
This journal is © The Royal Society of Chemistry 2021 Soft Matter

Cite this: DOI: 10.1039/d1sm00559f

Red blood cells in low Reynolds number flow: A
vorticity-based characterization of shapes in two
dimensions†

Andreu F. Gallen, *a Mario Castro b and Aurora Hernandez-Machado ac

Studies on the mechanical properties of red blood cells improve the diagnosis of some blood-related

diseases. Some existing numerical methods have successfully simulated the coupling between a fluid

and red blood cells. This paper introduces an alternative phase-field model formulation of two-

dimensional cells that solves the vorticity and stream function that simplifies the numerical

implementation. We integrate red blood cell dynamics immersed in a Poiseuille flow and reproduce

previously reported morphologies (slippers or parachutes). In the case of flow in a very wide channel, we

discover a new metastable shape referred to as ‘anti-parachute’ that evolves into a horizontal slipper

centered on the channel. This sort of metastable morphology may contribute to the dynamical response

of the blood.

1 Introduction

The mechanical properties of a red blood cell (RBC) has
profound implications in the diagnosis of some blood-related
diseases.1–3 The velocity of plasma or the degree of confine-
ment affects the shape and mechanical response of the cells in
unexpected ways.4–6

Many approaches have exploited the unique ability of computer
simulations to understand dynamics in silico, ranging from mesh-
based methods (like a phase field coupled to a Lattice–Boltzmann
method7–9) to particle-based methods (like Smoothed Dissipative
Particle dynamics10,11), to methods based on the use of the Green
function or Dirac delta (like the boundary integral method12–14 or
immersed boundary method15). The practical implementation of
some of those methods can be highly complex and computationally
demanding. For instance, the Lattice–Boltzmann method simulates
the Boltzmann equation to solve the fluid flow, which is highly
complex to implement. Dissipative particle dynamics simulates a
viscous fluid, however the viscosity has to be determined numeri-
cally which forces the algorithm to change ad hoc physical para-
meters to tune the conservative and dissipative forces, and physical
scales can only be inferred indirectly.16 Finally, smoothed dissipative
particle dynamics solves some of these problems but some

constraints such as incompressibility can still be tricky to force
and some fine-tuning needs to be in place to avoid spurious
viscoelastic or shear-thinning behaviours.17

The phase-field methodology successfully models liquid–
solid and liquid–liquid interfaces and, recently, it has also
been used for modelling vesicles and simple cells like red blood
cells.7–9,18–26 The phase-field method reproduces accurately
membrane morphology and dynamics under a flow in combi-
nation with the Lattice–Boltzmann method.7–9,26 Previous work
has focused on giving exhaustive phase diagrams of red blood
cell morphologies both in 2D13,14 and in 3D10,27 where aside
from deformation, other dynamics like tumbling are studied.
The dimensionality of the study is also relevant, as a vesicle and
a red blood cell are indistinguishable in 2D. In 3D the cytoske-
leton made by a spectrin-network attached to a RBC membrane
gives the membrane resistance to in-plane shear. This can be
very important in some health disorders like hereditary
spherocitosis.28,29 Although the dimensional difference might
not be important for the membrane shape under normal
conditions, it can be of great importance for the results of
some parameters or scalings. While lacking the in-plane shear
can make it challenging to give quantitative results with 2D
simulations, extensive previous qualitative research on healthy
RBC in a microchannel has been proven successful. This is even
more obvious when comparing with experimental results for
different values of cytoskeleton elasticity for healthy cells30

where the same shapes as in 2D simulations7 are obtained.
Here, we present a methodology to simulate interfaces and, in

particular, membranes coupled to a flow where the approach relies
directly upon basic fluid mechanics equations. Consequently, we
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find this methodology ideal to add further extensions such as
including more sophisticated constitutive equations (for instance,
Maxwell or Oldroyd viscoelasticity) which is far from straightforward
using, for example, Lattice–Boltzmann method.

In this work, we solve the equations for the vorticity and
stream functions to avoid some subtleties of solving explicitly
the Navier–Stokes equations. An additional benefit of this
method is fulfilling the incompressibility condition regardless
of the accuracy of the solving method. Our method is simpler
and physical scales are explicit in the model, so it is a viable
alternative to the Lattice–Boltzmann method, dissipative parti-
cle dynamics or smoothed dissipative particle dynamics. We
illustrate our approach studying red blood cells in Poiseuille
flow in two dimensions, immersed in either a narrow or a wide
channel. In the case of a Poiseuille flow in a wide channel we
show that the RBCs present short-lived metastable configura-
tions that have not been previously observed in other studies.
To prove the model presented here we also reproduce the so-
called tumbling dynamics,14,27 proving the versatility of our
approach.

2 Methods
2.1 Description of the model

The model is based on the well-known Canham–Helfrich energy

F ¼
ð
A

k
2
C2 þ gA

� �
dAþ

ð
V

DpdV ; (1)

where C is the total curvature,31,32 which has an associated
energy scale, the bending modulus k. In addition to the curva-
ture term, the terms proportional to gA and Dp guarantee area
and enclosed volume conservation, respectively.

We can rephrase the energy in eqn (1) – which has a purely
geometrical interpretation – using a phase-field (also known as
order parameter) f.18,19 This order parameter describes the
two phases: the extracellular (f = +1) and the intracellular
(f = �1) phases. The membrane is the narrow region (of
thickness B e) between both phases. The resulting expression
for the energy is

F ½f�¼
ð
V

k
2
�fþf3�e2r2f
� �2þg1e2ðrfÞ2þg2ð1�f2Þ2þbf

� �
dV;

(2)

where gi are two Lagrange multipliers to ensure area conserva-
tion and b is the Lagrange multiplier to ensure volume con-
servation, which will be discussed later. Note that the first term
in eqn (2) captures the surface contribution in eqn (1) as it is
almost zero except around f = 0.

With this formulation, we can write an equation for time
evolution of the phase field as

@tfð�x; �tÞ ¼Mr2m; where m ¼ dF ½f�
df

(3)

where the chemical potential m is the functional derivative of
the energy,33 M is the mobility coefficient of the phase field and
qt denotes the partial derivative with respect of time. The

mobility M sets the time-scale of the phase-field interface
formation and stabilization. We set this parameter to guarantee
that the formation of the diffuse interface and its relaxation do
not alter the simulation results. Quantitatively, the value of M is
such that the membrane deformation time-scale tk = Zl3/k is 105

times slower than the phase field time-scale tf = e2/M. The
explicit expression of the chemical potential for a Helfrich
membrane is

m = k((3f2 � 1)F[f] � e2r2F[f]) � gAr2f + bV,
(4)

where we define F[f] = (�f + f3 � e2r2f) to ease the
formulation.

Eqn (3) minimizes the Canham–Helfrich energy in the
absence of fluid, so we need to couple the latter equation with
the velocity field. As the fluid transports the cell and the cell
distorts the fluid, we have,

@tf ¼Mr2m�~v � rf; (5)

and

r @t~vþ~v � r~vð Þ ¼ �rPþ Zr2~v� frm; (6)

where r is the density, P is the pressure and Z is the viscosity
of the fluid. The term �frm accounts for the effect of the
cell on the fluid. We should not forget that the hydrody-
namics in 2D is noticeably different from 3D due to its even
longer range. However, this is not a problem in our study
because the behaviour of the Oseen tensor in our system is
dominated by the characteristic finite size of our micro-
channel.

To avoid some subtleties of other methods (like guarantee-
ing fluid incompressibility) we rephrase eqn (6) in terms of the
vorticity and the stream functions, defined respectively as

~o = r � -
v, r � ~x = -

v. (7)

The vectors vorticity ~o and stream function ~x have only
one non-zero component thus we define ~o = (0,0,o) and
~x = (0,0,x) so, hereafter, we will work only with their unique
non zero scalar component. Using these two variables, we find
that the phase-field is coupled with two scalar Poisson
equations

qtf = Mr2m � (qyxqxf � qxxqyf), (8)

r2o ¼ 1

Z
@ym@xf� @xm@yf
� �

; (9)

r2x = �o. (10)

as, in 2D, the vorticity o and the stream function x have only
one non-zero component.

For a Poiseuille flow, we translate the boundary conditions
for the fluid into a set of equations for the vorticity and the
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stream function using the unperturbed (without cell)solution:

vxðyÞ ¼ �
dP

dx

1

2Z
yðh� yÞ )

xðhÞ ¼ �dP
dx

h3

6Z
xð0Þ ¼ 0

oðhÞ ¼ �dP
dx

h

Z

oð0Þ ¼ dP

dx

h

Z

8>>>>>>>><
>>>>>>>>:

; (11)

where h is the channel height and
dP

dx
is the pressure gradient.

As can be seen the code sample we share34 we solve
iteratively eqn (8)–(10): first we use a finite-difference scheme
(space step Dx) to solve the scalar Poisson equations that enter
the dynamical eqn (8) that is solved using an explicit Euler
discretization for the time step. We chose Dx to have enough
resolution to describe the cell width (long semiaxis B 65Dx)
and the channel width (for width–cell ratios r from 1.5 to 6).
This width–cell ratio r is comparing the size of the channel with
the undeformed cell. We start all the simulations with an
ellipsoid which has the reduced volume of a discocyte shape.
This initial shape will evolve to a discocyte and will flow due to
the interaction with the stream function field.

2.2 Physical constraints and Lagrange multipliers

As stated before, we have to ensure that the system conserves
the area and the enclosed volume of the membrane. These are
our physical constraints that we will ensure with the use of
Lagrange multipliers. The enclosed volume can be computed
with

Ð
fðrÞdV, however for the area there are two different

expressions

A1 ¼
ð

3

4
ffiffiffi
2
p

e
jrfj2dV and A2 ¼

ð
3

4
ffiffiffi
2
p

e
ð1� f2Þ2dV ;

and both are equal at the e - 0 limit.
For simulations without a flow the area conservation can be

ensured using the explicit Lagrange multiplier from ref. 35 with
the addition of a velocity term for the expression A1

g1 ¼
Ð
ð�rf � rðv � rfÞ þMrf � rr2m0ÞdV

M
Ð
rf � rr4fdV

: (12)

This solution is obtained from the dynamic equation of the
phase field, defining an unknown Lagrange multiplier for rf
and solving for it. This multiplier is enough to conserve the
area for zero or low speed simulations but to explore the high
velocity flows further precision was necessary.

Following Qiang Du, et al.21 we have extended the Lagrange
multiplier for the area and added one for the volume. This
approach is accurate in the range of low to moderate velocities
used in our work. As the first Lagrange multiplier is obtained
for the first area expression we add a second Lagrange multi-
plier for the other expression and implement it with a simpler
penalty approach. This second area multiplier does not need to
be as accurate as the first as it just only gives additional support
to the area conservation

g2 = Cg(A(t) � A0),

where Cg is the weight given to this penalty for the area.
Finally a Lagrange multiplier for the volume conservation is

also added with a penalty approach

b = Cb(V(t) � V0),

where Cb is the weight given to this penalty.

3 Results

The code used to compute all the following results can be
obtained from its GitHub repository.34

3.1 Poiseuille flow in a narrow channel

Poiseuille flow occurs when a constant pressure gradient is
applied parallel to the channel walls. The cell travels with the
flow and deforms due to the force exerted by the fluid. The total
deformation changes continuously when the mean velocity in
the channel increases adopting different shapes and orienta-
tions as shown in Fig. 1A–D.

In particular, Fig. 1 shows that, for narrow channels,
increasing velocities change the shape of the cell from a discoid
to an almost horizontal slipper (Fig. 1B). Also, larger velocities
break the symmetry of the cell along its longest and shortest
axes. Finally, for even larger velocities, the cell adopts the so-
called parachute morphology, as shown in Fig. 1D. In this
regime, the velocity field in the channel is the dominant
mechanism of deformation.

These results prove that our phase-field formulation repro-
duces the morphologies observed experimentally and, also,
those reported using alternative computational formulations.
In particular, the results in ref. 7–9 in which a Helfrich model
for the membrane was coupled with a Lattice–Boltzmann
description of the flow.

Fig. 1 Cell morphologies in confined channels. (A–D) Different flow
speeds from slower to faster with a width–cell ratio of r = 1.5, 2 orders
of magnitude from the fastest to the slowest.
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Eqn (8)–(10) couple explicitly the vorticity and the stream
function with the phase-field. In Fig. 2 we display those
observables as well as the variation of the stream function
due to the presence of the cell x � x0, where x0 is the stream
function in the absence of a cell. Far from the cell, the fluid
field follows a parabolic shape (Fig. 2B) as expected for a
Poiseuille flow. Apparently, the total stream function is quanti-
tatively identical to the eye as the cell travels with the flow.
However, the deviations of the stream function with respect to
an empty channel highlight the relative motion of the fluid
caused by the deformation of the membrane (Fig. 2D). Thus,
while the cell affects the vorticity locally (near the membrane),
the deviations of the stream function, x� x0, display long range
correlations: the fluid is perturbed at distances comparable to
the size of the cell and the channel width.

Fig. 3A shows that the fluid is locally slowed down inside the
cell and speeds up close to the tips of the parachute. On
the other hand, the deviations of the vertical component of
the velocity field explains the pattern of vorticity shown in
Fig. 2.

But beyond the kinematics of the fluid, which mechanisms
underlie the deformation and consequent effect of the cell over
the fluid? To answer that question, we compute the local
pressure field and the transverse component of the stress
tensor, sxy, as summarized in Fig. 3.

The pressure field is obtained from the Gibbs–Duhem
relation for constant temperature dP = fdm.7 The patterns
observed for vx� vx,0 in Fig. 3A can be explained by the pressure
field. Thus, the cell is compressed along the center of the

channel due to excess pressure on the left and a local depres-
sion on the right. The shape of the cell remains symmetric and
travels rigidly with the fluid, consistent with previous
simulations.36

On the other hand, the shear stress,

sij � rivj � rjvi, (13)

makes the fluid cycle around the head and tips of the cell, as
shown in Fig. 3D. The stress is maximum (in absolute value) at
the cell tips dragging the fluid close to the tips (Fig. 3A) and
increasing the vorticity by pushing the fluid vertically close to
the tips (Fig. 3B). Inspection of the pressure and the stress
emphasizes that regions with large pressure (in absolute value)
correspond to lower shear stress.

The situation is slightly different for non-symmetric shapes
as shown in Fig. 4. In this case a slipper travels with the fluid
but, the cell center of mass is displaced towards one of the walls
and the shape is no longer symmetric. As a consequence, at the
front (right side) of the cell, both the pressure and the shear
stress are large. This creates a non-trivial velocity pattern as
shown in Fig. 4A and B and keeps the cell travelling rigidly
instead of tumbling (rotating clockwise) as it travels. Thus, the
cell is deformed just to keep the flow stationary.

As shown in Fig. 5, the deviations of the stream function
x� x0 vary considerably far from the cell creating (relative) fluid
re-circulation around the cell. The asymmetry of the cell is
reflected in the shape of the stream lines. Also, inspection of
the deviations of the vorticity with respect to an empty channel,
o � o0, show that the effect of the cell on the flow is focused on
the areas with larger curvature as a consequence of the friction
between the cell and the fluid.

To quantify this (global) interaction between the cell and the
fluid, in Fig. 6 we show the square of the deviations – both of

Fig. 2 Simulation of cell flow in a channel with width–cell ratio r = 1.8.
(A) Parachute morphology; (B) vorticity; (C) stream function and velocity
field being symmetrical with respect to the channel center, as the para-
chute also has a symmetric shape; and (D) deviations of the stream
function with respect to an empty channel. Note how the stream function
deviations are significant at distances comparable to the cell. Simulation of
a channel 400 � 121Dx in size with a flow speed of 0.5Dx/Dt and a viscosity
of Z = 1, and consisting of 4 � 107 iterations.

Fig. 3 Symmetric parachutes. (A) Deviations of the horizontal velocity
with respect to an empty channel; (B) deviations of the vertical velocity
with respect to an empty channel; (C) fluid pressure; and (D) shear stress.
Same simulation parameters as in Fig. 2.
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the stream function and the vorticity – integrated throughout
the channel

W ¼
ð
channel

ðo� o0Þ2dV; (14)

X ¼
ð
channel

ðx� x0Þ2dV : (15)

These observables allow us to track the deformation history of
the cell. Actually, Wu37 showed that the vorticity integrated
throughout the channel is conserved in two-dimensional
incompressible flows also in the presence of immersed solid
bodies. Thus, we can use the integral of the deviations of the
vorticity (14) as a measure of the elastic deformation of the cell
and the dissipation caused by friction between the cell and the
flow. We integrate the square as we are not interested in the
sign of the deviation. As shown in Fig. 6, the cell deforms
quickly at short times adopting a symmetric elongated shape

that relaxes towards the final (non-symmetric) steady shape for
long times.

3.2 Poiseuille flow in a wide channel: the transient anti-
parachute

So far we have considered that the width of the channel is
comparable to the size of the cell. In this section, we present
results of studying channels whose width is several times larger
than the size of the cell. The main difference is that, the larger
the channel (for a fixed applied pressure gradient), the flatter
the Poiseuille parabola. Thus, at the center of the channel we
have a region of approximately constant speed and, conse-
quently, lower shear stress. In these cases, the cell can evolve
a shape we called the ‘‘anti-parachute shape’’.

In Fig. 7A and B we show an example of a cell with an anti-
parachute shape that becomes unstable and evolves into a
slipper centered on the channel. We found that the anti-
parachute is unstable for medium-width channels or for very
wide channels at very high speeds.

It is worth noting that the shape of the anti-parachute has a
different origin than the traditional parachute. In the case of
the latter, the shape results from the increased velocities at the
center of the channel so the cell adapts to the parabolic profile
characteristic of the Poiseuille flow. However, for wide chan-
nels, the velocity gradient is not that large and the center of the
channel is a region with an almost constant flow velocity. In
that constant-speed region, the membrane does not follow the
parabolic shape but results from the interaction between the
membrane energy, the velocity and the shear stress. In this
case, as the fluid circles around the cell it exerts a force on the
membrane to reduce the drag. This force bends the cell in
the opposite direction of a normal parachute shape resulting in
the shape displayed in Fig. 7A.

The anti-parachute shape is more akin to what would
happen to a surface tension interface rather than a bending
one. In this case, the velocities at the cell edges are as high as
the center of the channel. Thus, the bending contribution
becomes subdominant with respect to the hydrodynamical

Fig. 4 Slippers. (A) Deviations in the horizontal velocity with respect to an
empty channel; (B) deviations of the vertical velocity with respect to an
empty channel; (C) fluid pressure; and (D) shear stress. Simulation of a
channel 400 � 121Dx in size with a flow speed of 0.05Dx/Dt and a viscosity
of Z = 1, and consisting of 4 � 107 iterations.

Fig. 5 Asymmetric parachutes. Cell-induced (A) stream function and
(B) vorticity deviations with respect to an empty channel. Note how the
stream function deviations are significant at distances comparable to the
cell size. Flow speed v = 0.5Dx/Dt and size of channel 200 � 101.

Fig. 6 Time evolution of the integrated squared cell-induced stream
function X and vorticity W deviations with respect to an empty channel.
These observables capture quantitatively the effect of the cell shape on the
flow until the system reaches the steady state. Same simulation parameters
as in Fig. 5.
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forces and the area conservation. In summary, the cell gener-
ates a resistance that is proportional to its cross-section, and
the subsequent deformation is aimed to reduce the cell cross-
section. As the flow speed is equal across the cross-section of
the membrane, the cell simply bends in the flow direction
instead.

Another quirk of this anti-parachute shape is that it is a
metastable conformation of the cell that, eventually, rotates
and deforms into a flow-oriented slipper. To quantify this
transition, we compute the time course of the integrated
squared vorticity deviation W as in eqn (14). As shown in
Fig. 8, W, defined in eqn (14), presents two plateaus, which
can be identified with each shape in Fig. 7A and B. Comparing
the stability in Fig. 8 with the previous Fig. 6 we can clearly see
two plateaus instead of one, where the first plateau corresponds
to the anti-parachute shape. Following the result of ref. 37, we
conclude that the anti-parachute morphology behaves as a solid
object (conserved vorticity) during this transient time.

In the long term, the shape evolves into a slipper-shaped
cell, but at the center of the channel. This result is also
unexpected, as usually slippers have an equilibrium position
outside the center of the channel.

The anti-parachute shape is symmetric with respect to the
center of the channel most of the time. In contrast, if the initial
location of the cell is far away from the center, the cell adopts a
slipper shape early in the simulation and it travels towards the

center, as shown in Fig. 9A. But, unlike the anti-parachute,
Fig. 9B shows that the shape changes continuously and there is
not any meta-stable morphology. Our results display some
variability. On the one hand, the cell is close to the center but
still tilted with respect to the center (which is likely to be a

Fig. 7 Anti-parachutes. (A and B) Snapshot of a cell in a fast flow inside a
wide channel. Cell-induced (C) stream function and (D) vorticity deviations
with respect to an empty channel for a flow speed of v = 0.5Dx/Dt. Sizes of
the channels: (A) 600 � 800 and (B–D) 500 � 400. Width–cell ratios:
(A) r = 12 and (B–D) r = 6.

Fig. 8 Anti-parachutes. The sum of the squared deviation of the vorticity
o and stream function x with respect to the expected value in the absence
of a membrane. Inset of the initial conditions, shaped as an ellipsoid with
the surface–volume ratio of a discocyte with a white line showing
the center of the channel. The size of the channel is 500 � 400. We can
see how each plateau refers to a given membrane shape. Width–cell ratios
r = 12.

Fig. 9 Time evolution of the center of mass of a cell located initially
displaced with respect to the center of the channel. The orientation as well
as the location change continuously with time. The size of the channel is
400 � 400. Width–cell ratio r = 6.
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metastable state). Also, simply due to the evolution of that
particular simulation, finding the final equilibrium position
takes much longer than the others.

So far, we have studied the case with a viscosity contrast
equal to 1. In wider channels, this behaviour can be lost at high
viscosity contrasts. In 2D simulations for high viscosity con-
trasts, the so-called tumbling dynamics are obtained.14,27 In
Fig. 10, we reproduce this sort of behaviour, proving the
versatility of our approach. In this particular case, the initial
location of the cell is slightly displaced above the center of the
channel, so the symmetry is broken, and the tumbling mecha-
nism can operate.

4 Conclusions

We have introduced a new mathematical formulation for two-
dimensional deformable cells flowing in a channel. Our model
is grounded in low-Reynolds fluid flow (Stokes equation) and,
mathematically, combines the theory of phase-field models but
captures accurately the deformations of a membrane in a
laminar flow and the influence of the membrane on the fluid.

The simplicity of the model – one of its strengths – stems
from the coupling of an equation for the membrane and an
alternative description of the fluid based on integrating two
Poisson equations for the stream function x and the vorticity o.
Another strength is that it fulfills the incompressibility condi-
tion regardless of the accuracy of the solving method thanks to
its formulation.

Equipped with our model, we have replicated many existing
results in the literature for red blood cells in low-Reynolds
number flows such as the discocyte, the slipper, and the
parachute in highly confined configurations (small cell-size to
channel width ratios). These results prove the validity of the
model. Besides this, for wide channels, we find a new meta-
stable configuration: the anti-parachute. This transient beha-
viour might be relevant to understand the response of blood
flow under sudden flow changes in the channel.

Using the connection between incompressibility and the
conservation of the vorticity in the presence of rigid bodies,
we can study the dynamics of the membrane deformation. We
use the integrated value of the squared deviations of the
vorticity with respect to an empty channel as a measure of
the stability of the morphology until it reaches a steady state.
When the anti-parachute loses its shape it becomes slipper-
shaped, even at very high speeds but, unlike existing results in
the literature, the slipper moves permanently to the center of
the channel.

With this methodology we can also replicate known results
for 2D cell simulations where tumbling is obtained at high
viscosity contrast.14,27 This further proves the capabilities of the
method for different flow dynamics.

Our framework allows for the study of novel setups such as
oscillating flows, channels with a varying cross-section, and
extremely-confined flows, and will be the object of future
studies.
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