the kernel function is 
not symmetric for wider channels because a cluster formed 
by more than one particle is generally not symmetric under 
reflection, and if we interchange the ith and i  +  1th clusters 
the opposite sides of the clusters will interact with each other. 
Therefore we can get a second eigenvalue equation in the fol-
lowing form:

Kd , .i i i n i n n i1 1( ) ( ) ( )∫ χ χ χ χ λ χΨ = Ψ+ + (23)

Note that it can be proved that n i( )χΨ  can be expressed from 

n i( )χΨ  with some coordinate changes and n nλ λ= . One can see 
from equation (23) that only the largest eigenvalue ( 0λ ) con-
tributes to the partition function in the thermodynamic limit 
(N →∞), i.e. the Gibbs free energy can be written as

G N
m

/
1

log .0β λ= − (24)

The equation  of state of the system can be obtained from 
the relationship between the longitudinal dimension of the 
channel (L) and the longitudinal pressure, which is given by 

p
H

F

L

1= − ∂
∂

, which corresponds to the following equation  in 

the (N, p, T) ensemble:

G N

p

/
,1ρ =

∂
∂

− (25)

where ρ is the density ( HL N/1ρ =− ). We can also gain 
some information about the positional distribution of the 
particles from the eigenfunction of the largest eigenvalue, 
because f 0 0( ) ( ) ( )χ χ χ= Ψ Ψ  represents the normalized prob-
ability distribution function of the cluster with m particles 

( fd 1( )∫ χ χ = ).
The eigenvalue equation  (23) simplifies substantially 

for PHS (see equations  in [71]). For channel-widths (H) 
between σ and 2σ equation (23) reduces to the Tonks equa-
tion  for 1D hard rods [57]. In the case of wider channels 
(H 2σ> ), the number of independent positional variables 
of the eigenfunctions goes with 2m  −  1 for a cluster of m 
particles, because m coordinates give the positions of m 
particles along the transverse direction, while m  −  1 rela-
tive distances are needed for giving the relative positions of 
the particles along the pore. This means that dimers form 
the clusters and 0Ψ  depends on two transverse coordinates 
z z,1 2( ) and one longitudinal distance (x) for H2 3σ σ< < . 

In general the size of the minimal cluster is equal to the 
number of interacting neighbours of a given particle, which 
means that m  =  1 for first neighbour interactions, m  =  2 
for first and second neighbour interactions, and so on. 
In general one can conclude that the minimal size of the 
cluster is equal to i and the eigenfunction χΨ i0( ) depends on 

( )χ ≡ … … −z z x x, , ; , ,i i i1 1 1  for i H i 1( )σ σ< < + , where i is an 
integer number. At this point it is important to note that the 
present TMM cannot be extended for bulk systems, because 
the number of neighbours of a given particle and the size of 
the minimal cluster diverge with increasing channel-width.

4. Phase behavior and correlations in bulk

In the present section we describe the bulk phase behaviour of 
the PHS model using FMT and a Gaussian parametrization for 
the density profile,

Figure 2. The smallest separable clusters (m-mer) of the confined fluids.
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⎤
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⎥∏ ∑ρ ν

α
π

= α
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where x x x z, ,1 2( ) ( )≡ , D  =  1, 2 is the dimensionality of the 
inhomogeneities (D  =  1 for C and 2 for K phases), d is the 
lattice period, i.e. distance between layers (for C) or simple 
square lattice parameter (for K). The prefactor ν represents the 
occupancy probability (one minus the fraction of vacancies) 
for the K phase, while it is equal to d0ρ  for the C phase, where 

0ρ  is the mean density per unit cell. The free-energy density 
A/[ ]β ρF  is minimised with respect to the Gaussian parameter 

α and the period d for a fixed mean density 0ρ . Note that, in the 
crystal, the mean packing fraction and the occupancy prob-
ability are related through d/0 0

2 2 2η ρ σ νσ= = . We should 
note that the present parametrization was recently tested in 
[43] where it was compared with the results obtained from 
the free-minimization of the present functional. The authors 
showed that, apart from minor deviations (small underesti-
mation of the fraction of vacancies and small deviations for 
the predicted C-K coexistence densities), the present approx-
imation works remarkable well. Later in this section  the 
results obtained from the minimization will be compared with 
simulation results of [44].

The second purpose of the present section is the study of 
bulk correlations through the pair correlation function rg( ) 
(with r x z,( )= ). We use the FMT functional and follow two 
different routes. First, we use the Ornstein–Zernike (OZ) 
relation, with the direct correlation function obtained from 
the second functional derivative of the FMT functional as an 
input, and predict the function rgfmt oz( )− . Second, we use the 
test-particle route (TP): a hard square is fixed at position (0, 0) 
which acts as an external potential on the rest of the particles. 
The FMT functional is then minimised to obtain rgfmt tp( )− . 
As a third and last step, we have used the PY approximation 
which, along with the OZ relation, gives an integral equa-
tion  for the cavity function r ry g e rv( ) ( ) ( )= β  (with rv( ) the 
hard-core pair potential):

( ) ( ) ( ) ( )
( )∫∫ ∫∫ρ ρ= + − −′ ′ ′ ′ ′
∩

r r r r r r ry y y y1 d d ,
A A A A\r0 0

 (27)

where ρ is the number density, A is the total area of the system, 
A0 is the area of a square of dimensions σ σ×  positioned at the 
origin, and Ar is the area of a square of the same size located 
at r. Then we can compare the FMT results with those from 
the PY approximation, rgpy( ). As we will see, the FMT for 
PHS (and also for hard cubes) gives pair-correlations different 
from the PY result. This scenario is different for HS, where 
the direct correlation function obtained from FMT is the same 
as that from the PY approximation.

Note that the cavity function satisfies the relation

r
r r

r r
y

c A
g A A

,
, \ ,

0

0
( ) ( )

( )
⎧
⎨
⎩

=
− ∈

∈ (28)

where rc( ) is the direct correlation function. We solved equa-
tion (27) numerically for different values of packing fractions 

2η ρσ= , using the fixed-point algorithm. With the function 

ry( ) the inverse structure factor can be obtained by calculating 
the integral inside the core of ry( ), weighted with cosines 
functions:

( ) ( ) ( ) ( )∫ ∫η= +−S q q x z q x q z y x z, 1 4 d d cos cos , .x z x z
1

0

1

0

1

 (29)
The inverse structure factor will be used to look for instabili-
ties of the fluid phase with respect to density modulations with 
crystalline symmetry.

From rgpy( ) one can calculate the EOS using the virial 
route:

p g x z l
4

, d ,v

2

( )∫β ρ
ρ

= + ∆
P

 (30)

where the line integral is taken over the perimeter P of a 
square centered at (0, 0), while the integrand is the jump of the 
pair correlation function at the perimeter (which, according to 
the PY approximation, is zero inside the core). Also, the EOS 
can be calculated from the compressibility route:

p
c1 0, 0c ˆ( )

β
ρ

ρ
∂
∂
= − (31)

where ˆ( ) ( )∫=c c x z x z0, 0 , d d
A0

 is the Fourier transform of the 

direct correlation function at zero wave-vector.
Note that r rg c( ) ( )∆ = −  when r∈P, which follows from 

the continuity of the cavity function r r ry g c( ) ( ) ( )= −  at the 
perimeter. Substituting this equation in equation (30), together 
with the FMT expression for the direct correlation function,

η ξ ξ ξ ξ

ξ
η
η

− = + − − + + − −

×Θ − Θ − =
−

c x z x z x z

x z

, 2 1 2 1 1

1 1 ,
1

,

fmt
2 2( ) [ ( ) ( )( )( )]

( ) ( )
( )

 

(32)

(where x and z are in units of σ) one can obtain the analytical 
result

p
1

,v 2( )
β

ρ
η

=
− (33)

which coincides with the pressure obtained from the com-
pressibility route (31). This result demonstrates that the FMT 
is consistent with respect to the route used.

Figure 3 presents all the EOS obtained from FMT, PY 
virial route (PYV), PY compressibility route (PYC) and MD 
simulations from [44]. The FMT predicts a bifurcation from 
the fluid to the C and K phases at the same packing fraction 
( 0.538η = ), with the C phase more stable than the K phase 
up to 0.75η∼ , at which the K and C free-energy branches 
cross. The C-K transition is first-order but weak, with coex-
isting densities 0.726Cη =  and 0.730Kη =  obtained from a 
free minimization (see [43]), while the corresponding values 
from a Gaussian parametrization are 0.750 and 0.756, respec-
tively. An interesting behaviour of PHS and cubes is the rela-
tively large fraction of vacancies (about 15% for PHS) that 
the system can accept at the bifurcation point. Recent MC and 
MD studies show that this is indeed the case; in fact, these 
anisotropic particles (with frozen or free orientations) crys-
tallise with such a large fraction of vacancies (as compared 
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with HS) that it has been proposed that the K phase is stabi-
lised by vacancies [32, 45]. By contrast, the FMT does not 
predict correctly the stability of the K phase with respect 
to the C phase in the range 0.538 0.750η< <  (the C phase 
should be unstable due to long-wavelength density fluctua-
tions not taken into account in density-functional theory). 
Also, the precise location of the bifurcation point to the K 
phase is not correct: simulations predict a value about 0.79, 
while FMT gives a value of 0.538. However, if we identify 
the C phase as a fluid with lower spatial symmetry, its EOS 
compares fairly well with that given by MD simulation for 

0.6η> . Also, the transition to the K phase given by the theory 
(≃0.75) and simulations (≃0.79) are similar. The major dif-
ferences are restricted to the interval 0.5 0.6η< <  about the 
bifurcation point. For 0.75η> , above the C-K transition pre-
dicted by FMT, the agreement is perfect. This is due to the fact 
that the FMT recovers cell theory, which is known to describe 
the high-density crystalline phase remarkably well. The PYV 
EOS is very close to that obtained from MD simulation up 
to 0.65η≈ , beyond which the pressure is overestimated. 
Also, it exhibits better performance than FMT in the interval 
0.5 0.6η< <  about bifurcation (see figure 3). Finally the EOS 
from PYC is always above that obtained from PYV. Then we 
can conclude that the PYC EOS is worse than that from PYV 
compared with MD results.

Also, we have studied the fluid phase instability with 
respect to K-phase fluctuations using PYC by calculating 
the divergence of the inverse structure factor calculated from 

equation (29). Figure 4(a) shows a zoom of S−1(q, 0) close to 
the value q*where it becomes zero for three different packing 
fractions. The PY approach predicts an instability at 0.84η≈ , 
above that predicted by MD, with a value of lattice para meter 
at bifurcation of d / 1.09σ∼ . However this result should be 
taken with some care because at these high values of η the 
function rg( ) becomes negative at some points (around some 
of the minima of rg( )). Figure 4(b) shows the lattice para meters 
obtained from FMT (for the C and K phases) and the value of 
d q2 /m mπ≡ , where qm is the wavenumber corresponding to the 
absolute minima of S−1(q, 0) with respect to q. We see that the 
results from both theories are similar in the neighbourhood of 
the fluid-to-crystal transition predicted by PY.

The pair correlation function rgfmt oz( )−  was calculated 
from FMT using the equation  (32) and the OZ relation. As 
an example, figure 5 shows the case 0.5η =  (solid curve) just 
before the fluid-to-columnar bifurcation point. Also, the test-
particle route and the PY approximation from equation (27) 
were used to calculate g rfmt tp( )−  (dotted curve) and rgpy( ) 
(dashed curve), respectively. MC simulations results are also 
shown with symbols. We should note that the MC results of 
pair correlations at contact were calculated by extrapolating to 
contact. Panels (a) and (b) show the functions g(x, 0) and g(x, x),  
respectively along the normal direction from the centre of 
the square and along the diagonal direction. As can be seen 
from the figure, the FMT-OZ approximation overestimates 
bulk correlations, since the damped oscillations have a larger 
ampl itude and decay more slowly. Similarly, the FMT test-
particle route overestimates correlations, but to a lesser extent. 
It is interesting to note that although the FMT-OZ approach 
gives a contact value g , 0fmt oz( )σ−  similar to that of simula-
tions, the corner value g ,fmt oz( )σ σ−  is overestimated. By con-
trast, the test-particle route gives a value g , 0fmt tp( )σ−  which 
overestimates that of simulations, while g ,fmt tp( )σ σ−  is similar 
to simulations. The function rgfmt oz( )−  is different from zero 
inside the core, which shows that the FMT direct correlation 
function is different from that obtained from the PY approx-
imation, a result confirmed from g rpy( ) (see dashed curve). 
We can see that the PY approximation gives remarkably good 
results for the pair correlation function, except for the value 
at , 0( )σ , which is underestimated, while g ,py( )σ σ  is similar 
to that of simulations. Note that the amplitude and decay 
of the other peaks are very well described by this approx-
imation, at least for this value of packing fraction. We have 
confirmed that c rpy( ) and rcfmt oz( )−  are different, the former 
being a non-polynomic function of two variables except for 
some particular directions for which it becomes a linear or a 
parabolic function of a single variable (note that rcfmt( ) is a 
second order polynomial with respect to the variables x and 
z). This behaviour is remarkably different from that of hard 
spheres, where the FMT direct correlation function coincides 
with the PY result.

To finish this section, figure 6 compares results from the 
PY approximation and MC simulations for g(x, 0) and g(x, x)  
and for packing fractions 0.6η =  and 0.65η =  (above the C-K 
bifurcation predicted from FMT; note that the results from 
FMT are absent in this figure because the OZ closure cannot 

Figure 3. EOS of PHS as obtained from the PY virial route 
(solid curve), compressibility route (dot–dashed curve), and FMT 
approach (dashed curve). The dotted curve shows the EOS of the 
metastable fluid according to FMT (which coincides with the SPT). 
Filled circles represent MD results from [44], which predict a fluid-
to-crystal transition at a value of packing fraction shown with an 
arrow. The filled square represents the fluid-to-columnar second-
order transition, while open squares represent the coexistence 
densities at the first-order columnar-to-crystal transition, both 
predicted by FMT. The inset is a detail of the main figure.
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be used to calculate pair correlations for non-uniform phases). 
At high densities the function g x, 0py( ) is reasonably close to 
that from MC (except for the contact value). However g x x,py( ) 
strongly underestimates correlations (see figure 6). To summa-
rize, we can say that the PY approximation, as applied to the 
calculation of rg( ) for PHS and possibly also for hard cubes, 
although performing better than FMT, does not have the same 
degree of accuracy as for HS. The fact that it seems to predict 
a fluid-to-crystal transition at densities close to 0.79η =  (in 
contrast to FMT, which predicts a bifurcation at 0.54) can be 

used to include it as a main ingredient to construct a modi-
fied version of FMT. The bad description (with respect to the 
hard-sphere case) of correlations featured by the PY theory 
is a general trend in many models of anisotropic particles. A 
modification of FMT to include PY correlations will certainly 
spoil the accurate description of the present density functional 
for highly confined PHS systems (an issue studied in the next 
section). The D D2 1→  dimensional cross-over property is 
not fulfilled any more when the structure of the functional is 
modified to include PY correlations.

Figure 4. (a) PY inverse structure factor evaluated in the neighbourhood its absolute minimum as a function of the wavenumber σq  for 
η = 0.55 (dotted curve), 0.75 (dashed curve) and 0.85 (solid curve). (b) Lattice parameters σd /m  (with open circles joined by solid lines) 
corresponding to the absolute minima of S−1(q, 0) as a function of η. Filled circle corresponds to the estimated fluid-to-crystal transition 
using the PY approximation. Dashed and dotted curves correspond to the periods of columnar and crystal phases, respectively, as obtained 
from the FMT approach.
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Figure 5. (a) Pair correlation functions ( )−g x, 0fmt oz  (solid curve), ( )g x, 0py  (dashed curve), and ( )−g x, 0fmt tp  (dotted curve) for η = 0.5 along 
the normal direction. Symbols show MC simulation results. (b) Pair correlation functions ( )αg x x,  along the diagonal direction for the same 
value of η, as obtained from the same theories and with meaning of lines and symbols as in panel (a). Inset: complete function ( )−g x x,fmt oz  
including also the core region.

0 2 4 6 8
x/ σ

0

1

2

3

4

5

6

g(
x,

0)

(a)

0 2 4 6 8
x/σ

0.4

0.8

1.2

1.6

2

g(
x,

x)

0 2 4 6
x/σ

-1

0

1

2

g(
x,

x)

(b)

J. Phys.: Condens. Matter 28 (2016) 244002



M González-Pinto et al

9

5. PHS confined in channels

This section is devoted to the effect of high confinement on the 
thermodynamic and structural properties of fluids of PHS. We 
will evaluate the performance of FMT by comparing the den-
sities profiles, EOS and correlation functions with the exact 
TMM results and with MC simulations for channels of thick-
ness H W 1 2.08( )σ= + = , 2.5 and 2.92. W is defined as the 
space available to the particle centres of mass (in units of σ) 
in the transverse direction z, while the walls of the channel are 
taken to be parallel to the edge-lengths of the particles (along 
the x axis). Later in the section we also present some results 
for oblique channels (with the walls forming 45° degrees with 
respect to the x axis).

The grand potential [ ]ρΩ  was numerically minimised with 
respect to z( )ρ  by discretising the channel along the trans-
verse direction, H z H/2 /2⩽ ⩽− , using up to N H / 104σ= ×  
points, and implementing a conjugate-gradient method. 
Figures  7, 8 and 9 show the normalised density profiles 

z z z z/ d
H

H

/2

/2
( ) ( ) ( )∫ρ ρ ρ=∗

−
 ((a) panels), the longitudinal pres-

sure in dimensionless units, p p 2β σ≡∗  [(b) panels], and the 
scaled heat capacity at constant pressure (without the kinetic 
term), C C Nk p p/ 1 / / /p p B

2( ) ( )η η≡ − = ∂ ∂∗ ∗ ∗  (inset of (b) 
panels) for different values of packing fraction η. The latter 

is calculated as H z zd
H

H2 1
/2

/2
( )∫η σ ρ= −

−
 and the close-packing 

value is H2 /cpη σ=  (assuming the maximum number of parti-
cles that fit in the transverse direction is two).

We can see from figure 7(a) that the FMT density profiles 
of confined PHS in a channel with W  =  1.08 are very sim-
ilar to the exact ones. Only small differences are seen in the 
shape of the profiles for high packing fractions: while FMT 
predicts Gaussian-type density profiles (see the inset in (a)), 
with a small plateau near the contact and a Gaussian-like 
decay, the exact results show density profiles with approxi-
mately linear shape, except in a very small neighbourhood 
of the wall. Note that, apart from these differences, intervals 
in which the density profiles are not negligible are exactly 
the same, leading to a huge adsorption of both layers at the 
walls. The EOS predicted from FMT is almost identical to 
the exact result [see panel (b)]. It is interesting to note that it 
changes its curvature. This behavior is related to the change 
of structure of confined PHS: while for small packing frac-
tions the system behaves as 1D hard segments, as density 
is increased two highly localized layers of PHS are created 
near the walls. However, no phase transition is apparent in 
the inset of panel (b): the heat capacity shows no divergence 
or discontinuity at the packing fraction where most struc-
tural changes take place inside the channel (close to the max-
imum). We can see that the FMT underestimates the position 
of the peak ( 0.5fmtη ∼ , while 0.6tmη ∼ ) and also overesti-
mate its height.

Figure 6. Pair correlation functions ( )g x, 0py  ((a) and (b)), and ( )g x x,py  ((c) and (d)) for η = 0.6 ((a) and (c)), and 0.65 ((b) and (d)). 
Symbols are the corresponding MC results.
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The results in figures 8 and 9 exhibit the generally good 
performance of FMT in describing highly-confined fluid 
structures and the EOS for wider channels (W  =  1.5 and 1.92). 
This adequacy is due to the dimensional reduction property 
that the present functional fulfills. Note that now both layers 
are less localized as compared to the W  =  1.08 case.

We have also calculated the pair correlation function 
g z x z0, , ,( ˜ ) of confined PHS. To this purpose we calculated, 
via FMF minimization, the quotient x z z, /( ) ( )ρ ρ , where z( )ρ  is 
the 1D density profile of the confined fluid while x z,( )ρ  is the 
2D density profile of the confined fluid subjected also to an 

external potential coinciding with that of a fixed PHS of same 
dimensions positioned at z0,( ˜).

This function was obtained for channels with W  =  1.08, 
1.5 and 1.92 and different values of packing fractions. Also 
MC simulations were carried out to evaluate the performance 
of FMT on the description of pair correlations. The results 
are shown for the function g z x z0, , ,( )− ±  ( ( )σ≡± −±z H /2, 
i.e. one square is fixed at the position (0, z−) in contact with 
one of the walls while the z-coordinate of the other has, or the 
same z−, or it is located at contact to the other wall at z+.) in 
figure 10 for W  =  1.08 and 0.4η =  (a) and 0.6 ((b)) and in 

Figure 7. (a) Normalized density profiles ( )ρ∗ z  of PHS inside the channel with W  =  1.08 as obtained from FMT (dashed) and TMM (solid) 
corresponding to η = 0.3 (blue, or lower curve at the wall contact), 0.6 (red, or intermediate curve at the wall contact) and 0.8 (black, or upper 
curve at the wall contact). Inset: zoom of curves corresponding to η = 0.8. Only the half of the density profiles are shown as ( ) ( )ρ ρ= −z z  
(note that the center of the channel is located at z  =  0). (b) EOS of PHS into the channel resulting from FMT (dashed) and TMM (solid). The 
vertical dotted line shows the close-packing value. Inset: heat capacity as a function of η from FMT (dashed) and TMM (solid).
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figure 11 for W  =  1.92 and 0.4η =  ((a)) and 0.55 ((b)). Note 
that the MC data exhibit a large scatter because these data are 
extracted from a 3D histogram in z x z, ,( ˜ ) by fixing the bin 
indexes in two of the dimensions, z z,( ˜ ).

As we can see for thin channels (W  =  1.08) and high 
enough packing fractions the particles belonging to same or 
different layers are strongly correlated and the results from 
FMT reproduces those obtained by MC simulations. Note that 
the peak at x  =  0 (dashed line) represents a strongly corre-
lated dimer where particles are in different layers. When the 
channel is wide enough (W  =  1.92), correlations between 
particles belonging to different layers decrease dramatically. 

In any case all correlations have an exponential decay, which 
demonstrates the absence of a phase transition.

The good description of highly confined PHS fluids made 
by FMT is a consequence of its compliance with dimensional 
crossover. However, we expect that as the channel becomes 
wider, the high degree of accuracy shown here will be lost. To 
illustrate this, we have looked for possible phase trans itions, in 
wider (H 3σ> ) channels, between confined columnar phases 
(Cn) with different number n of layers. A C2-to-C3 layering 
transition is found at H / 3.05σ =  and bulk chemical poten-
tial 18βµ∼ , with coexisting C2 and C3 phases having packing 
fractions 0.615η =  and 0.907, respectively. Since it is well 

Figure 9. (a) Normalized density profiles ( )ρ∗ z  of PHS into the channel with W  =  1.92 corresponding to η = 0.2 (blue, or lower curve at the wall 
contact), 0.4 (red, or intermediate curve at the wall contact) and 0.6 (black, or upper curve at the wall contact). (b) EOS of PHS into the channel 
resulting from FMT and TMM. Inset: heat capacity as a function of η from FMT and TMM. The lines have the same meanings as in figure 7.
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Figure 10. Pair correlation functions ( )− −g z x z0, , ,  (solid line and circles) and ( )− +g z x z0, , ,  (dashed line and squares) for channels with 
W  =  1.08 and packing fractions η = 0.4 (a) and 0.6 (b). Symbols represent MC results. Note that for some range of x the symbols are 
superimposed over the lines showing the good agreement between theory and simulations.
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known that confined hard-core interacting particles in dimen-
sion D 1= + ε  (with 1<ε ) do not exhibit any phase trans-
itions [72], this is a spurious prediction of FMT that stems 
from its mean-field nature.

To end this section, we present the FMT results for a 
system of PHS confined in an oblique channel where the 
walls form an angle of 45° with respect to the edge-lengths 

of the squares. Note that this system is equivalent to that of 
confined symmetric rhombuses, see sketch in figure  12(a). 
To present the results we rotate the reference system by 45° 
in such a way that the new coordinates x z,( )′ ′  obtained after 
rotation are parallel (x′) and perpendicular (z′) to the walls. 
Figure 12(b) shows the functions g z x z0, , ,( )′ ′ ′− ±  for the case 
W  =  1.13 and 0.43η =  for which two rhombuses in contact 

Figure 12. (a) Sketch of confined rhombuses in the most likely configuration. (b) Correlation functions ′ ′− −g z x z0, , ,( ) (solid) and 
′ ′− +g z x z0, , ,( ) (dashed curve) for the oblique channel with W  =  1.13 and packing fraction η = 0.43. Inset: density profile of rhombuses 

for same W and η. (c) Same functions as in (b), but for W  =  1.53 and packing fraction η = 0.44. Symbols are MC results [open for 
′ ′− −g z x z0, , ,( ) and filled for ′ ′− +g z x z0, , ,( )].
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Figure 11. Pair correlation functions ( )− −g z x z0, , ,  (solid curve and circles) and ( )− +g z x z0, , ,  (dashed curve and squares) for channels with 
W  =  1.92 and packing fractions (a) η = 0.4 and (b) 0.55. Symbols represent MC results.
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with opposite walls cannot overtake along the channel. This 
figure  only shows results from FMT and MC simulations 
(but not from TMM) because analytic results for the den-
sity profile and nonuniform pair distribution function can 
only be obtained from TMM when the channel width is such 
that particles interact only with nearest neighbours (i.e. with 
two neighbours). Including next-nearest neighbours, which 
is necessary for wider channels, is possible in principle but 
a formidable task in practice. It is clear that the peaks in 
g z x z0, , ,( )′ ′ ′− −  and g z x z0, , ,( )′ ′ ′− +  are out of phase, reflecting 
the fact that particles are positioned in a zigzag configuration 
(see figure  12(a)), which facilitates high-packing configura-
tions in the fluid phase. This structure was already observed 
in [63], where the TMM was used to study PHS confined in 
oblique channels and confined HD. Despite their high packing 
fraction, rhombuses are distributed over the whole channel, 
not just next to the walls, as can be seen from the relatively 
high value of the density in the middle of the pore, inset of 
figure 12(b). Note that, despite the good agreement between 
the FMT and MC density profiles, correlations are grossly 
overestimated by FMT. In figure 12(c) the same functions are 
plotted for the case W  =  1.53 and 0.44η = . Now rhombuses 
in contact with opposite walls can overtake along the channel. 
As pointed out before the TMM cannot be implemented for 
this case. We can see that comparison with MC simulations is 
reasonable, both for density profile and correlations. Note that 
the close-packing density of rhombuses for a given value of W 
is not as trivially obtained as for the case of PHS confined in 
parallel channels (where W2/ 1cp ( )η = + ).

Finally we compare in figure  13 the density profiles 
as obtained from FMT and from TMM for channels with 
W  =  0.354 (a) and W  =  0.707 (b). These channels are suffi-
ciently narrow that the use of the TMM to compute the density 
profiles is possible. As we can see the FMT compares per-
fectly with the exact calculations. In (a) the density profile is 
practicaly constant because we are close to the 1D limit. In (b) 

the relatively high value of the density profile at the centre of 
the pore reflects the lower particle adsorption at the walls, as 
compared to the parallel channel.

6. Conclusions

In the present article we have compared the results of the FMT 
functional for the bulk and confined PHS system with exact 
TMM results and MD and MC simulations. In the case of the 
bulk system, the phase behaviour and bulk correlations were 
also tested against a PY approximation. As shown by previous 
studies [43], the FMT predicts a spurious columnar phase from 

0.538η> , which is more stable than the crystal up to densities 
0.75η∼ , beyond which the crystal becomes more stable. For 

larger packing fractions up to the close packing limit, FMT 
agrees extremely well with simulations. Note that simulations 
predict a fluid-to-crystal transition for 0.79η∼ . Also, if we 
regard the columnar phase as a fluid-like phase with lower 
symmetries, the FMT equation of state is very close to that 
from simulations for densities 0.6 0.75η< < . The range of 
packing fractions 0.5 0.6η< <  is better described by the 
virial-route PY equation of state, while for 0.5η<  the FMT 
(which reduces to the SPT for uniform densities), the virial- 
and compressibility-route PY results have a similar degree of 
accuracy. The PY approach predicts a fluid-to-crystal trans-
ition at 0.84η∼ , very similar to that from simulations.

The bulk pair correlation function rg( ) is in general better 
described by the PY approximation, although correlation 
along diagonal directions are underestimated. Bulk pair cor-
relation functions calculated from: (i) the direct correlation 
function from FMT inserted into the OZ equation, and (ii) the 
test-particle route via functional minimization, both overesti-
mate correlations. The first approximation gives a correlation 
function which is nonzero inside the core, demonstrating that 
the direct correlation function given by FMT is different from 
that obtained from the PY approach. We have shown that,  

Figure 13. Density profiles of rhombuses confined in channels with W  =  0.354, and η = 0.3 (a), and W  =  0.707, and η = 0.4 (b). Solid and 
dashed curves represent the FMT and TMM results, respectively.
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in contrast with FMT, the latter does not exhibit in general a 
poly nomial form in the spatial variables.

When PHS are confined in channels so that at most two 
particles can fit along the transverse direction, FMT results, 
as compared with the TMM, have a high degree of accuracy. 
Both theories give quantitatively very similar results for the 
structure of the fluid (density profiles), the equation of state 
and the constant-pressure heat capacity. Also pair correla-
tions obtained from FMT using the test-particle route agree 
relatively well with simulation results. For sufficiently narrow 
channels (W  =  1.08), two inflection points appear in the 
equation of state which feature the important changes in the 
confined-fluid structure associated with the evolution from a 
1D-like fluid to one formed by two well-defined layers in con-
tact with the walls. Density profiles for high packing fractions 
are very sharp near the walls. For wider channels, density 
profiles exhibit more fluctuations along the transverse direc-
tion, and FMT performs extremely well, with heat capacities 
becoming very similar to the exact results.

Correlations in the channel are in general well accounted 
for by FMT. The non-uniform pair correlation function for 
narrow channels at intermediate densities reflects a high 
correlation between particles belonging to a dimer oriented 
perpend icular to the walls, even higher than for neighbours of 
the same layer. At higher packing fractions the situation is the 
opposite due to a decrease in mean distance between neigh-
bours of the same layer, while at the same time neighbours 
in different layers keep the same distance (see figure 10). For 
wider channels neighbours from different layers are always 
less correlated than those in the same layer (see figure 11). 
Confinement of rhombuses shows that the most favourable 
particle configuration is zigzag, and that the fraction of par-
ticles in the middle of the channel is relatively large despite 
their high packing fraction. However, in this case, FMT par-
ticle correlations are less accurate than in the case of squares, 
especially for very narrow pores.

Finally, we must mention that the FMT functional does 
not behave correctly as the channel thickness becomes larger 
and the system approaches the 2D limit. This was checked by 
identifying phase transitions involving two and three layers 
of squares, a phenomenon not expected for narrow channels. 
This feature is a spurious prediction of FMT that reflects the 
mean-field nature of the density functional.
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