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Thermodynamics of information
Juan M. R. Parrondo1*, Jordan M. Horowitz2 and Takahiro Sagawa3

By its very nature, the second law of thermodynamics is probabilistic, in that its formulation requires a probabilistic description
of the state of a system. This raises questions about the objectivity of the second law: does it depend, for example, on what we
know about the system? For over a century, much e�ort has been devoted to incorporating information into thermodynamics
and assessing the entropic and energetic costs of manipulating information. More recently, this historically theoretical pursuit
has become relevant in practical situations where information is manipulated at small scales, such as in molecular and cell
biology, artificial nano-devices or quantum computation. Here we give an introduction to a novel theoretical framework
for the thermodynamics of information based on stochastic thermodynamics and fluctuation theorems, review some recent
experimental results, and present an overview of the state of the art in the field.

Soon after the discovery of the second law of thermodynamics,
James Clerk Maxwell illustrated the probabilistic nature of the
law with a gedanken experiment, now known as Maxwell’s

demon1,2. He argued that if an intelligent being—a demon—had
information about the velocities and positions of the particles in a
gas, then that demon could transfer the fast, hot particles from a cold
reservoir to a hot one, in apparent violation of the second law1,2.

Maxwell’s demon revealed the relationship between entropy
and information for the first time—demonstrating that, by using
information, one can relax the restrictions imposed by the second
law on the energy exchanged between a system and its surroundings.
But formulations of the second law attributed to Rudolf Clausius,
Lord Kelvin and Max Planck3 make no mention of information.
Reconciling these two pictures involves two separate tasks. First, we
must refine the second law to incorporate information explicitly.
And second, we must clarify the physical nature of information,
so that it enters the second law not as an abstraction, but as a
physical entity. In this way, information manipulations such as
measurement, erasure, copying and feedback can be thought of as
physical operations with thermodynamic costs.

The first task was partially accomplished by Léo Szilárd, who
devised a stylized version of Maxwell’s demon. Szilárd’s demon
exploits one bit of information (the outcome of an unbiased yes/no
measurement) to implement a cyclic process that extracts kT ln2 of
energy as work from a thermal reservoir at temperature T , where k
is Boltzmann’s constant4. This suggests a quantitative relationship
between the information used by the demon and the extractable
work from a single thermal reservoir.

Efforts to address the second task have been many and varied1,2.
Léon Brillouin quantified the cost of measurement in some specific
situations; Marian Smoluchowski5 and Richard Feynman6 demon-
strated that fluctuations prevent apparent second-law violations
in autonomous demons; and Rolf Landauer, Charles Bennett and
Oliver Penrose7 proved that measurements can be realized at zero
entropy production—albeit at an energetic cost for measurement
erasure1. Bennett subsequently explored several thermodynamic
aspects of information processing8, including compression, algo-
rithmic complexity, logical reversibility and proofreading.

Despite this long history of information in thermodynamics, the
past decade has seen significant progress due to the application of
fluctuation theorems9,10 and stochastic thermodynamics11,12. They

have provided a general framework for the thermodynamics of
information that clarifies and generalizes previous results. In parallel
with this theoretical progress, technological advances have led to
new experimental techniques for manipulating small fluctuating
systems. As a result, the thought experiments of the past, such as
Maxwell’s demon and Szilárd’s engine, are now being realized in
the laboratory13,14, allowing the verification of several fundamental
predictions regarding information operations15,16.

Our aim in this article is to complement the existing review
literature1,2,11,12,17–19 by presenting an updated overview of the
recent developments and experiments, as well as to provide a
basic introduction to the main ideas and theoretical tools used
to analyse the thermodynamics of information systems. After
reviewing the Szilárd engine, we will discuss how information can
be incorporated into a refined statement of the second law, and
then continue by analysing physical realizations of memories and
information processing.

The Szilárd engine
Historically, much of the research on the thermodynamics of
information has focused on the cyclic engine introduced by Szilárd
in 1929 (ref. 4). In Szilárd’s original formulation, the engine’s
working substance is a single-molecule gas in a box of volume V0
(Fig. 1a), immersed in a thermal reservoir at temperature T , and
manipulated by an external agent or demon. The demon initiates
a cycle by first rapidly inserting a partition into the middle of the
box, splitting it in half. The demon then measures on which side
the molecule is trapped and carries out a reversible expansion from
volume V0/2 to V0 to extract work Wext = kT ln 2. The cycle is
completed by removing the partition. The net effect is the extraction
of energy from a single thermal reservoir in a cyclic process, in
apparent contradiction to Planck’s statement of the second law.

Some aspects of the Szilárd engine seem obscure at first: the
molecule does not exert a smoothly varying pressure, but imparts
kicks of random intensity, calling into question the applicability
of the ideal gas law in the calculation of the work. The role of
the measurement is also not clear, as it seems that the pressure
itself could reveal the molecule’s location. Careful analyses have
clarified these issues1. Moreover, any system that undergoes a
phase-space splitting could be used as a ‘working substance’20.
For example, the Szilárd engine has been recently realized in the
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Figure 1 | The Szilárd engine and recent experimental realizations. a, In the original Szilárd engine, a partition is inserted into a box containing a single
molecule and surrounded by a thermal reservoir at temperature T. The half of the box containing the molecule is measured and the partition is moved
performing an isothermal expansion extracting work. b, Experimental realization with a single-electron box (SEB) controlled by a gate voltage Vg and
monitored by a single-electron transistor (SET; ref. 14). The experimental set-up is shown in the top figure. The lower plots show the energy levels of the
box, depending on the electron number (n=0,1), as a function of the normalized gate voltage ng. The electron number n is measured, and ng is rapidly
changed, decreasing the energy (left plot), and then slowly moved back to the initial value (right plot). There is a net extraction of work in the process due
to the thermal excitations of n occurring only when ng changes slowly. c, Experimental realization using a colloidal particle and two optical traps16. The top
figure shows the experimental set-up: one trap is kept fixed at position x=0 and the other is shifted horizontally at a speed vtrap. A controllable
electrostatic field created by two electrodes biases the particle towards one of the traps. The bottom figure shows a contour plot of the potential a�ecting
the particle during a process where the moving trap is shifted and then moved back to its initial position. A realization of the particle’s trajectory is
visualized as a fluctuating white line. The Szilárd cycle is achieved by measuring the trap where the particle lies in the middle of the process and biasing
that trap in the second half of the process. d, Experimental realization using a rotating colloidal particle13. The top figure shows the experimental set-up,
where two particles are attached to a cover glass. One of them is regarded as a rotating Brownian particle and is controlled by the electric field induced by
four electrodes. The bottom figure shows two shapes of the e�ective potential, which is a superposition of a sinusoidal potential and a constant torque. The
position of the particle is measured and the potential is switched from one shape to the other when the particle crosses the potential minima in the
uphill direction.

laboratory, and the systems used were not single-molecule gases,
but a colloidal Brownian particle13,16 and a single electron14 (Fig. 1).
Ultimately, whatmakes the Szilárd engine function is a fundamental
relationship between information and entropy, specialized to a class
of non-equilibrium state which we now discuss.

Information and the second law
When we acquire new information about a physical system with
microstates x , we update the statistical state, ρ(x), to ρ(x|m),
where m encodes the new information, such as the outcome of
a measurement or the procedure used to prepare the state. For
example, in the Szilárd engine, aftermeasurement the statistical state
ρ(x|m) is confined to either the left or right half of the box. In
general, this updated state ρ(x|m) is out of equilibrium, even if the

pre-measurement state ρ(x)was in equilibrium. Information drives
the system away from equilibrium with no apparent energy cost.
In this way, a thermodynamics of information can be viewed as a
branch of non-equilibrium thermodynamics, dealing with a special
class of states and processes. The starting point of this theory is an
extension of the definition of entropy to this special class of non-
equilibrium states.

The physical meaning of Shannon entropy. The definition of
entropy for non-equilibrium states has been controversial for many
years. Although equilibrium thermodynamic entropy has been
successfully used in some non-equilibrium situations, it is not yet
clear how to define a physically meaningful entropy for generic
non-equilibrium states. Shannon entropy (or vonNeumann entropy
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Box 1 | Non-equilibrium free energy.

A simple argument, illustrated in the figure, helps to clarify
the physical meaning of the non-equilibrium free energy23. The
argument compares the energetics of two isothermal processes
that drive the system from the non-equilibrium state ρ to the
equilibrium state ρ0 = e−βH0/Z0. The first is a spontaneous,
irreversible relaxation in which a heat Qrelax=〈H0〉ρ0 −〈H0〉ρ is
transferred from the thermal reservoir to the system and no work
is involved. The second process is driven by an external agent
that changes theHamiltonian instantaneously from its initial value
H0 to Hρ ≡−kT ln ρ and then back to H0 quasi-statically and
isothermally. The work done Wdriv to complete this process is the
work performed to carry out the quench 〈Hρ〉ρ−〈H0〉ρ plus the
work to reversibly shift the Hamiltonian back to its initial value
H0, which is expressible as a difference of equilibrium free energies
F(ρ0)−F(ρ). Hence,

Wdriv = 〈Hρ〉ρ−〈H0〉ρ+F(ρ0)−F(ρ)

= F(ρ0)−F(ρ;H0)

One can prove that this work is the minimum over all possible
isothermal processes driving the system from ρ to ρ0 (ref. 23).
In other words, −Wdriv is the maximum work that can be
extracted from the non-equilibrium state ρ. Consequently, given
a Hamiltonian H0, the non-equilibrium free energy reaches its
minimum precisely for the equilibrium state ρ0. This means that
F(ρ;H0)≥F(ρ0) for any statistical state ρ (ref. 23).

This process plays an identical role in non-equilibrium situa-
tions as do reversible processes in equilibrium thermodynamics.
It is operationally reversible, that is, if the driving is reversed in
time, the system traverses the exact same sequence of statistical
states in reverse, and the energetics—Wdriv and Qdriv—are equal
and opposite. It also maximizes the extracted work.

ρ

ρ0

Equilibrium

Non-equilibrium

Irreversible
relaxation

Instantaneous

Quasi-static

0

ρ

In this reversible process, the total entropy production
1Stot=1Ssys+1Sres, defined as the sum of the Shannon
entropy change in the system 1Ssys = S(ρ0)− S(ρ) and in the
reservoir 1Sres=−Qdrive/T , is zero, as the heat transferred from
the reservoir to the system is Qdriv = 〈H0〉ρ0 − 〈H0〉ρ −Wdriv.
By comparison, the entropy production for the irreversible,
spontaneous relaxation is

1Stot = S(ρ0)−S(ρ)+
Qrelax

T

=
F(ρ0)−F(ρ;H0)

T
≥0

In other words, in an irreversible process, the entropy production
is positive, implying that the decrease of free energy is wasted, as
no work is extracted.

in the quantum case) has been widely used, but in these cases
it is loosely taken to be equivalent to thermodynamic entropy.
However, recent developments in stochastic thermodynamics
rigorously show that Shannon entropy has a clear physical meaning
in certain situations; namely, it determines the energetics of
non-equilibrium processes for systems coupled to one or more
thermodynamic reservoirs12.

In information theory21, the Shannon entropy of a random
variable X with probability density ρ(x) is defined as
H(X)=−

∑
x ρ(x) lnρ(x). When X represents the microscopic

state of a physical system, we can use the Shannon entropy,
multiplied by Boltzmann’s constant, as a candidate for non-
equilibrium entropy

S(ρ)=kH(X)=−k
∑
x

ρ(x) lnρ(x) (1)

We will refer to both S(ρ) and H(X) as Shannon entropy, as they
are essentially the same magnitude measured in different units.
However, it will prove useful to keep the two notations with their
specific dependences, which are standard in thermodynamics and
information theory, respectively.

Shannon entropy coincides with the equilibrium entropy for
canonical equilibrium states ρ0(x)= e−βH0(x)/Z0, where H0(x) is
the Hamiltonian, β = 1/(kT ) (with T the temperature) and Z0 is
the partition function. In this case, we recover the thermodynamic
relation F=E−TS between free energy F(ρ0)=−kT lnZ0, average
internal energy E = 〈H0〉ρ0 and Shannon entropy S(ρ0). One can
go further and define a non-equilibrium free energy for a generic

statistical state ρ of a system in contact with a thermal bath and with
HamiltonianH0 (refs 22–26)

F(ρ;H0)≡〈H0〉ρ−TS(ρ) (2)

It can be shown that the Shannon entropy and the associated
non-equilibrium free energy are analogous to their equilibrium
counterparts in non-equilibrium isothermal processes. Here,
isothermal implies that the system is in contact with a thermal
reservoir at temperature T , although the system itself may not have
a well-defined temperature. As illustrated in Box 1, the minimal
work, on average, necessary to isothermally drive the system from
one arbitrary state to another is simply the difference,1F , between
the non-equilibrium free energy in each state. The excess work
with respect to this minimum is the dissipated or irreversible
work,Wdiss.

We can also identify an entropy production as the increase of
Shannon entropy in the system plus the increase in thermodynamic
entropy in the reservoir (see Box 1 and refs 23,26–28)

T1Stot=Wdiss≡W−1F≥0 (3)

This is the extension of the second law to isothermal processes
connecting non-equilibrium states, and forms a basic tool to develop
the thermodynamics of information.

Mutual information and the second law. We can now address the
first task of building a thermodynamics of information: evaluating
the change in non-equilibrium free energy due to a measurement.
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Box 2 | Mutual information.

In information theory, the mutual information between two
random variables U and V is defined as21

I(U ;V ) =
∑
u,v

ρ(u,v) ln
ρ(u,v)
ρ(u)ρ(v)

= H(U )+H(V )−H(U ,V )

It is always positive, symmetric, and vanishes if and only if U and
V are statistically independent. Its interpretation becomes evident
when we re-express it as

I(U ;V ) = H(U )−H(U |V )=H(V )−H(V |U )

where

H(U |V )=−
∑
u,v

ρ(v)ρ(u|v) lnρ(u|v)

is the conditional entropy. Recalling that H(U ) quantifies our
uncertainty in U , and H(U |V ) is our uncertainty in U given V ,
we see that the mutual information quantifies the reduction in
uncertainty about U when we learn V , and vice versa. Thus, we
can loosely say that the mutual information is a measure of the
correlations. An important special case is when U unequivocally
determines V , as for error-free measurements, in which case
H(V |U )=0 and I(U ;V )=H(V ).

When the statistical state of a system changes from ρ(x) to ρ(x|m),
the change in the system’s Shannon entropy, S(ρ(x|m))− S(ρ(x)),
averaged over all possible outcomes with probability pm, can be
written as29

1Smeas=k(H(X |M)−H(X))=−kI(X;M)

whereH is the Shannon entropy in equation (1) and I is the mutual
information (Box 2) between themicrostate of the systemX and the
measurement outcomeM .

To turn this observation into a statement about free energy,
we focus on measurements where neither the Hamiltonian nor
the microstate of the system is affected. The result is that the
measurement does not change the average energy, and the non-
equilibrium free energy increases by

1Fmeas =
∑
m

pmF(ρ(x|m);H)−F(ρ(x);H)

= −T1Smeas=kTI(X;M) (4)

Because the mutual information is positive, measurement (or
information acquisition) always increases the free energy, which in
turn increases the work that can be extracted isothermally. This
increase, as suggested by equation (3), must be accompanied by
work. Elucidating the origin of this work is our second task and will
be addressed in the next section. For now, we limit our discussion to
the effect of the measurement on the energy transfers between the
system and its surroundings.

We can now readily see how to refine the second law to make
information explicit. To be precise, consider a system characterized
by a set of external parameters λ that are modified by a demon. The
parameters are initially fixed to λ=A, and the system is prepared
in a canonical equilibrium state at temperature T . The demon
then changes the external parameters over the time interval [0, τ ],
performing a measurement at some intermediate time, tms, and uses
that information to design an external-parameter protocol λm(t),
which depends only on the measurement outcome m for t ≥ tms.
By noting the increase in free energy due to the measurement
(4), we can apply equation (3) to obtain the second law for
feedback processes30

W−1F≥−kTI(X(tms);M) (5)

where W is the average work done on the system and 1F is
the average change in non-equilibrium free energy. Notice that
both the work and the change of free energy depend on the
outcome M and equation (5) is valid only for the averages over
M . In a cyclic process, where λm(τ )=λm(0)=A for all m and the
system is allowed to relax back to equilibrium, we have 1F=0

and W ≥−kTI(X(tms);M). This means that we can extract an
amount of work, on average, proportional to the information
acquired in the measurement. For error-free measurements,
the value of M is unequivocally determined by X , and the
mutual information is the Shannon entropy of the measurement
I(X(tms);M)=H(M) (see Box 2). Remarkably, the Szilárd engine
reaches this bound, because M is left or right with probability 1/2,
giving H(M)= ln2.

Fluctuation theorems. The second law of thermodynamics with
information in equation (5) bounds a system’s average behaviour.
However, this inequality can be converted into an equality if
one includes fluctuations. Imagine repeating the measurement-
dependent protocol λm(t) many times, each time initializing in
equilibrium, measuring, and performing feedback. The thermal
fluctuations will cause the system to trace out a different
microscopic trajectory γ = {x(t)} through its phase space each
time. We denote the joint probability for the trajectory and
the outcome m as P(γ ,m). This scenario is called the forward
(feedback) process.

Fluctuation theorems compare the forward process to its time
reverse, resulting from the reversal of the driving protocol9,10,12.
The difficulty in identifying this reverse process is how to choose
the reverse protocol, as the protocol λm(t) depends on the
measurement outcome m after tms. The solution proposed in
refs 31,32 is operationally feasible and provides a useful theorem
characterizing the fluctuations of work and information. The idea is
to pickm randomly from the probability density of outcomes in the
forward process, pm, and then simply run the entire corresponding
protocol in reverse, λ̃m(t) = λm(τ − t), with no measurement.
The detailed fluctuation theorem is then a comparison of
P(γ ,m) with the probability in the reverse process P̃(γ̃ ,m) to
observe the reverse trajectory γ̃ = {x∗(τ − t)}, where ∗ denotes
momentum reversal31,32

P(γ ,m)
P̃(γ̃ ,m)

=eβ(w−1F)+I (6)

Here w is the stochastic work done on the system along trajectory γ
andwe have introduced a trajectory-dependentmutual information

I(γ ,m)= ln
p(m|x(tms))

pm

whose average over γ and m is the mutual information,
〈I〉= I(X(tms);M) (see Box 2).

The detailed fluctuation theorem in equation (6) connects
the fundamental time-reversal symmetry of the underlying
microscopic dynamics to the thermodynamics. From this relation,
any of a collection of fluctuation theorems with feedback can
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Figure 2 | Toy model of a memory. A Brownian particle in a double-well
potential with position y can be stably trapped in either the left or right well,
which represent the mesoscopic informational states m=0 and m= 1 of a
bit. The memory can either be symmetric (a) or asymmetric (b).

be readily derived32–34. For example, the integral fluctuation
theorem is

〈e−β(w−1F)−I
〉=1 (7)

which has been experimentally verified with a Szilárd engine
composed of a single electron14. Applying Jensen’s inequality to
equation (7), one obtains the inequality (5).

Equation (6) indicates that the inequality (5) can be saturated
at the level of individual trajectories if the feedback process and
its reverse are indistinguishable—or, in other words, if the process
is reversible. This observation points to a generic method to
engineer optimal feedback protocols—by finding a process that
looks like the feedback process when run in reverse. In particular,
the reverse process must always prepare the conditioned state right
after the measurement. If we can find such a reverse process,
by reversing it, we recover an optimal feedback protocol. This
preparation procedure has been used to design optimal protocols
for multi-particle Szilárd engines35,36. One particular version of this
preparation procedure is analogous to the optimal work protocol
described in Box 1, and other reversible protocols have been used
in models of feedback-controlled harmonic oscillators37,38.

The physical nature of information
Memories and Landauer’s principle. At first glance, information
is an abstract quantity, independent of its physical implementation.
However, when we make a measurement, the outcome has to be
recorded in some physical system, whether it be written on a piece
of paper or stored in a computer’s hard disk. This was originally
recognized by Szilárd4, but Landauer captured it best with his
aphorism: ‘Information is physical’39.

To function as a memory, a system must have several,
distinguishable ‘informational states’ in which the information is
stored. For reliable information storage without degradation, these
states must have long lifetimes, be robust against environmental
noise and be possible under the same external constraints. From the
point of view of statistical mechanics, these requirements demand
that for a system with microstates y to function as a memory, it has
to possess multiple, distinct metastable states under its Hamiltonian
H(y). In other words, ergodicity must be broken—or effectively
broken for the timescale for which the memory is reliable. In
practice, this means its phase space 0 is split into ergodic regions,
{0m}, one for each informational state m (ref. 16). This loss of
ergodicity can be induced by a phase transition in a collective
coordinate, such as the magnetization of a small ferromagnetic
domain in standard magnetic memories, or by raising high free-
energy barriers separating microscopic degrees of freedom, as in
single-electron memories or in DNA base pairing.

The statistical state of the memory is characterized by the
probability pm to be in one of its ergodic regions. We can go further
by assuming that the memory is locally in equilibrium, so that the
conditional probability given informational state m is a canonical
distribution over 0m, the region in phase space compatible with m.
This distribution has an average energy Em and a Shannon entropy
Sm. The non-equilibrium free energy (2) of a memory M can be
written in terms of these quantities as

F(M) = 〈H〉ρ−TS(ρ)

=

∑
m

pmFm−kTH(M) (8)

where Fm=Em−TSm is the free energy of the conditional state. Here
the memory’s entropy S(ρ) has been decomposed into the Shannon
entropy of the informational states,H(M)=−

∑
m pm lnpm, and the

average of their individual, internal entropies Sm.
An illustrative example of this set-up is the toy model of a one-

bit memory depicted in Fig. 2. The memory consists of a Brownian
particle in a double-well potential. When the barrier is much higher
than the thermal energy, the particle will remain in either well for a
long time. Thus, the particle being in the left or right well can serve
as the stable informational states, ‘0’ and ‘1’, of a bit. The symmetric
potential in Fig. 2a has F0=F1. Another possibility is the asymmetric
potential in Fig. 2b, where F0 6=F1, as the mean energies and phase-
space volumes of the wells are different.

Now we assume that, after any manipulation of the memory,
it always finishes the process with the same initial Hamiltonian
H(y). In this case, the only relevant states are the informational
ones and the energetics of manipulating a memory and its stored
information should be expressed only in terms of pm. In particular,
the average work to change the statistical state of a memory from
M with distribution pm to M ′ characterized by p′m can be bound,
according to the second law (3), as

W ≥1F≡F(M ′)−F(M) (9)

which for symmetric memories, according to (8), depends only on
the change in information content,W ≥kT (H(M)−H(M ′)).

A celebrated particular case is Landauer’s principle, which
bounds the heat exhausted to reset (or erase) one random bit
stored in a symmetric memory40. Resetting a memory is a process
where, irrespective of the initial condition, all informational states
m are driven to a preselected, standard state, say m = 0, such
that p′0 = 1 and all other p′m = 0. For a symmetric memory, the
minimal work to implement this restore-to-zero operation by
equation (9) is Wreset≥ kTH(M), as H(M ′)= 0. For a random bit,
p0 = p1 = 1/2, we recover Landauer’s original bound, which has
been verified experimentally using an implementation of the toy
model memory in Fig. 215,41,42. For asymmetric memories,1Freset is
not necessarily equal to −kTH(M), and the generalized Landauer
principle is43,44

Wreset≥1Freset (10)

The equality is achieved if the reset is thermodynamically reversible.
This does not contradict the logical irreversibility of the reset,
which implies that the entropy H(M) of the informational states
decreases44. For finite-time erasing when we cannot saturate
equation (10), model studies have been fruitful in elucidating the
efficiency trade-offs45,46. Again, one can analyse this bound on the
trajectory level using an integral fluctuation theorem47.

The opposite of restore-to-zero is a process that increases
the memory’s disorder to extract work. For instance, an N -bit
symmetric memory with a low Shannon entropy can be disordered
to a new high entropy state M ′, extracting an amount of work
kT (H(M ′)−H(M)). This use of an ordered memory as ‘fuel’ was
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Figure 3 | Schematic of measurement, feedback and reset.
A measurement is a thermodynamic process in which we vary the memory
from M′→M to develop information I about the system X. During feedback
the system evolves from X→X′ with the memory fixed, consuming the
correlations to extract work−W. Finally, the memory is reset to initial state
M′ using a protocol that is independent of X′.

discussed originally by Bennett8, but has been recently implemented
in an explicit model by Mandal and Jarzynski48. This development
has led to the formulation of a new theoretical framework for such
orderedmemories or, as they are called now, information reservoirs,
where they are treated on an equal footing to other thermodynamic
reservoirs, such as thermal or chemical baths49–55.

Cost of measurement. We now address the second task of the
thermodynamics of information, namely, understanding the origin
of the mutual information in the second law (5). For this, we
consider our system of interest X and a memory M as one joint
super-system XM and analyse the energetics over a sequence
of two thermodynamic processes, measurement and feedback, as
schematically illustrated in Fig. 3. A further simplifying assumption
is to consider that the memory and the system interact only to
perform the measurement and the feedback operation—otherwise
the total Hamiltonian of the system isH(x ,y)=Hsys(x)+Hmem(y).
Using the definition of mutual information (see Box 2), the non-
equilibrium free energy (8) of the compound system when there is
no interaction energy can be readily expressed as

F(XM)=F(X)+F(M)+kTI(X;M) (11)

From this equation the energetics of measurement and feedback is
easily obtained.

The first step is to make a measurement by evolving the memory
in an X-dependent manner, holding X fixed. Hence, the non-
equilibrium free energy of the system is not affected, but the
measurement will establish correlations between the two systems,
thereby creating information. To be consistent with the notation of
previous sections, we callM ′ andM the states of the memory before
and after measurement, respectively, pm being the distribution of the
outcome M . If the system and the memory do not interact before
and after the measurement, we can apply equation (11) and obtain
the change in the non-equilibrium free energy of the joint system
during the measurement,

1F (tot)
meas=1F (mem)

meas +kTI(X;M) (12)

where 1F (mem)
meas is the change in the free energy of the memory.

The second law in equation (3) implies that the increase in the free
energy given by equation (12) requires a work25,43,56,57

Wmeas≥1F (mem)
meas +kTI(X ,M) (13)

In the special case of a symmetric memory with error-free
measurement −1F (mem)

meas =kT1H(M)=kTI(X;M), and then it is
possible to perform the measurement with zero work,Wmeas≥0.

Having correlated X and M , we can now use feedback to
extract that free energy stored in the information as work from the

system. Specifically, we drive the system in a memory-dependent
manner with the memory fixed. Assuming there are no remaining
correlations after the feedback, by equation (11), the change in non-
equilibrium free energy is

1F (tot)
fb =1F−kTI(X;M) (14)

where, as in equation (5), 1F is the change in the free energy of
the system averaged over the measurement outcome M . Finally,
applying the second law (3) to (14), we recover equation (5) for the
average work during feedbackW (refs 25,43,57).

Ultimately, the information used to extract work during feedback
was supplied as work by the memory during the measurement
process—meaning information is not free. This point becomes
immediately obvious if we look at the work and free energy over the
entire measurement–feedback cycle, summing the two inequalities
(5) and (13)

Wmeas+W ≥1F (mem)
meas +1F

Themutual information has cancelled. From this global perspective,
we have merely used the work to add free energy to the memory,
which is taken out by the system.

Now, let us recall that the entropy production is given by the
difference of the work and non-equilibrium free-energy change of
the joint system. Therefore, the inequalities in equations (13) and
(5) are equivalent to the fact that the entropy production is non-
negative. In this respect, Maxwell’s demon is consistent with the
second law as applied to the measurement and feedback processes
individually. Furthermore, themeasurement and feedback processes
are thermodynamically reversible if the equalities in equations (13)
and (5) are achieved, respectively. Such a reversible measurement
and feedback protocol was demonstrated explicitly using a model of
an information motor in ref. 25.

This argument alone fully clarifies why Maxwell’s demon does
not contradict the second law. Still, we would often like to reset the
memory back to its initial stateM ′ after feedback (Fig. 3), so that it
can be used again for another feedback loop. The cost of the reset
is given by the generalized Landauer principle (10), by identifying
1F (mem)

reset =−1F (mem)
meas . Therefore, the work to operate a memory—

that is, to measure and reset—is43

Wmeas+Wreset≥kTI(X;M)

which demonstrates that the fundamental work required to process
the information is given solely by the mutual information and is
independent of thememory’s structure. This expression summarizes
the main solutions that were proposed to reconcile the Szilárd
engine and the second law1: the energetic cost can be either in the
measurement or in the restoration of thememory, depending on the
cycle design.

Dynamic information flow. So far we have discussed the
interaction of a system and a memory with stable informational
states, and we have seen that the operative quantity is the mutual
information. However, any pair of correlated systems can share
mutual information, even if one of them is not a stable memory. In
this case, their dynamical evolution will not only cause energy to
flow between them, but also information. We can make this notion
precise by splitting the second law for two interacting systems X
and Y , ṠXYtot = ṠXtot+ ṠYtot, into the entropy production for X , ṠXtot, and
Y , ṠYtot, as58–61

ṠXtot= Ṡ(ρ(x))+ Ṡ
X
res−kİ

X
≥0

ṠYtot= Ṡ(ρ(y))+ Ṡ
Y
res−kİ

Y
≥0 (15)
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where ṠXres and ṠYres are the rates of entropy change in each subsystem’s
environmental reservoirs: for isothermal processes, they are the
heat, ṠXres=−Q̇X/T . The new quantities İX and İY are the rates of
change of the mutual information I(X;Y ) due to fluctuations in X
and Y separately; they represent the dynamic flow of information
between the two systems and equation (15) codifies their effect on
the thermodynamics.

By applying these inequalities to step-by-step measurement and
feedback protocols, such as those in the previous section, we can
arrive at equivalent formulae58. In this respect, we can view this
splitting of the second law as a dynamic version ofMaxwell’s demon.
However, we can analyse other more dynamic scenarios, such as the
sensing or monitoring of an unknown fluctuating signal62.

Outlook, extensions and perspectives
We have presented a basic introduction to the thermodynamics of
memories, feedback processes and information flows, for systems
in contact with one thermal reservoir. The framework that we have
sketched here has also been applied to a number of more general
situations. For repeated measurement and feedback, analyses have
been carried out both from the point of view of average entropy
reduction63 and using fluctuation theorems32,60,64–67, where the
operative quantity is a generalization of the mutual information
called the transfer entropy, which captures just the new information
acquired in each measurement. Here, the thermodynamic costs
depend on whether we choose to record each new measurement
in the same memory57,68,69, or in a distinct memory, allowing more
complex dynamics with multiple, interacting systems60,65,70. Beyond
isothermal control, fluctuation theorems for feedback systems with
broken detailed balance have been derived71.

There is also substantial work on the thermodynamics of quan-
tummeasurement and feedback, including the quantum Szilárd en-
gine72,73. In this respect, quantum generalizations of both the second
law30,43,74 and the fluctuation theorems75–77 for measurement and
feedback have been obtained, allowing the consistent description of
entanglement and discord in this setting78–80.

Here we have focused on the informational aspects of the
Maxwell demon. However, the original formulation of Maxwell’s
demon can also be viewed as a system that biases state-to-state
transitionswithout apparent energy expenditure. This approachwas
originally explored by Smoluchowski5 and Feynman6, who consid-
ered the possibility of an autonomous Maxwell demon capable of
rectifying thermal fluctuations using a ratchet mechanism. This
implementation, however, works only if there is something to keep
the system out of equilibrium, such as two different thermal baths6
or high free-energy chemical reservoirs. Years after Feynman’s anal-
ysis, these constructions, now known as non-equilibrium Brownian
ratchets, have been widely studied as novel transport mechanisms81.
In some cases, the bias in a transition admits an interpretation
in terms of information, such as in a chemical switch82, in which
the transitions depend on the position of a rotaxane ring inside
a molecular complex. More recently, a generic Maxwell demon
breaking detailed balance has been analysed using stochastic ther-
modynamics83. However, it is interesting to note that the simple bias
of a transition is not sufficient to determine the thermodynamics of
a system.We have shown that the same bias and the same dynamics
can be induced by a chemical fuel or by a Maxwell demon, with
very different thermodynamics25. Remarkably, the demon in this
example is able to achieve the same bias with much less entropy
production than the chemical fuel.

The interplay between information and thermodynamics
appears in phenomena that go beyond feedback engines and
memories. Biological systems perform a variety of information
processes at the molecular or cellular level, where fluctuations
and energy transfers are of the order of the thermal energy. One
example is the copying of information from DNA to new DNA

(replication) or to RNA (transcription), a process generically
known as copolymerization84,85. Copolymerization exhibits
interesting thermodynamic phenomena, such as the emergence of
entropic forces that are related to the accuracy of the process84,86.
Furthermore, this accuracy can be enhanced by proofreading
at some thermodynamic cost, as occurs in numerous kinetic
proofreading schemes86–90 that exhibit a trade-off between accuracy
and dissipation, with biological consequences. For instance, the
optimization of this trade-off could have determined the kinetics
of transcription90. Another example where information may be
relevant for biology is the energetics of sensing and prediction.
Biological organisms must sense and adapt to their environment,
and it was recently shown that this sensory-adaptation process
requires energy to gather information about the environment62,91.
On the other hand, the robustness of the adaptation to the
environment requires a minimum information92. Once an organism
has information about its environment, accurately predicting its
future fluctuations can be vital, and the minimal work for this task
is given by the predictive information24.

Even now, some fundamental questions about information and
thermodynamics are under debate, such as the coincidence between
the thermodynamic and psychological arrows of time93. We believe
that we are still several steps away from a complete understanding of
the physical nature of information. First, it is necessary to unify the
existing theoretical frameworks, and investigate a comprehensive
theory for general processes. Second, we need to verify if other
phenomena, such as copolymerization and proofreading, can be
analysed within this unified framework. And third, we must return
to Maxwell’s original concern about the second law and try to
address the basic problems of statistical mechanics, such as the
emergence of themacroscopic world and the subjectivity of entropy,
in the light of a general physical theory of information.
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