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Abstract. We study the role of the topology of the background space on the 
one-dimensional Kardar–Parisi–Zhang (KPZ) universality class. To do so, we 
study the growth of balls on disordered 2D manifolds with random Riemannian 
metrics, generated by introducing random perturbations to a base manifold. 
As base manifolds we consider cones of dierent aperture angles θ, including 
the limiting cases of a cylinder (θ = 0, which corresponds to an interface with 
periodic boundary conditions) and a plane ( /θ π= 2, which corresponds to 
an interface with circular geometry). We obtain that in the former case the 
radial fluctuations of the ball boundaries approach the Tracy–Widom (TW) 
distribution of the largest eigenvalue of random matrices in the Gaussian 
orthogonal ensemble (TW-GOE), while on cones with any aperture angle θ≠ 0 
fluctuations correspond to the TW-GUE distribution related with the Gaussian 
unitary ensemble. We provide a topological argument to justify the relevance 
of TW-GUE statistics for cones, and state a conjecture which relates the KPZ 
universality subclass with the background topology.
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1. Introduction

Growth is about geometry, even in the presence of noise. The Kardar–Parisi–Zhang 
(KPZ) universality class, which describes the fluctuations of growing interfaces, [1, 2] 
is known to also describe the statistics of the boundaries of balls with increasing radii 
on random manifolds which are flat on average [3]. Remarkably, for one-dimensional 
interfaces evolving in two-dimensional space, the KPZ class does not only entail the 
values of the critical exponents, but also the full probability distribution for the one-
point and the two-point fluctuations, which were initially conjectured and later shown 
to follow Airy processes [4–7], see e.g. [8] for a recent review. Nonetheless, at this level 
the class splits into dierent subclasses, as occurs when considering growth geometries 
frequently found in experiments and many continuum and discrete model systems. 
For instance, in band geometry, i.e. for an interface with periodic boundaries at times 
before saturation to steady state, the local fluctuations are ruled by the Tracy–Widom 
distribution for the largest eigenvalue of random matrices in the Gaussian orthogonal 
ensemble (TW-GOE) [9–11]. However, if the interface has an overall circular shape, 
the fluctuations are those characteristic of the Gaussian unitary ensemble (TW-GUE). 
What is the origin of such a splitting of the class into two topological flavors? Recent 
work on discrete growth models and the KPZ equation itself [12, 13] shows that, if the 
interface is in a band geometry but the underlying substrate is growing, the fluctuations 
are TW-GUE, just as in the circular case. This shows that the interface does not need 
to have a non-zero global curvature for TW-GUE statistics to occur.

All these considerations point to relevant questions: what kind of change takes place 
in the KPZ subclass when the topology of the base manifold on which growth takes place 
is changed? What are the relevant subclasses occurring? The possibility of exploring the 
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KPZ class on any Riemannian manifold was already put forward with the proposal of a 
covariant form of the KPZ equation, which was used to explore band and circular geom-
etries simply by changing the base manifold [14, 15]. It was shown that, before reaching 
the KPZ behavior, the system explored a transient state: an Edwards–Wilkinson (EW) 
or a self-avoiding walk (SAW) crossover for band and circular geometry, respectively. 
As a particular case, in the absence of noise or diusive terms one can study the equa-
tion which merely propagates an interface with a constant speed along the local normal 
direction—related with the level set equation in the case of the dynamics of function 
graphs [16]—, which we call Huygens equation. If applied to an infinitesimal circle, such 
an equation yields balls of increasing radii around the central point. In [3], such a Huygens 
equation was studied on random or disordered Riemannian manifolds with short-range 
correlations, which are flat on average. The dynamics of ball boundaries with increasing 
radii were shown to fall into the KPZ universality class, the radial fluctuations following 
the TW-GUE distribution. A relevant point is that transients were absent in this case: 
KPZ universal behavior was reached already for very short times.

In this work we study the eect of topology on the subclass structure of the KPZ 
universality class of one-dimensional interfaces, by exploring the interface fluctuations 
for growing balls on dierent types of random Riemannian manifolds. More concretely, 
we study the interfaces developed by the Huygens equation on cones of dierent open-
ing angles, including the limiting cases of the cylinder and the plane, which is the case 
studied in [3]. See figure 1 for an illustration.

Our overall conclusion is that TW-GOE statistics are characteristic of the cylinder, 
TW-GUE behavior occurring for cones of arbitrary aperture angles θ, including the 
plane ( /θ π= 2). Hence, a change takes place in the KPZ universality subclass between 
TW-GUE and TW-GOE as the aperture angle of the base cone manifold is changed, 
for θ = 0. Transitions among the various KPZ subclasses have been previously explored, 
although mostly when considering particular initial conditions which are such that, at 
long times, the interface divides into spatial regions in which statistics are of one or 
the other subclass. See e.g. [17] for the case of the totally asymmetric simple exclu-
sion process (TASEP) model with an initial condition where particles are placed at the 
negative even integers. Or the KPZ equation with a double-wedge initial condition or, 
equivalently, a directed polymer with an end-point which is fixed and the other one is 

Figure 1. Ball boundaries on a random manifold whose background metric is (a) 
a cylinder, (b) a cone, and (c) a plane. These interfaces have been generated using 
the numerical algorithm described in section 4.

https://doi.org/10.1088/1742-5468/aa5754
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on a half-line [18]. In our present case, the statistics are homogeneous throughout the 
system and change abruptly from TW-GOE to TW-GUE as soon as the aperture angle 
is non-zero. Such a result complements those obtained in growing systems with a band 
geometry [12, 13], in the sense that these two are the only relevant subclasses in the 
presence of this type of topological changes. Of course, it is important to stress that 
the radial fluctuations of the cylinder only approach the TW-GOE distribution for large 
enough system sizes and at times prior to saturation to steady state. For longer times, 
height fluctuations are expected to deviate from the TW distribution [10, 11, 19].

This paper is structured as follows. Section 2 discusses our general framework: the 
covariant KPZ equation and Huygens equation, considered on random conformal defor-
mations of a given base manifold. In section 3 we describe the parametrization that we 
will use for the cylinder, cones and plane, and the base metric. In section 4 we discuss 
our numerical simulations of interfaces on random cones, the critical exponents, and the 
radial fluctuations. The fact that all cones have TW-GUE radial fluctuations is justified 
in section 5. Our conclusions and ideas for further work are finally outlined in section 6.

2. From the covariant KPZ equation to random metrics

In previous works [14, 15], we have proposed an extension of the KPZ equation for 
which all terms are defined in a covariant manner, i.e. the equation has the same form 
when expressed on any background metric. The equation expresses the evolution of a 
closed simple curve representing an interface. Each point →r  on the curve moves along 
the local normal direction, with a velocity aected by three dierent terms:

[ ( ) ( )] ( )→ → → → →η∂ = + +r A A k r A r n r .t n0 1 (1)
Here, →n is the local unit normal vector, k is the geodesic curvature, and η is a  zero-average 
Gaussian noise, uncorrelated both in time and along the interface. The constants A0, 
A1, and An are free parameters, which characterize, respectively, irreversible growth, 
surface tension, and fluctuations in the growth events. In fact, this interface can develop 
self-intersections. Thus, equation (1) must be supplemented with an algorithm to treat 
them. A convenient choice is to remove always the smaller component [14, 15].

In [3] we focused on the simplest case of equation (1) with = =A A 0n1 , which we 
call the Huygens equation, namely,

( )→ → →∂ =r n r ,t (2)
because it simply propagates any closed curve outwards, in a way which is similar to 
Huygens’ principle for the propagation of a wavefront [16]. If our initial curve is an 
infinitesimal circumference around point X0, then the evolution of our interface will be 
given by a set of balls on this metric, with linearly increasing radii. In [3] we applied 
equation (2) to the study of the growth of balls on two-dimensional random manifolds 
with smooth enough random metrics, which are flat on average and have short-range 
correlations.

In the present work we lift the condition that the random metrics need to be flat 
on average. Let us consider any background metric, given by the metric tensor field 
g0(x, y). We can introduce an ensemble of metrics through

https://doi.org/10.1088/1742-5468/aa5754
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( ) ( ) ( )ν=g x y x y g x y, , , ,0 (3)
where ( )ν x y,  is a smooth enough random field with uniform average and short-range 
correlations (as measured by the g0 metric). This means that, at scales beyond the 
(small) correlation length of this random field ν, the metric g0(x, y) is subject to a ran-
dom conformal transformation or, alternatively, that we consider an optical metric on 
the base manifold, with a position-dependent index of refraction.

3. Cylinder, cones, and plane

Let us address the study of the statistical properties of interfaces generated by the 
Huygens equation (2) on random conformal deformations of a given base Riemannian 
manifold g0(x, y), as expressed by equation (3). The division of the KPZ class between 
band geometry and circular geometry can be recast in our Riemannian geometry 
 language by stating that band geometry refers to propagation of Huygens equation on 
a cylinder, while circular geometry refers to propagation on a plane. Thus, for a ran-
dom metric based on the plane, the results of [3] show that, as expected, the radial 
fluctuations obey TW-GUE statistics. On a random metric based on the cylinder, if 
we set up as initial condition a curve which wraps around it, the ensuing interface 
fluctuations should approach the TW-GOE distribution.

Let us define a natural family of surfaces which interpolates between the cylinder 
and the plane: a set of cones of increasing opening angle θ between the axis and the axis 
and the generatrix, with θ = 0 for the cylinder and /θ π= 2 for the plane. See figure 2 
for an illustration. The cone can be understood as a plane from which a wedge of angle 

( )π θ−2 1 sin  has been removed. We will address the following question: how does the 
distribution for the normal fluctuations of the interface interpolate between TW-GOE for 
the random metric on the cylinder and TW-GUE for the random metric on the plane?

Cones are surfaces with zero Gaussian curvature K everywhere except at the vertex. 
The integral of K over any domain containing the vertex is always the same, and equal 
to the angular defect ( )π θ∆ = −2 1 sin  [20, 21]. The sum of the angles of any geodesic 
triangle containing the vertex will be π+∆. In fact, there is a stronger version of this 
statement, that is a consequence of the Gauss–Bonnet theorem:

∫ π θ=
γ
k sd 2 sin .g (4)

Here, kg is the geodesic curvature of any curve γ surrounding the vertex. In the case of 
a random metric based on the cone, equation (4) will be modified by fluctuations. Yet, 
it shows that the integral of the geodesic curvature is a conserved quantity on average, 
and we can expect some observables of our interfaces to depend on θ.

3.1. Coordinates and metric on the cones

Let us describe our cone manifolds in detail, starting with their embedding in 3D and 
moving to an intrinsic chart. Figure 2 shows the surfaces embedded in 3D space, the 
(X,Y,Z ) coordinates of an arbitrary point on one of these surfaces being given by

https://doi.org/10.1088/1742-5468/aa5754
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( )θ φ= +X r h sin cos ,0 (5a)

( )θ φ= +Y r h sin sin ,0 (5b)

θ=Z h cos , (5c)

where we have made the cones coincide on a base circumference of radius r0 (the thick 
blue line in figure 2) for all θ, h is the distance of the point to the base circumference, 
and φ is the azimuthal angle. Let us choose a quasi-polar coordinate chart on the cones, 
in which each point is given by the pair ( )φr, , with r  =  r0  +  h. Thus, the base circum-
ference will be described as r  =  r0 on all the cones. This coordinate chart presents some 
advantages, such as an homogeneous description of all cones, cylinder, and plane. We 
can now consider the metric for the cones expressed on these coordinates,

( )ρ φ= +s r rd d d ,2 2 2 2
 (6)

where ( ) ( )ρ θ θ= + = + −r r h r r rsin sin0 0 0  is the distance to the axis of the cone. The 
limit case of the cylinder (θ = 0) yields

φ= +s r rd d d .2 2
0
2 2 (7)

Similarly, for the plane ( /θ π= 2) we have

φ= +s r rd d d .2 2 2 2 (8)

Figure 2. Illustration for our family of conical surfaces, parametrized by θ, the 
angle between the cone axis and generatrix. They are all forced to coincide on a 
base circumference of radius r0, marked with the blue line. Quasi-polar coordinates 
are defined by using a ‘radius’ r  =  r0  +  h.

https://doi.org/10.1088/1742-5468/aa5754
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Despite the simplicity of this quasi-polar metric, we prefer to introduce a new 
Cartesian-like chart. The reason is to avoid the need for periodic boundary conditions 
in the azimuthal angle. Let us define x and y as

φ=x r cos , (9a)

φ=y r sin . (9b)

Geometrically, the Cartesian-like coordinates (x, y) express a mapping of the cone on 
the plane containing the base circumference, in which distances to this base curve are 
preserved. In these quasi-Cartesian coordinates, the metric can be written as

( )( ) ( )θ θ θ θ
=

− − + + +
g

r y r r r r y r x

r

2 sin sin sin cos
,xx

0
2

0
2 4 2

0
2 2 2 2 2

4
 (10a)

( )( ) ( )θ θ θ θ
=

− − + + +
g

r x r r r r x r y

r

2 sin sin sin cos
,yy

0
2

0
2 4 2

0
2 2 2 2 2

4
 (10b)

[( ) ( )( )]θ θ θ
= =

− − − −
g g

xy r r r r r

r

cos 2 sin sin
.xy yx

2
0
2 2

0 0
2

4
 (10c)

Our numerical simulations will be performed on the (x,y) plane, using the base 
 metric described by equation (10).

4. Numerical simulations and results

In this section we describe our numerical simulations of the evolution of the base 
 circumference + =x y r2 2

0
2 under Huygens equation (2), supplemented with the rule 

of self-intersection removal, on a random metric of the form (3), i.e. a random confor-
mal perturbation of the metric g0. In turn, g0 will be one of our cone metrics, given 
by  equation (6) in (quasi-)polar coordinates or by equation (10) in (quasi-)Cartesian 
coordinates.

We have extended the algorithm described in [3] in order to work on random con-
formal deformations of any given base Riemannian manifold. Let us summarize the 
algorithm. The interface is considered to be a piecewise linear simple curve, with an 
adaptive number of points: if two points separate beyond a certain threshold �max (in the 
base metric g0), a new point is included mid-way [14]. In all cases, we take =� 0.05max . 
Each segment of the interface determines a tangent vector 

→
t  along the interface curve. 

We make it evolve along the local normal direction →n. In order to determine →n, we 
require the local metric tensor, ( )→g r . This is obtained, via equation (3), by multiplying 
the local metric tensor of the base manifold by a random conformal factor, ( )→ν r . Then, 

we solve the equation 
→ →⊥t ng , i.e. ( )→ =µν

µ νg r t n 0. The propagation of each segment at 
each time-step (∆ =t 0.005) is performed in a straightforward way, but the evolution 
equation is supplemented with an algorithm in order to detect self-intersections [14]. 
As mentioned above, the smaller component is always removed so that the interface 
remains a simple curve at all times.

https://doi.org/10.1088/1742-5468/aa5754
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Figures 3 and 4 show some profiles obtained by our simulations, for a cylinder and 
for a cone with /θ π= 4, respectively. The initial radius is r0  =  15 for the cylinder and 
r0  =  0.01 for the cone. The local conformal factors ( )→ν r  are uniform random deviates in 
[1/20,1] which are chosen independently at each point, since we assume our discretiza-
tion cuto �max to be larger than the correlation length for the ν field. In both figures, 
the top panel shows the ball profiles as obtained in the (x,y) coordinate chart. The 
top-right panel is a zoom of a single profile. The center panels show how the previous 
interfaces fit on the original manifolds, the cylinder and the cone. The bottom panel, in 
both cases, shows the interface evolved up to the same time, t  =  20.

4.1. Critical exponents

As described in [3], ball boundaries on a flat-average random metric of the form of equa-
tion (3) follow the Family–Vicsek Ansatz when considered as interfaces. Specifically, 
the roughness of the ball boundary, as measured in the Euclidean metric, grows with 

time as a power-law, ( )∼ βW t t , and so does the correlation length along the interface, 

( ) /ξ ∼t t z1 . Moreover, in the case studied in [3], the values of the critical exponents 
were shown to be those of the Kardar–Parisi–Zhang universality class, /β = 1 3 and 
1/z  =  2/3.

Let us now consider the interfaces produced by Huygens equation (2) on our random 
cones. The average shape of the ball boundary for any given time is expected to be 
a circumference of radius proportional to t. Although we do not have a proper shape 
theorem for our general case, see [22, 23] for some rigorous shape theorems in par ticular 
manifolds. We define the roughness of a curve W as the expected magnitude of the 
normal deviations of the actual interface from its best-fit circumference centered at the 
origin. Notice that distances along the radial direction in the (x, y) chart can be com-
puted in an Euclidean setting. Figure 5 shows these measurements of W as a function 
of time, averaged over 100 realizations of the disorder, for a cylinder of radius r0  =  30, 
a cone with opening angle θ = �15  and r0  =  0.1, another cone with �45  and r0  =  0.01, 
and the plane. In all cases, the power-law behavior of the roughness with time, ∼ βW t , 
is clear-cut, with a value of β which is very close to 1/3, as expected. Note, among all 
cases, the cylinder is the only one for which roughness saturation at long times to a 
system-size dependent value may influence the measured value of β. In view of the fact 
that higher-order cumulants do not seem to change trend for our simulations of the 
cylinder (see next section), we believe our simulation times are not significantly aected 
by saturation eects in this case.

The Family–Vicsek Ansatz also implies that the average roughness on windows 
of size � will scale as ( )∼ α� �w  if � is smaller than the surface correlation length, ( )ξ t . 
Moreover, the three critical exponents are related via /α β = z. In our case, direct mea-
surements of the roughness exponent α are involved, because distances along the curve 
should be carefully computed. In order to overcome this diculty, we have devised a 
novel technique to measure the correlation length, which is illustrated in figure 6. For 
a given interface, we draw the best-fit circumference with center at the origin, and 
mark all the intersection points between the circumference and the actual interface. 
They divide the circumference into a series of n patches or arcs, whose actual lengths 
{ }� � � �, , , n1 2  on the cone are measured along the azimuthal direction, being given by

https://doi.org/10.1088/1742-5468/aa5754
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Figure 3. Interfaces on a cylinder with r0  =  15. Top panels: profiles in (x, y) 
coordinates. The top-right panel shows a zoom of the outermost profile in the top-
left panel. Medium panel: profiles on the 3D cylinder. The simulation times are 
t  =  0, 4, 8, 12, 16, and 20, bottom to top. Bottom panel: enlargement of the t  =  20 
profile shown in the center panel.

https://doi.org/10.1088/1742-5468/aa5754
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Figure 4. Interfaces on a cone with 4/θ π=  and r0  =  0.01. Top panels: profiles in 
(x, y) coordinates. The top-right panel shows a zoom of the outermost profile in the 
top-left panel. Medium panel: profiles on the 3D cylinder. The simulation times are 
t  =  0, 4, 8, 12, 16, and 20, bottom to top. Bottom panel: enlargement of the t  =  20 
profile shown in the center panel.

https://doi.org/10.1088/1742-5468/aa5754
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( ( ¯ ) )φ θ= ∆ + −� r r r sin ,i i 0 0 (11)
where r̄ is the radius of the best-fit circumference.

We can estimate the correlation length asking the following question: if we choose a 
random point on the circumference, what is the expected length of the patch on which 
it stands? On average, this value will be given by

Figure 5. Average roughness W as a function of time for interfaces grown with 
Huygens equation (2) on conformal random deformations of metrics corresponding 
to a cylinder of radius r0  =  30, cones with opening angles 15θ = � and 45�, and a 
plane. In all cases, the roughness exponent is close to 1/3.

Figure 6. Illustration of the procedure to estimate the surface correlation length 
t( )ξ . The profile is superimposed onto the best-fit circumference centered at the 

origin, and the intersection points are marked. The correlation length is estimated 
as the expected length of the patch to which a random point on the circumference 
belongs.
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ξ≡
∑
∑

�

�
.i i

i i

2

 (12)

Notice that this value does not correspond to the average value for the patch lengths. 
The behavior of this correlation length ξ is shown in figure 7, where we can see that it 
follows a power-law, with exponent close to the KPZ value 1/z  =  2/3 in all cases. Thus, 
we have checked the first claim, that the interfaces on cylinder, cones and plane, in all 
cases show the critical exponents of the KPZ universality class.

4.2. Radial fluctuations

The KPZ universality class does not only entail the values of the critical exponents. As 
discussed above, the radial fluctuations are expected to follow one of the well known 
Tracy–Widom probability distributions. In the case of a ball on a random metric over 
the plane, it was shown in [3] that they indeed follow the Tracy–Widom statistics for 
the Gaussian unitary ensemble (TW-GUE).

We have developed an extension of the analysis in [3], in order to obtain the radial 
fluctuations histogram for interfaces following the Huygens equation (2) on random 
conformal deformations of a base Riemannian manifold, equation (3), assuming that a 
growing circumference is a solution of the aforementioned equation (2). Along the simu-
lation procedure described at the beginning of this section, the radial data are stored 
together with their time tag. As in [15], we consider all pairs ( )t r,i i , from dierent noise 
realizations and times, and assume that the radii are time-dependent random variables 
with the following form,

ˆ χ̂= + + Γ β�r vt t , (13)

Figure 7. Growth of the correlation length t( )ξ  for interfaces of dierent geometries: 
cylinder of radius r0  =  30, cones with angles 15θ = � and 45�, and a plane. In all 

cases t t z1( ) /ξ ∼  with 1/z very close to 2/3.
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where χ̂ is a stationary random variable whose statistics are described by the TW-GUE 
distribution [4, 24]. By rescaling and displacing this random variable as χ̂ χ≡ +A B, 
we obtain

ˆ ˆ χ= + + Γ + Γβ β�r vt B t A t . (14)

We choose the constants A and B so that χ has zero average and unit variance. 
Moreover, we neglect the subleading deterministic term of order βt . The parameter A 
is subsumed into ˆΓ = ΓA , and we obtain

χ≈ + + Γ β�r vt t . (15)

We fit all ( )t r,i i  pairs to a straight line to obtain the values of � and v. Then, the 
remainders are fit to a power-law in time:

( ( ))− + = Γ β�r vt t .i i
2 2 2 (16)

Using the ensuing values of Γ and β (=1/3), we finally extract the rescaled radial 
fluctuation χ as

( )
χ ≡

− +
Γ β
�r vt

t
.i

i i

i
 (17)

By construction, these { }χi  variables should have zero mean and unit variance, and are 
invariant under ane changes in the radii r. We then proceed to obtain their histo-
gram. The theoretical prediction is that such histograms will correspond to the (suit-
ably normalized) TW-GOE and TW-GUE distributions in the extremes of our family 
of surfaces: TW-GOE for the cylinder (θ = 0) [3] and TW-GUE for the plane ( /θ π= 2). 
Note that one can alternatively choose the constants in equation (13) so that χ̂ has 
non-zero mean and the universal variance of the appropriate TW distribution [5, 24, 
25], and directly compare its histogram to the latter.

Let us remark that the values of Γ that we obtain following the procedure in [3] 
as indicated above are the same for all the cones within our numerical accuracy, 

( )Γ = 0.03 2  in all cases, as expected from the theoretical results in [26]. This result 
could have been anticipated from figure 5, where all the roughness curves can be seen to 
(nearly) collapse. Moreover, the sign of the eective growth parameter (usually known 
as λ) is positive, as in systems with a net radial growth velocity [3].

These measurements have been carried out in three cases: (A) a cylinder with 
r0  =  15, for which we run 500 noise realizations and gather all the points obtained from 
1000 snapshots in the time interval [ ]∈t 1, 10  for each noise configuration, giving a total 
of ⋅7 107 points; (B) a cone with θ = �15 , r0  =  0.1, 500 realizations and 500 snapshots 
for each one with [ ]∈t 100, 200 , a total of ⋅3 107 points; (C) a cone with θ = �45 , 100 
realizations and 1000 snapshots for each one with [ ]∈t 10, 80 , a total of ⋅4 108 points; 
(D) a plane, θ = �90 , with 500 realizations in [ ]∈t 10, 27 .

Before giving a quantitative assessment, let us consider the visualization of these 
results as shown in figure 8. Since the TW-GUE and TW-GOE distributions are very 
close visually to the normal distribution, we plot the dierence with the normalized 

Gaussian probability density function, ( ) ( ) ( / )/ρ χ π χ= −−2 exp 21 2 2 , which we call here 
non-Gaussianity. The top panel shows the non-Gaussianity as a function of χ for the 
exact TW-GOE and TW-GUE distributions, and for the obtained radial fluctuations 
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on the cylinder with r0  =  15, which fit closely the TW-GOE distribution, as expected. 
The central and bottom panels show the analogous data for the cone with θ = �15  (cen-
tral panel) and θ = �45  (bottom panel). In these two cases, the empirical distribution 
fits closely the TW-GUE distribution, as we know to be the case for the plane [3]. But, 
of course, this check is merely visual, and should be supplemented with further numer-
ical comparisons.

A more strict test is provided by the estimation of the third and fourth cumulants of 
the distributions, normalized as the skewness and the kurtosis, as shown in table 1. The 
data for the cylinder can be seeen to correspond approximately to the TW-GOE distri-
bution, while they fit the TW-GUE distribution for the cones in all cases. Figure 9 shows 
the time evolution of the skewness of the distribution, convoluted with a Gaussian filter 
with deviation σ = 5 in order to highlight the trends of the various sets of data. We can 
see that, for all the cones and the plane, the skewness values converge slowly towards 
the TW-GUE value, while for the cylinder it fluctuates around the TW-GOE one.

Another interesting measure is provided by the Kullback–Leibler (KL) divergence 
between the empirical histograms and the theoretical distributions. The KL diver-
gence ( )||D P Q  between two probability distributions P and Q is defined as the loss of 
information when data samples from P are assumed to stem from Q [27], and can be 
regarded as a natural distance in the space of distributions. It can be computed as

Figure 8. Dierence with a Gaussian (non-Gaussianity) of the radial fluctuations 
of interfaces grown with Huygens equation (2) on random conformal deformations 
of our base manifolds: top, cylinder with r0  =  15; center: cone with 15θ = �; bottom: 
cone with 45θ = �. Each panel includes the non-Gaussianity of the TW-GOE and 
TW-GUE distributions, for easy comparison. Notice that the cylinder corresponds 
to TW-GOE statistics, as expected, while the cones follow TW-GUE statistics. 
Further numerical checks are discussed in the text.
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( )
⎛
⎝
⎜

⎞
⎠
⎟∫ µ|| =D P Q

P

Q
log ,P (18)

where µP is the measure induced by distribution P. Table 2 shows the KL divergences 
between the empirical χ distributions and the TW-GUE and TW-GOE distributions. 
It can be seen that, on the cylinder, the radial fluctuations are more likely TW-GOE, 
but on all cones the radial fluctuations are closer to TW-GUE.

5. Growth, geometry, and topology

The numerical simulations discussed in the previous section allow us to extract several 
hypothesis. First, Huygens propagation on random conformal deformations of cones of 
dierent opening angles are shown to fall into the KPZ universality class, for all open-
ing angles. We can also conjecture that, on the cylinder, the radial fluctuations follow 
TW-GOE statistics, while for all the cones with θ> 0 we obtain TW-GUE. This con-
jecture fits well with the results of [12, 13], where it was shown that growth in a band 
geometry whose substrate expands at a constant rate in time follows the TW-GUE 

Table 1. Skewness and kurtosis of the radial scaled variable χ, equation (17), 
for dierent base manifolds, as compared to the exact TW values.

Skewness Kurtosis

TW-GOE 0.2934 0.1652
TW-GUE 0.2241 0.0934

Cylinder r0  =  15 0.30 0.18
Cone ( 15θ = �) 0.24 0.10
Cone ( 45θ = �) 0.23 0.13
Plane 0.22 0.10

Figure 9. Time evolution of the skewness of the radial distribution for the cylinder, 
cones, and plane, along with the values for TW-GUE and TW-GOE, convoluted 
with a Gaussian filter with deviation 5σ =  in order to highlight the trends. Notice 
that, for long times, the cylinder fluctuates around the TW-GOE value, while for 
all cones and the plane the skewness approaches the TW-GUE value. Notice that 
the initial radius r0 is dierent for the 15� cone and for the 45� one.
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distribution. In our geometric setting, an expanding substrate is similar to a cylinder 
with a growing radius, i.e. a cone.

These results require some theoretical explanation, which we will attempt within our 
Riemannian geometry framework. Let us recall that Huygens equation (2) is covariant: 
solutions obtained using one coordinate chart can be mapped into solutions obtained 
using a dierent coordinate chart. The base metric tensor for all our surfaces, in a polar 
chart ( )φr, , has the form

( ) ( )
⎜ ⎟
⎛
⎝

⎞
⎠φ =g r

f r
,

1 0
0

, (19)

where ( ) ( ( ) )θ= + −f r r r r sin0 0
2. If θ≠ 0, an ane change of coordinates,

→ ˆ
θ

= − +r r r r
r

sin
,0

0
 (20)

→ ˆφ φ φ θ= sin , (21)

renders the metric Euclidean. Notice that this corresponds to viewing the cone as a 
plane from which a wedge of angle ( )π θ−2 1 sin  has been removed. For θ = 0, of course, 
the change of variables (21) becomes singular. And, as noted in the previous section, an 
ane transformation in the r coordinate will not change the χ distribution.

Let us now turn our attention to the conformal noise imposed upon the base met-
ric. Since we assume it to be uncorrelated in space, we can safely assume that it will 
be invariant under coordinate changes. Combining both statements we find that, if 
θ≠ 0, the radial fluctuations for growth of any cone must have the same form as in the 
Euclidean case. The same argument can not be applied to growth on the cylinder, since 

in that case the metric factor ( ) =f r rcyl 0, and no ane change of coordinates in r will 
map it to the Euclidean case ( ) =f r rEuc . Notwithstanding, please notice that our argu-
ment does not entail that the cylinder and the plane must have dierent fluctuations.

Despite the metric nature of our argument, the dierence between the cylinder and 
the rest of the cones is, moreover, topological. All cones are homeomorphic to the plane, 
while the cylinder is not. In fact, on the cylinder the Huygens equation is applied in a 
dierent way. For any cone, we can start with an infinitesimal circumference around 
the vertex and produce balls around it. In the cylinder, we must start with a curve 
which is not homotopically equivalent to a point, because it will wrap around the 
manifold. But this dierence by itself does not allow us to assert that growth on the 
cylinder will possess dierent kinds of fluctuations, since the cylinder can be smoothly 
completed with a lower lid, thus rendering our initial circumference homotopically 

Table 2. Kullback–Leibler (KL) divergences, equation (18), between the empirical 
χ distributions and the theoretical TW-GOE and TW-GUE distributions.

KL-distance to: TW-GOE TW-GUE

Cylinder r0  =  15 2.7 10 5⋅ − 2.5 10 4⋅ −

Cone ( 15θ = �) 2.9 10 4⋅ − 8.3 10 5⋅ −

Cone ( 45θ = �) 5.2 10 4⋅ − 2.6 10 4⋅ −

Plane 5.2 10 4⋅ − 1.3 10 4⋅ −
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trivial. Thus, the dierence between TW-GUE and TW-GOE behavior does not stem 
from the homotopy class of the initial curve.

6. Conclusions and outlook

We have investigated the universality subclass structure of the KPZ class in a Riemannian 
geometry setting for disordered substrates. We have studied the statistical properties of 
Huygens interfaces on random metrics, see equation (2). A Huygens interface is defined 
as the propagation of an initial simple closed curve on a certain manifold, always fol-
lowing the local normal direction with unit speed. The metrics studied were conformal 
random deformations of a certain set of base manifolds: the Euclidean plane, cones of 
dierent opening angles, and a cylinder. Note, in all these systems disorder is quenched. 
Nontheless, fluctuations of ball interfaces are in the KPZ universality class associated 
with time-dependent noise. Indeed, while in the planar case it had already been shown 
[3] that the interfaces follow KPZ statistics with TW-GUE radial fluctuations, in the 
present work we have shown how KPZ statistics are found in all other manifolds, with 
TW-GUE fluctuations for the cones and TW-GOE for the cylinder. There is no inter-
mediate subclass between these two. We stress that the TW-GOE statistics are only 
approached for (large enough) cylinders at finite times. For finite systems, there is a 

finite saturation time, which grows as /r0
3 2, beyond which statistics of radial fluctuations 

are expected to deviate from the TW distribution [10, 11, 19].
A theoretical explanation of our results has been put forward, based on the notion 

that the Huygens equation is covariant, i.e. it can be studied in any possible coordinate 
chart. All cones with non-zero opening angle are homeomorphic to the Euclidean plane, 
but not to the cylinder. Moreover, we have written down the explicit non-singular change 
of coordinates between the cones and the plane and shown that it has no eect on the 
statistical properties of the radial fluctuations of the interfaces, implying that all cones 
should present TW-GUE statistics. This result fits very well with the results of [12, 13], 
where it was shown that KPZ systems (a discrete model and the KPZ equation itself) in 
band geometry with an expanding substrate also feature TW-GUE statistics.

Another relevant conclusion for our work that remains beyond the approaches in 
[12, 13] is that interfaces with global curvature may still present TW-GOE fluctuations, 
as shown in our rendering of the solutions of the Huygens equation on the random-
ized cylinder. One may argue that the global curvature of these interfaces is merely 
apparent, because their integrated geodesic curvature is, indeed, zero. This points to 
the need of a deeper geometric understanding of the KPZ subclass structure within the 
Riemannian geometry framework.

Regarding technical aspects, we have introduced a novel way to estimate the corre-
lation length of the interface, by considering the expected value of the distance between 
intersections with the average circumference, see figure 6. Moreover, we have employed 
techniques from information theory in order to characterize the probability distribu-
tion, such as the Kullback–Leibler divergence, see equation (18).

Our work opens up many possibilities: what are the statistical properties of the covar-
iant KPZ equation on a generic manifold? Or, alternatively, which are the statistics of 
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the Huygens equation on random deformations of a certain base manifold? In this case, 
we expect a far richer set of possibilities. The argument described in section 5 suggests 
a possible methodology in order to extract the radial fluctuations when the manifold 
is homeomorphic to either the cylinder or the plane. But it leaves open the question 
regarding additional flavors or subclasses of the celebrated KPZ universality class.

Another relevant question is whether this strategy to characterize subclasses within 
the KPZ universality class will extend to higher dimensions, and whether they will be 
related to topological considerations, as suggested by recent work on directed polymers 
in random media (DPRM) in 2  +  1D [28, 29]. A comparison of the Huygens and the 
DPRM methods is in order, which may lead to very interesting results.
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