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Capillary and winding transitions in a confined
cholesteric liquid crystal

Daniel de las Heras,*a Enrique Velascob and Yuri Martı́nez-Ratónc

We consider a Lebwohl–Lasher model of chiral particles confined in a planar cell (slit pore) under different

boundary conditions, and solve it using mean-field theory. The phase behaviour of the system with respect

to temperature and pore width is studied. Two phenomena are observed: (i) an isotropic–cholesteric transition,

which exhibits an oscillatory structure with respect to pore width, and (ii) an infinite set of winding transitions

caused by commensuration effects between cholesteric pitch and pore width. The latter transitions have been

predicted and analysed by other authors for cholesterics confined in a fixed pore and subjected to an external

field promoting the uniaxial nematic phase; here we induce winding transitions solely from geometry by

changing the pore width at zero external field (a setup recently explored in atomic-force microscopy

experiments). In contrast with previous studies, we obtain the phase diagram in the temperature vs. pore

width plane, including the isotropic–cholesteric transition, the winding transitions and their complex relation-

ship. In particular, the structure of winding transitions terminates at the capillary isotropic–cholesteric transition

via triple points where the confined isotropic phase coexists with two cholesterics with different helix indices.

For symmetric and asymmetric monostable plate anchorings the phase diagrams are qualitatively similar.

I. Introduction

Cholesteric phases of liquid crystal materials are important
from fundamental and technological points of view,1,2 and a lot
of effort is still being expended in their study. Interest in
cholesterics stems from the existence of a direction, perpendi-
cular to the nematic director, about which the latter winds up
with a specific periodic length, the pitch, causing the material
to be optically active at optical wavelengths. The pitch sensitivity
to temperature and external fields, and the ensuing varying
reflectivity properties, can be exploited in various applications.
Also, temperature variations of the pitch can be suppressed by
different techniques, e.g. by mixing two chiral dopants with
opposite temperature dependence in their pitch.3

Cholesteric materials continue to be of interest, in particular,
as the basis for the design of the twisted nematic cells of liquid-
crystal-based devices. Many experimental and theoretical studies
have been devoted to address this issue. Still many basic issues
remain unexplored in the field of capillary phenomena in

cholesteric materials. For example, the first theoretical study
of the isotropic–cholesteric interface is very recent.4

Most theoretical studies of cholesterics are based on the
Landau–de Gennes model, especially in connection with the
existence of the blue phases (see e.g. ref. 5). Another fruitful
approach is the chiral Lebwohl–Lasher model,6,7 which has
been studied from various perspectives. The bulk properties
of the chiral Lebwohl–Lasher model were explored by van der
Meer et al.8 using mean-field theory. The most striking conclu-
sion was that the pitch was independent of temperature, and
that higher-order terms in the interactions were necessary to
restore a temperature-dependent pitch. The model was first
simulated by Saha et al.9 using the Monte Carlo technique and
a planar rotor model for the particles. Discrepancies were found
initially concerning the independency of the pitch with tempera-
ture. Later simulations of the full model (without orientational
restrictions) by Saha and Saha10 and of the planar rotor model by
Luckhurst et al.11 confirmed the mean-field predictions. The latter
authors obtained a continuous isotropic–cholesteric transition,
and explained the temperature-independent feature as a result of
the existence of a helical transformation, suggested by Sluckin,
which removes the chiral term in the energy. Note that, in more
realistic models with density fluctuations, one expects the pitch to
depend on the temperature due to variations in density and order
parameters with temperature.

Other authors have used the model to explore different
features of chiral phases. Memmer and Janssen12 studied the
influence of the fourth-order terms on the pitch, using simulation
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and self-determined boundary conditions. In agreement with van
der Meer et al.,8 temperature-dependency of the pitch was restored.
A helix inversion at a specific temperature was obtained by these
authors with the same fourth-order interaction potential,13 again in
accordance with the mean-field calculation of van der Meer et al.8

Memmer and Janssen14 also studied the induction of a helical twist
by mixing a chiral dopant and a guest achiral system, a common
procedure in experiments and applications to optimise device
performance.

The chiral Lebwohl–Lasher model has also been investigated
in a confined geometry. This is a relevant model to study twisted
liquid-crystal displays. These systems operate with the help of an
external field. To cite a representative example of a simulation
analysis, Memmer and Fliegans15 studied a chiral Lebwohl–
Lasher model confined by two parallel plates and subjected to a
constant external field normal to the plates. A corresponding
Freédericksz transition between twisted and uniform director
arrangements was characterised. An external electric field can
be used to control the pitch in a bulk cholesteric sample. In
the case of a cholesteric confined between two plates a fixed
distance apart (pore width), there is a commensuration issue,
and the variation of the number of pitch lengths can only occur
in discrete jumps involving structures with different number of
helix indices (number of half turns of the director about the
helix direction).16 These variations can be induced by tempera-
ture or by an electric field. Previous and more recent studies
have analysed the problem using simple elastic models.17–24

There are various experimental studies that deal with these
problems.25–33

Our purpose in the present work is to analyse commensura-
tion effects in confined chiral liquid crystals when the agent
that changes the number of pitch lengths is not temperature or
an external field, but the pore width. Therefore, we are inducing
the winding transitions by geometry alone. An important
feature of our theoretical technique is that order parameters
and a free-energy functional are used; therefore the nematic
and cholesteric orders are analysed consistently as a function of
temperature, and the confined order–disorder transition and
structural phenomena in the slit pore can be followed and
described collectively. Also, we consider a free-orientation
model, so that the main axes of particles are not restricted to
lie on planes parallel to the confining plates.

To help focus our efforts, we can think of a material
consisting of a mixture of two chiral substances such that the
pitch temperature dependence is suppressed.3 This material
can be placed in a cell under strong anchoring conditions, such
that the pore width can be controlled, as in an atomic-force
microscopy (AFM) experiment; indeed such a setup has been
used to identify capillary nematization transitions34 and, more
recently, even to obtain the pitch in cholesteric materials with
high accuracy.35 The control parameter is h/p, where h is the
pore width and p the cholesteric pitch; this parameter dictates
the number of cholesteric periods or helix indices in the cell,
and its variation induces transitions between cholesteric slabs
of different numbers of half-turns of the director (winding
transitions). As in the AFM experiments,35 an infinite collection

of winding transitions are obtained. Using the chiral Lebwohl–
Lasher model, we analyse these transitions in detail, locate the
capillary isotropic–cholesteric phase transition as a function
of the pore width, and establish the connection between this
transition and the winding transitions, a relationship that
previous studies have not addressed. An interesting topology
in the temperature vs. pore width phase diagram is observed.
The cases of monostable symmetric and asymmetric surface
alignments are considered, and the differences between the two
cases are discussed.

II. Theory

The model used to explore the confined cholesteric material is
the chiral Lebwohl–Lasher model. This model has some advan-
tages over the well-known Landau–de Gennes or elastic models
used in previous studies. The most important of them is the
fact that, in contrast to the latter approaches, the model has
a microscopic nature and the interaction potential appears
explicitly. Different terms in the interaction potential can be
tuned to model specific features of real molecules. By contrast,
the Landau–de Gennes or elastic theories are meso- and macro-
scopic in nature, aim at a description of larger length scales, and
become the logical choices when the nematic director is spatially
deformed on a scale much larger than the molecular scale, or
surfaces induce the presence of defects. These scales are difficult
to access using a microscopic approach due to computational
limitations.

In the Lebwohl–Lasher model, each site of a simple-cubic
lattice of lattice parameter a is filled with a uniaxial particle
described by an orientation x̂ = (y, j). Particles interact via a
nearest-neighbour potential that depends on the two particle
orientations x̂, x̂0 and possibly also on the relative position
vector r̂. In the chiral Lebwohl–Lasher model, the potential
energy is taken as

F(x̂, x̂0, r̂) = �eP2(x̂�x̂0) � k[(x̂ � x̂0)�r̂](x̂�x̂0), (1)

where P2(x) is the second-order Legendre polynomial. The
case k = 0 corresponds to the standard, achiral Lebwohl–
Lasher model.

These terms are the first scalar and pseudo-scalar terms of a
general expansion in rotational invariants of the interaction
potential associated with two uniaxial particles.8,36 The first,
Maier–Saupe-like, term favours arrangements where particles
are parallel. The second term takes account of the chirality
of the interaction (in the following the chiral strength will be
measured by k* = k/e).

Particles in the Lebwohl–Lasher lattice model can be inter-
preted as single molecules, but Memmer and Fliegans15 have
also interpreted each particle on the lattice as a director
representing a cluster of neighbouring molecules. In our case
the different interpretations are not relevant considering the
qualitative level of our work.

The setup for the confined Lebwohl–Lasher model is shown
in Fig. 1: the lattice is sandwiched between two parallel plates
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normal to the [010] direction. The z axis is chosen parallel to the
plates, along one of the two equivalent crystalline axes. In the
spirit of mean-field theory, all particles pertaining to the same
plane parallel to the surfaces (labelled with the index i = 1,
2,. . .,N; see Fig. 1) will be taken as equivalent. Particles in
planes 1 and N interact with their closest plate via the surface
potentials F1(x̂) and F2(x̂). The following cases are considered:
� Symmetric plates. Both plates have one easy axis, con-

tained in the plane of the plates, and the two easy axes are
identical, n̂ = m̂ = (0,0,1) (see the left panel of Fig. 1 for our
choice of reference axes). The corresponding surface potential
energies are monostable, and give contributions Fi(x̂) = esP2(n̂�x̂),
i = 1 and 2, only from the particles adjacent to the two plates.
� Asymmetric plates. The easy axes of the two plates form an

angle of a = 901, i.e. n̂ = (0,0,1) and m̂ = (1,0,0). Contributions
from particles adjacent to the plates are F1(x̂) = esP2(n̂�x̂) and
F2(x̂) = esP2(m̂�x̂), respectively. Note that both potential energies
are monostable, and that their strengths are identical; only the
easy axis is different.

All surface potentials used are built from second-order
Legendre polynomials. This is an advantage since then all
interactions turn out to be quadratic in the unit vector x̂,
which simplifies the theoretical treatment. We take es = e (we
later argue that this choice leads to strong anchoring conditions).
In the following we use the Maier–Saupe parameter e as an energy
scale. We therefore have the two parameters kT/e and k/e as energy
parameters, the length parameter being h/p (both h and p are
measured in lattice unit lengths a, and this is taken as the length
scale in the model).

Due to the inhomogeneity of the problem, the orientational
order will vary from plane to plane. Since in-plane fluctuations
are neglected, the orientational distribution function will only
depend on the plane index i, i.e. fi(x̂), with i = 1,. . .,N. The
statistical mechanics of the model is solved using a variational
principle on the mean-field free-energy functional (for details
see Marguta et al.37). The functional, F[fi], has contributions

from entropy, from interactions between particles, and from
interactions between particles and the plates. The energy has
contributions from the four particles in the same layer, from
the two particles on the two neighbouring layers, and also from
the external potential. The complete free energy functional is:

F fif g½ �
eM

¼ kT

e

XN
i¼1

ð
dôfiðôÞ log 4pfiðôÞ½ �

� 1

2

XN
i¼1

ð
dô
ð
dô0fiðôÞfi ô0

� �

�
X4
j¼1

P2 ô � ô0
� �

þ k
e

ô� ô0
� �

� r̂j
� �

ô � ô0
� �n o

�
XN�1
i¼1

ð
dô
ð
dô0fiðôÞ fiþ1 ô0

� �

� P2 ô � ô0
� �

þ k
e

ô� ô0
� �

� ŷ
� �

ô � ô0
� �n o

�
ð
dôf1ðôÞF1ðôÞ �

ð
dôfNðôÞF2ðôÞ

(2)

where M is the number of particles in each plane, and {r̂j} are
the four vectors (�1,0,0) and (0,0,�1) that connect a given
particle to its four neighbours in the xz plane, and ŷ = (0,1,0)
the unit vector along the y axis (see Fig. 1).

The orientational distribution functions ( fi(x̂)) were
expanded in six basis functions Ca(x̂), a = 0,. . .,5:

fiðôÞ ¼
X5
a¼0

f
ðaÞ
i CaðôÞ: (3)

The functions Ca(x̂) correspond to real combinations of spherical
harmonics with angular-momentum indices l = 0 and 2 and,
therefore, are orthonormal quadratic functions in x̂ (a = 0
corresponds to l = 0 while a = 1,. . .,5 correspond to combina-
tions of the five spherical harmonics in the subspace l = 2):

C0ðôÞ ¼
1ffiffiffiffiffiffi
4p
p ;

C1ðôÞ ¼
ffiffiffiffiffiffi
5

4p

r
P2ðcos yÞ;

C2ðôÞ ¼
ffiffiffiffiffiffiffiffi
15

16p

r
sin 2y cosj;

C3ðôÞ ¼
ffiffiffiffiffiffiffiffi
15

16p

r
sin 2y sinj;

C4ðôÞ ¼
ffiffiffiffiffiffiffiffi
15

16p

r
sin 2y cos 2j;

C5ðôÞ ¼
ffiffiffiffiffiffiffiffi
15

16p

r
sin 2y sin 2j:

(4)

The fact that both particle–particle (1) and particle–plate inter-
actions are quadratic in x̂ limits the (in principle) infinite
series expansion of fi(x̂) to six terms, cf. eqn (3) (the l = 1
subspace is not included due to the head–tail symmetry of the

Fig. 1 Setup for the Lebwohl–Lasher cell: a simple-cubic lattice sandwiched
between two parallel plates normal to the [100] direction. Planes parallel to
the plates are indicated by an index from 1 to N. The pore width is h = (N + 1)a,
where a is the lattice parameter. The favoured alignment at each plate is given
by unit vectors n̂ and m̂, respectively, with a being the angle between the two
vectors. All lattice sites are occupied by one particle with orientation x̂.
Cartesian axes used (lab reference frame) are shown on the left, along with
the polar angles associated with x̂ (note that the z axis lies in the plane of the
plates whereas the y axis is normal to the plates).
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particles – no terms linear in x̂ in the potential). This means
that the expansion (3) is complete and therefore it represents a
full, parameterisation-free description of orientational order.
Since fi(x̂) is normalised to unity, f(0)

i = (4p)�1. The five remaining
coefficients,

f
ðaÞ
i ¼

ð
dôfiðôÞCaðôÞ; i ¼ 1; . . . ; 5; (5)

are a measure of orientational order in each plane i in the lab
frame. In fact, due to the symmetries of the confined system
(the lowest-symmetry phase of which is the biaxial phase, with a
distribution function fi (x̂) which is an even function of the
angle j), the coefficients f (3)

i and f (5)
i are zero, and consequently

only three order parameters, f (1)
i , f (2)

i and f (4)
i , are relevant. Using

eqn (3) the free-energy functional (2) can be expressed solely as a
function of the set of 3N order parameters for the N planes, { f (1)

i ,
f (2)

i , f (4)
i } (in order for this to be possible in the case of the first,

entropic term, the functions fi(x̂) should be replaced by the
expressions following from the equilibrium conditions dF/dfi = 0).
The necessary angular functions were computed using Gauss–
Legendre quadratures. Minimisation of the free energy was
performed using the conjugate-gradient method. The simple
iterative (Picard) method under the equilibrium conditions
dF/dfi = 0 was also used in some cases to check the results.

The order parameters can most easily be interpreted in the
suitable reference frame x0y0z0, the one attached to the director.
Because of symmetry, the director z0 lies always on the xz plane,
at an angle ci with respect to the z axis. The rotation from the
lab to the suitable frame simply involves a rotation about the y
axis of angle ci. From the rotational properties of spherical
harmonics one obtains the relations between the lab, { f (a)

i },
and suitable, { f̃ (a)

i }, order parameters. In the suitable frame
only the f̃ (1)

i and f̃ (4)
i order parameters are nonzero:

~f
ð1Þ
i ¼ P2ðcosciÞf

ð1Þ
i �

ffiffiffi
3
p

2
sin 2ci f

ð2Þ
i þ

ffiffiffi
3
p

2
sin 2ci f

ð4Þ
i ;

~f
ð4Þ
i ¼

ffiffiffi
3
p

2
sin 2ci f

ð1Þ
i þ

1

2
sin 2ci f

ð2Þ
i þ P2ðcosciÞf

ð4Þ
i :

(6)

f̃ (1)
i is related to the standard uniaxial order parameter,

Zi ¼ 2~fi
ð1Þ ffiffiffiffiffiffiffiffi

p=5
p

, which measures the uniaxial order of particles
about the local director. The other parameter is related to the

usual biaxial order parameter, si ¼ 4~fi
ð4Þ ffiffiffiffiffiffiffiffiffiffi

p=15
p

, which
accounts for possible departures from the uniaxial symmetry
of particles about the local director. The third and last relevant
parameter is the tilt angle ci (which also depends on the plane
index, since in the cholesteric phase the director rotates from
plane to plane).

III. Results
A. Bulk system

We first describe the bulk phase behaviour of the model. In the
achiral system (k = 0) there is an isotropic–nematic phase
transition.38,39 For any nonvanishing chirality (k a 0) the
nematic phase is replaced by a cholesteric phase, and the

system exhibits a first order isotropic–cholesteric (Iso–Cho)
phase transition by decreasing the temperature. The uniaxial
and biaxial order parameters as a function of temperature for
k/e = 0.5 are shown in Fig. 2(a). The cholesteric pitch (not shown)
is independent of temperature, as can be demonstrated.8,11 The
behaviour of the order parameters is qualitatively the same for any
value of k.

In Fig. 2(b) we represent the bulk phase diagram in the
plane of chirality and temperature. The stronger the chirality,
the higher the phase transition temperature. In the limit of
vanishing chirality (k - 0), the transition temperature tends
asymptotically to the isotropic–nematic transition temperature
of the achiral system.

The uniaxial and biaxial order parameters at the phase
transition are depicted in Fig. 2(c). As expected biaxiality is
very small. Finally, in Fig. 2(d) we show the cholesteric pitch at
the Iso–Cho phase transition as a function of k. The cholesteric
pitch increases rapidly with decreasing chirality, diverging
(p - N) in the limit k - 0. This limit corresponds to a system
of achiral particles in which a nematic phase or, equivalently,
a cholesteric phase with infinite pitch is stable. The data closely

follow the curve p ¼ 4p arctan 2k
3e

� ��1
, an approximation that

results by neglecting the entropy and minimising the internal
energy with respect to the pitch.

B. Confined system

Next we confine the system in a symmetric pore made of two
identical parallel plates. As mentioned before, we set the surface
strength as es = e. This choice corresponds to moderate or strong
anchoring conditions on the two plates since, for relatively thin
pores, the particle orientation next to the plates never exceeds 21
from the easy axis for stable configurations. Although we have
studied different values of k, here we only show results for k/e = 1,
as no qualitative differences were found for different values of the
chirality strength. For this choice of k the cholesteric pitch is
p C 21 (in units of the lattice parameter).

1. Symmetric cell. In the symmetric cell the anchoring
directions are the same, i.e. n̂ = m̂ (both vectors lying on the
plane of the plates). In pores narrower than approximately half
a cholesteric period (N t p/2), the capillary isotropic–cholesteric
transition disappears, and the cholesteric grows from the isotropic
state in a continuous fashion as temperature is decreased. The
suppression of the capillary transition for narrow pores is typical of
confined fluids. In a narrow pore surface interactions strongly
affect the particle orientations in all layers, not just in those
adjacent to the plates. Bulk orientational properties cannot
compete with the strong anchoring imposed by the plates, and
the absence of the bulk–surface competition results in a perfectly
continuous evolution of orientational order parameters, as
dictated by surface potentials and temperature. Despite the
fact that there is no Iso–Cho phase transition, the system
director, whose (symmetric) profile is close to linear, does show
a total twist mainly dictated by pore width and nearly inde-
pendent of temperature. The total twist decreases as the pore
becomes narrower.
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In wider pores (N \ p/2) we found a first-order Iso–Cho
phase transition. Order parameter profiles of the confined
isotropic and cholesteric phases coexisting in a pore with
N = 25 are plotted in Fig. 3. In the isotropic state the uniaxial
order parameter, panel (a), vanishes in the middle of the pore,
and it is relatively high close to the plates. In the cholesteric
phase, the uniaxial order parameter is always higher than zero,
and particles are also more ordered close to the plates. The
biaxial order parameter, panel (b), is very small in the whole
cavity. As can be seen, it is always negative, meaning that
particles fluctuate about the director with a larger amplitude
in the direction of the helix (plate normal) than in the direction
of the plates.

The temperature at which the Iso–Cho transition occurs
varies with pore size N. This is reflected in the phase diagram,
depicted in Fig. 4(a) in the pore size (scaled with the cholesteric
pitch) versus temperature (scaled with the bulk Iso–Cho transi-
tion temperature) plane. We first focus on the capillary Iso–Cho
transition line. The transition is shifted to higher temperatures
with respect to the bulk; therefore, confinement promotes choles-
teric order. The capillary line oscillates and tends asymptotically to

the bulk transition temperature. The oscillatory behaviour is a
direct consequence of a commensuration effect between the pore
size and the cholesteric period. Local maxima of the capillary line
occur when the elastic stress of the confined cholesteric is
minimal, which occurs if the pore size and the cholesteric period
commensurate, i.e., N/(p/2) C k, with k being a positive integer
(note that, due to the head–tail particle symmetry, the period of
the cholesteric phase is in fact p/2, corresponding to half a turn of
the director about the helix axis). Anyway the scaled-temperature
range where this oscillatory structure takes place is rather small.

Besides the capillary Iso–Cho line, the system exhibits winding
transitions in which two cholesterics with different periods
coexist. The winding transitions occur always between choles-
terics that differ in half a cholesteric period: Cip�C(i+1)p, where
the subscript ip, i = 1, 2, 3. . ., denotes the total twist of the
cholesteric helix from one plate to the other (save the small
deviations of the director at the two plates arising from a large,
but finite, anchoring strength). At a winding transition, the
cholesteric period of the coexisting Cip phase is expanded with
respect to its equilibrium value, while the period of the coexisting
C(i+1)p phase is compressed. Hence, the size of the pore at which

Fig. 2 (a) Uniaxial order parameter Z and biaxial order parameter s (inset) as a function of the reduced temperature kT/e for k/e = 0.5. The vertical dotted
line indicates the isotropic–cholesteric first order phase transition. The curves are qualitatively the same for other values of k. (b) Bulk phase diagram in
the reduced temperature-k plane. The black-solid line is the isotropic–cholesteric binodal. The nematic state is only stable in the limit k- 0. The inset is
a zoom of the small k region, showing the (unstable) isotropic–nematic transition (red line), which does not depend on k. (c) Uniaxial order parameter Z
and biaxial order parameter s (inset) as a function of k at the isotropic–cholesteric phase transition. (d) Pitch p as a function of the chirality parameter k at
the isotropic–cholesteric phase transition. The symbols are results obtained via minimization of the free energy and the line is the approximation

p ¼ 4p arctan 2k
3e

� ��1
.
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two cholesterics coexist is such that the elastic stress is maximum.
Winding transitions merge with the Iso–Cho capillary line, giving
rise to Iso–Cip�C(i+1)p triple points. The triple points are located
on the local minima (low temperature) of the capillary Iso–
Cho line.

Note that winding transitions are almost vertical lines in the
pore size�temperature phase diagram, implying that they are
insensitive to temperature. This result can be traced back to the
insensitivity of the cholesteric pitch with respect to tempera-
ture. To see this more clearly, Fig. 5 shows the total twist across
the cell (from one plate to the other) of the director as a
function of pore width N/p for two phases, C5p and C6p, in the
region of the C5p�C6p phase transition. For each phase, three
curves corresponding to three temperatures, T/T* = 0.800, 0.880
and 0.987, are shown. The three curves (and, in fact all curves
corresponding to different temperatures) intersect at a point
with a total twist equal to the number of half-periods, 5p = 9001
for the C5p phase and 6p = 10801 for the C6p phase, and at a pore
width slightly higher than the optimal value (which is given by
N = 5(p/2) = 2.5p and N = 6(p/2) = 3p, respectively); this is due to
the effect of the plates, which disappears as the pore width
becomes larger. The C5p�C6p transition is obtained when the
free energies of the two structures become equal. For all three
temperatures, the transition is located at almost exactly the

same pore width (denoted by the dotted vertical line in the
figure). In effect, due to the temperature invariance of the pitch,
the temperature plays a negligible role in driving winding
transitions. By contrast, a model with a temperature-dependent
pitch would give rise to boundary lines presenting a slope in the
phase diagram. Finally, as mentioned before, we note that, at
coexistence, the phase with the smaller number of turns, C5p, is
expanded, whereas the one with the larger number of turns, C6p,
is compressed. This is because the transition point is located at
wider (narrower) pores than optimal for the C5p (C6p) phase.

2. Asymmetric cell. Next we confine the system in an
asymmetric pore, in which plates favour perpendicular directions
(easy axes satisfying n̂ > m̂). All remaining parameters are set to the
same values as in the previous symmetric case. Not surprisingly the

Fig. 3 Uniaxial (a) and biaxial order parameter (b) profiles of an isotropic
(open squares) and a cholesteric (filled circles) phase coexisting in a
symmetric slit pore with N = 25. The tilt angle of the cholesteric phase
(not shown) rotates by approximately 2p across the cell.

Fig. 4 Phase diagram of a confined cholesteric liquid crystal in (a) sym-
metric, and (b) asymmetric pores in the scaled-temperature T/T* versus
scaled pore-width N/p plane. T* is the temperature for the bulk isotropic–
cholesteric phase transition. Filled circles indicate the isotropic–cholesteric
binodal. Dashed lines represent the binodals along which two cholesteric
phases with different number of helix indices coexist. The dotted red line
indicates the temperature of the bulk transition. In each case the geometry
of the easy axes is depicted in the upper-right corner of the corresponding
panel.
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phase diagram, shown in Fig. 4(b), resembles the one of a
symmetric pore. The only significant difference concerns the
total twist of the confined cholesterics, which is always a
multiple of p/2; therefore the cholesteric phases can be labelled
as Cð2iþ1Þp=2 ¼ C

iþ1
2

� �
p
, with i = 0, 1, 2. . .. The subscript (i + 1

2)p

indicates the total twist inside of the pore. Again cholesteric
phases differing in half a cholesteric period, C

iþ1
2

� �
p
� C

iþ3
2

� �
p
,

coexist at the winding transitions. The phase diagram is
essentially shifted by half a period with respect to the symmetric
case. However, the pore width below which the Iso–Cho capillary
line disappears is very similar to that in the symmetric cell.

IV. Conclusions

In this work we have calculated the phase diagram of a choles-
teric liquid crystal confined in a slit pore between two parallel
plates. To our knowledge this is the first time the structure of
winding transitions is explicitly obtained as a function of pore
size and connected to the capillary transition. We have investi-
gated symmetric (identical plates) and asymmetric pores (easy
axes of plates at an angle). As a result of confinement, the
cholesteric phase is promoted with respect to the bulk, the
binodal line exhibiting an oscillatory structure, and strong
commensuration effects, giving rise to winding transitions,
occur. The two types (capillary and winding) of transitions are
connected: the capillary line pre-empts the winding transition

structure, and the oscillatory nature of the former is due to the
commensuration effects at work in the winding transitions. Our
results pertain to the case where the pore size of the cell is
changed in the absence of an external field, a situation not
common in practical applications; however, these effects have
been observed in atomic-force microscopy experiments, where
both pore size and temperature can be controlled.

Finally, it is interesting to note that phase diagrams similar
to the ones obtained here have been previously predicted in
smectic40,41 or columnar42 liquid crystals confined in slit pores
using density functional theory. In these system layering transitions
between states that differ in the number of smectic or columnar
layers occur under confinement due to commensuration effects
between the pore width and the layer spacing. Layering transitions
play a role similar to the winding transitions analysed here; they are
connected to the capillary isotropic–smectic or nematic–smectic
lines, a phenomenon which is the analogue of the connection
between the winding transitions and the capillary isotropic–
cholesteric line found for the cholesteric model. This analogy
results in a universal behaviour, stemming from the competition
between an internal length and an imposed external length.
However, some differences exist. For example, the capillary
transition lines at small pore widths are in some cases broken
in the smectic case. Possible origins of these differences (resulting
from the theoretical approximations or from the interaction
models) are currently under investigation.
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