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As well known, cumulant expansion is an alternative way to moment expansion to
fully characterize probability distributions provided all the moments exist. If this is
not the case, the so-called escort mean values �or q-moments� have been proposed
to characterize probability densities with divergent moments �C. Tsallis et al., J.
Math. Phys. 50, 043303 �2009��. We introduce here a new mathematical object,
namely, the q-cumulants, which, in analogy to the cumulants, provide an alternative
characterization to that of the q-moments for the probability densities. To illustrate
the technical details of the procedure, we apply this new scheme to further study a
recently proposed family of scale-invariant discrete probabilistic models �A. Ro-
dríguez et al., J. Stat. Mech.: Theory Exp. 2008, P09006; R. Hanel et al., Eur. Phys.
J. B 72, 263 �2009�� having q-Gaussians as limiting probability distributions.
© 2010 American Institute of Physics. �doi:10.1063/1.3448944�

I. INTRODUCTION

In classical thermodynamics for short-range-interacting systems we have two types of ther-
modynamical quantities, namely, the extensive �e.g., total energy, total entropy, volume, etc.� and
the intensive �e.g., temperature, pressure, chemical potential, etc.� ones. Within the formalism of
Boltzmann–Gibbs statistical mechanics, these quantities typically emerge as successive moments
of the N-particle Hamiltonian. If, for whatever reason, exact calculations are not tractable, a
variety of procedures exist, which involve truncations at some order. It is desirable that such
truncations maintain the extensive or intensive nature of the quantities. Excepting the first mo-
ments in terms of the total Hamiltonian, which always are extensive, all the higher-order moments
violate extensivity. There are, however, specific combinations of these moments that preserve the
extensivity. These are the so-called cumulants. For example, the total specific heat, which has to be
extensive, appears as a second-order cumulant, i.e., a convenient combination of first- and second-
order moments. Naturally, cumulant expansions are mathematically legitimate only when all mo-
ments are finite. A variety of physical systems exist for which this property is not verified. The
purpose of the present paper is to develop a generalized form of cumulant expansion that over-
comes this restriction. These generalized cumulants are, in turn, based on consistently generalized
moments �escort moments or Q-moments�, which we shall introduce later on. In Sec. II we
introduce the q-cumulants; in Sec. III we review a special family of scale-invariant probability
models; in Sec. IV we study the corresponding Q-moments; and in Sec. V we address the asso-
ciated �unnormalized� q-cumulants. We summarize our results in Sec. VI.
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Let us briefly recall the standard cumulant expansion. For a probability density function f�x�,
the cumulants � j =g�j��0�, j=1,2 , . . ., are defined through the derivatives of the cumulant-
generating function

g�t� � ln M�t� = t�1 +
t2

2!
�2 +

t3

3!
�3 + ¯ , �1�

where

M�t� � �etx� = 1 + t�1 +
t2

2!
�2 +

t3

3!
�3 + ¯ �2�

is the moment-generating function and � j = �xj�=M�j��0�, j=0,1 ,2 , . . ., are the moments. Taking
logarithms and Taylor expanding in Eq. �2� yields

ln M�t� =
t

1!
�1

+
t2

2!
��2 − �1

2�

+
t3

3!
��3 − 3�1�2 + 2�1

3�

+
t4

4!
��4 − 4�1�3 + 12�1

2�2 − 3�2
2 − 6�1

4�

+
t5

5!
��5 − 5�1�4 − 10�2�3 + 20�1

2�3 − 60�1
3�2 + 30�1�2

2 + 24�1
5�

+
t6

6!
��6 − 10�3

2 − 15�2�4 + 30�2
3 − 6�1�5 + 120�1�2�3 + 30�1

2�4

− 270�1
2�2

2 − 120�1
3�3 + 360�2�4 − 120�6�

] �3�

Comparing Eqs. �3� and �1�, one gets �1=�1, �2=�2−�1
2, �3=�3−3�1�2+2�1

3 , . . ., which follow
the general relation between moments and cumulants given by

� j = j! 	
	i=1

j ini=j

�− 1�n̄−1

n̄

 n̄

n1,n2,¯ ,nj
��

i=1

j 
�i

i!
�ni

, j = 1,2, . . . , �4�

where the sum runs over solutions of the equation 	i=1
j ini= j, with ni, i=1,2 , . . . , j being

nonnegative integers, n̄=	i=1
j ni and we have made use of the multinomial coefficient

� n̄
n1,n2¯,nj

�= n̄ ! / �n1 !n2 ! ¯nj ! �. Relation �4� is a convenient rewriting of the relations given in
Refs. 1 and 2. An alternative connection between cumulants and moments can be seen in Ref. 3.

As well known, the set of moments fully characterize a probability density function provided
they are all finite, the set of cumulants �linear combinations of the moments� being an alternative
and, for some purposes �see later on�, more convenient description. Once the set of moments are
known, the probability distribution may be obtained via Fourier antitransforming the characteristic
function ��t�=M�it�=F�f��t�=
−�

� dxeitxf�x�.
Notice that although �2= ��x− �x��2� and �3= ��x− �x��3�, in general, the cumulants do not

coincide with the centered moments since �4� ��x− �x��4� and so on.
Let us review now an important property. We assume that x=�1+�2+ ¯+�N, where ��l� are

any N equal and independent random variables. We straightforwardly verify that
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�x� = N��1� ,

�x2� − �x�2 = N���1
2� − ��1�2� ,

�x3� − 3�x2��x� + 2�x�3 = N���1
3� − 3��1

2���1� + 2��1�3�

] �5�

In general,

� j�N� = N� j�1� �j = 1,2,3, . . . ; N = 1,2,3, . . .� , �6�

where the notation � j�N� is self-explanatory. In other words, all cumulants are extensive in the
thermodynamical sense. The main purpose of the present paper is to discuss what happens with
this property in the presence of strong correlations such as those that are typical within
q-statistics,4 a current generalization of Boltzmann–Gibbs statistical mechanics �recovered as the
q=1 particular instance�. This generalization, sometimes referred to as nonextensive statistical
mechanics, has received a wide variety of physical applications.5–19

II. q-CUMULANTS

Within the frame of q-statistics, a generalization of the concept of cumulant is in order. A first
natural attempt for such generalization consists of just replacing the logarithm and exponential
functions in �3� by the q-logarithm and q-exponential functions �see Appendix for definitions and
corresponding expansions�. Their respective Taylor expansions yields

lnq�eq
tx� = t�1,q +

t2

2!
�2,q +

t3

3!
�3,q +

t4

4!
�4,q +

t5

5!
�5,q + ¯

=
t

1!
�1

+
t2

2!
q��2 − �1

2�

+
t3

3!
q��2q − 1��3 − 3q�1�2 + �q + 1��1

3�

+
t4

4!
q��2q − 1��3q − 2��4 − 4q�2q − 1��1�3 + 6q�q + 1��1

2�2 − 3q2�2
2 − �q + 1��q

+ 2��1
4�

+
t5

5!
q��2q − 1��3q − 2��4q − 3��5 − 5q�2q − 1��3q − 2��1�4 − 10q2�2q − 1��2�3

+ 10�q + 1�q�2q − 1��1
2�3 − 10q�q + 1��q + 2��1

3�2 + 15q2�q + 1��1�2
2

+ �q + 1��q + 2��q + 3��1
5�

] �7�

where we have defined the q-cumulant of order j, � j,q, which is related to the moments through
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� j,q = j! 	
	i=1

j ini=j

�− 1�n̄−1

n̄!
l�q, n̄�
 n̄

n1,n2,¯ ,nj
��

i=1

j 
 e�q,i��i

i!
�ni

, j = 1,2, . . . , �8�

where e�q ,n� and l�q ,n� are the coefficients of the Taylor expansion of the q-exponential and
q-logarithm functions respectively �see the Appendix�.

Notice that the moments �� j� in �7� are exactly the same as those introduced in Eqs. �2� and
�3�. In other words, �� j� does not depend on q. Notice also that �1,q=�1, ∀q �the q-cumulant of
first order coincide with the first moment for any value of q� and � j,1=� j, ∀j �the q-cumulants
reduce to the standard cumulants for q=1�.

Although interesting, in principle, we will show that the q-generalization, which is useful, is
not the above one, but the one which follows now. We will define the unnormalized q-cumulants,
� j,q� , through

lnq Mq�t� = t�1,q� +
t2

2!
�2,q� +

t3

3!
�3,q� +

t4

4!
�4,q� +

t5

5!
�5,q� + ¯

=
t

1!
�1,q�

+
t2

2!
q��2,2q−1� − �1,q�2 �

+
t3

3!
q��2q − 1��3,3q−2� − 3q�2,2q−1� �1,q� + �q + 1��1,q�3 �

+
t4

4!
q��2q − 1��3q − 2��4,4q−3� − 4q�2q − 1��3,3q−2� �1,q� + 6q�q + 1��2,2q−1� �1,q�2

− 3q2�2,2q−1�2 − �q + 1��q + 2��1,q�4 �

+
t5

5!
q��2q − 1��3q − 2��4q − 3��5,5q−4� − 5q�2q − 1��3q − 2��4,4q−3� �1,q�

− 10q2�2q − 1��3,3q−2� �2,2q−1� + 10�q + 1�q�2q − 1��3,3q−2� �1,q�2

− 10q�q + 1��q + 2��2,2q−1� �1,q�3 + 15q2�q + 1��2,2q−1�2 �1,q�

+ �q + 1��q + 2��q + 3��1,q�5 �

] �9�

where we shall call Mq�t���eq
txf�x�q−1

� the Q-moments generating function. Expression �9� makes
use of the so-called unnormalized escort moments,20 � j,Q� �
dxxjf�x�Q, related, in turn, to the
standard escort moments �or Q-moments�, � j,Q=� j,Q� /
dxf�x�Q, i.e., xj averaged over the escort
distribution fQ�x�� f�x�Q /�Q, with �Q�
dxf�x�Q. In the limit Q→1, the escort distribution as
well as the Q-moments, and the unnormalized Q-moments, tend to the standard ones.

Notice from Eq. �9� that for the first unnormalized q-cumulant we must use the Q-moment
with Q=q �in fact, the unnormalized q-cumulant coincides with the unnormalized escort moment
for j=1:�1,q� =�1,q� �, for the second unnormalized q-cumulant, Q-moments with two different
values, namely, Q=q and Q=2q−1, must be used, and similarly for higher-order unnormalized
q-cumulants. The relation between the unnormalized q-cumulants and the unnormalized
Q-moments is thus given by
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� j,q� = j! 	
	i=1

j ini=j

�− 1�n̄−1

n̄!
l�q, n̄�
 n̄

n1,n2,¯ ,nj
��

i=1

j 
 e�q,i��i,i�q−1�+1�

i!
�ni

. �10�

For q=1, the unnormalized escort moments appearing in Eqs. �9� and �10�: �i,Q� , with Q= i�q
−1�+1, i=1,2 ,3 , . . ., reduce to the normalized escort moments, which, in turn, coincide with the
ordinary moments: �i,1� =�i,1=�i , ∀ i. The same happens with the unnormalized q-cumulants:
�i,1� =�i,1=�i, ∀i, so Eqs. �4�, �8�, and �10� coincide.

For the general q�1 case, as shown in Ref. 20, the family of unnormalized escort moments
�i,i�q−1�+1� , i=1,2 ,3 , . . ., provided they are all finite, may serve, together with their accompanying
denominators, �i�q−1�+1=
dxf�x�i�q−1�+1, in the expression of the corresponding escort moments, as
an alternative description for the quite frequent cases of probability density functions whose
moments are not defined �e.g., moments on the order of j�2 for q-Gaussians with q�5 /3 �Ref.
21��. In analogy with the Q=1 case, once the Q-moments generating function is known, the
probability distribution may be obtained via q-Fourier antitransforming the q-characteristic func-

tion �q�t�=Mq�it��Fq�f��t�=
−�
� dxeq

itxf�x�q−1
f�x� �f�x��0, q�1�, where we have made use of

the so-called q-Fourier transform,22,23 which is a �nonlinear� q-generalization of the standard
Fourier transform.

III. SCALE INVARIANT TRIANGLES

We will apply the above formalism to further study a family of scale-invariant probabilistic
models characterized by a real number 	
0, first introduced in Ref. 24 and later generalized in
Ref. 25. The model consists of a set of N equal, long-range-correlated binary random variables
�xi�, which take values of 0 and 1.

For the 2N elementary events of the sample space of the N variable system, there is a set of
only �N+1� different probabilities given by25

rN,n
�	� =

B�n + 	,N − n + 	�
B�	,	�

�11�

for n=0,1 , . . . ,N, where B�x ,y� stands for the beta function. The �rN,n
�	� � satisfies the so-called

Leibnitz triangle rule24

rN,n
�	� + rN,n+1

�	� = rN−1,n
�	� , �12�

which is a fingerprint of the scale-invariant character of the system, which states that the marginal
probability distribution of the N system coincides with the joint probability distribution of the
corresponding �N−1� subsystem. In other words, in its continuous version, we have

pN�x1 ,x2 , . . . ,xN�dxN= pN−1�x1 ,x2 , . . . ,xN−1�. �Although similar in form, these conditions are not
the Kolmogorov consistency conditions of a stochastic process �see, for instance, Ref. 26�. Indeed,
the Kolmogorov conditions refer to a system of N elements, whereas here we impose nontrivial
conditions connecting the joint probabilities of a �N−1�-subsystem with the marginal ones of a
N-system.�

For a fixed value of 	, the probability �11� may be displayed as a function of N in a symmetric
�i.e., rN,n

�	� =rN,N−n
�	� � triangle �thus, the name scale-invariant triangles�. As an example, the 	= 1

2
triangle reads as
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rN,n
�1/2�

�N = 0� 1

�N = 1� 1
2

1
2

�N = 2� 3
8

1
8

3
8

�N = 3� 5
16

1
16

1
16

5
16

�N = 4� 35
128

5
128

3
128

5
128

35
128

�N = 5� 63
256

7
256

3
256

7
256

1
256

63
256

] ] ]

Due to the properties of the beta function, the coefficients of the triangle rN,n
�	� are rational numbers

for any rational value of 	.
Special values of 	 are 	=1, for which the original Leibnitz triangle27 is obtained �1 /rN,n

�1�

= �N+1�� N
n ��, and the limiting case rN,n

��� � lim	→� rN,n
�	� =1 /2N, for which the system becomes

uncorrelated.24 In the following, we shall refer to these limiting cases as the Leibnitz and the de
Moivre–Laplace �or Boltzmann–Gibbs� limits, respectively.

The probability distribution for the discrete variable z=x1+x2+ ¯+xN, which takes values of
0 ,1 , . . . ,N, is given by

pN,n
�	� � P�z = N − n� = 
N

n
�rN,n

�	� �13�

with 	n=0
N pN,n

�	� =1, due to the degeneracy imposed by the identical character of the N binary
variables. By properly centering and scaling with a map n→y�n�, the distribution �13� is trans-
formed into a new one, P�	��y�, which tends to a q-Gaussian

P�	��y� → Aqeq
−y2

�14�

for N→�, with Aq such 
Aqeq
−y2

dy=1, and a value of q=qlim, which depends on 	 and the chosen
change of variable. The variable change, the intermediate distribution, and the value of qlim are
given in Table I. The Leibnitz case �	=1, hence q→−�� corresponds to a uniform distribution,
while for the Boltzmann–Gibbs case �	=�, hence q=1�, the standard Gaussian is obtained.

Thus, depending on the chosen discretization �namely, Table I, top or bottom discretization�,
for each value of 	�1, there exist two conjugated q-Gaussians: one of them with 1
q=q	�
�−� ,1� �with compact support �x��1 /�1−q� and the other with 1�q= q̄	� �1,5 /3� �the support
being the whole real axis�. In the case of 	 being a positive integer, the different values of q are
shown in Table II. For 	� �0,1�, however, only one q-Gaussian with 1�q= q̄	� �5 /3,3� is
obtained.25 Figure 1 plots the two different qlim values as a function of 	.

Relations q�	� given in the third column of Table I can be inverted so as to express the family
of triangles as a function of q,25

TABLE I. The two different changes of variables corresponding, respectively, to all real values qlim�1 �Refs.
24 and 25� and all real values 1�qlim�3 �Ref. 25� and the associated corresponding P�	��x� and qlim.

Map P�	��y� qlim

y = 2�	 − 1
 n

N
−

1

2
� N

2�	 − 1
pN,n

�	� q	 =
	 − 2

	 − 1
� 1; �	 
 1�

y =�	 +
1

2


n −
N

2
�

�n�N − n�

4�n�N − n��3/2

N2�	 +
1

2

pN,n
�	�

q̄	 =
2	 + 3

2	 + 1

 1; �	 
 0�
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rN,n
�q� =�

B
n +
q − 2

q − 1
,N − n +

q − 2

q − 1
�

B
q − 2

q − 1
,
q − 2

q − 1
� , q � 1

1

2N , q = 1

B
n +
3 − q

2�q − 1�
,N − n +

3 − q

2�q − 1��
B
 3 − q

2�q − 1�
,

3 − q

2�q − 1��
, 1 � q � 3,

� �15�

which allows us to fix a priori the value of q and then get the triangle generating the correspond-
ing q-Gaussian.

Figure 2 shows the probability distribution P�	��x� for an N=1000 system and two different
values of the parameter 	, namely, 	=2, for which q	=0�1 and q̄	=7 /5
1, and 	=1 /2, for
which there exist one only value q̄	=2. The corresponding q-Gaussians �not shown� graphically
overlap with the shown distributions. To further check Eq. �14�, Fig. 3 shows logq	

�P�	��x� /
P�	��0�� versus �xP�	��0��2—which, in the N→� limit, coincides with a straight line for a
q-Gaussian—for 	=1 /2, q̄	=7 /5 �left� and 	=2, q̄	=2 �right� for N=200, 500, and 1000. As can
be seen in the figure, points far from the origin �corresponding to small values n=0,1 , . . ., and
their symmetric n=N−1,N−2, . . .� deviate from the fitting to a straight line. Nevertheless, this is
a finite size effect since increasing N has the effect of bringing them back to the line. For values
of 	 and discretizations corresponding to compact support q-Gaussians �not shown�, this finite size
effect is not present and the fitting is improved.

TABLE II. Values of q as a function of 	 for the two families of conjugated q-Gaussians.

	 0+ 1/2 1 2 3 4 ¯ �

q	 −� 0 1/2 2/3 ¯ 1−

q̄	 3− 2 5/3 7/5 9/7 11/9 ¯ 1+

0 1 2

3

1

q

ν

qν

qν5/3

1/2

2

FIG. 1. Limiting values q	 and q̄	 as a function of 	. Notice that the 	�q� is a single-valued function, whereas q�	� is not.
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IV. SCALING OF THE Q-MOMENTS

Our aim in this section is to study the scaling with the system size of the Q-moments and
q-cumulants of the family of triangles �11� or, equivalently, �15�.

For our model, the escort moments of interest read as

� j,Q
�	� � �yj�Q =

	n=0
N nj�pN,n

�	� �Q

	n=0
N �pN,n

�	� �Q =
� j,Q��	�

�Q
�	� , �16�

where the numerator of the last fraction stands for the corresponding unnormalized Q-moment, the
denominator being the normalization factor of the escort distribution.

Straightforward calculations based on the symmetric character of triangles �11� allows us to
exactly calculate the first-order escort moments as

-4 -2 0 2 4
x

0

0,2

0,4

0,6

0,8

P
(ν

) (x
)

ν=2, qν=0

ν=2, qν=7/5

ν=1/2, qν=2

FIG. 2. Probability distribution P�	��x� for 	=2, q	=0 �solid line�, 	=2, q̄	=7 /5 �dotted line�, and 	=1 /2, q̄	=2 �dashed
line�. N=1000 in all cases.

0 5 10 15 20 25 30

(xp(0))
2

-300

-200

-100

0

lo
g

q(p
(x

)/
p(

0
))

N=200
N=500
N=1000

0 50 100 150

(xp(0))
2

-400

-200

0

N=200
N=500
N=1000

FIG. 3. logq	
�P�	��x� /P�	��0�� vs �xP�	��0��2 for 	=1 /2, q̄	=7 /5 �left� and 	=2, q̄	=2 �right� for N=200 �triangles�, 500

�crosses�, and 1000 �circles�. The dotted straight line is obtained by linear fitting after dropping the last four points.
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�1,Q
�	� = �1,Q

�	� =
N

2
, ∀ Q, ∀ 	 . �17�

The higher-order escort moments for the aforementioned Boltzmann–Gibbs and Leibnitz limiting
cases are addressed next.

A. Boltzmann–Gibbs limit

To begin with, we shall study the standard �Q=1� moments for the Boltzmann–Gibbs
�	→�� limit. In this case the probability distribution �13� reduces to the binomial distribution
pN,n

��� = �1 /2N�� N
n

� �which tends to the Gaussian distribution in the thermodynamic limit N→��.
Taylor expanding its moment-generating function M�t�= �etx�= �1 /2N�	n=0

N � N
n

�etn= ��1+et� /2�N, the
standard moments � j,1

���=M�j��0� of the binomial distribution are easily obtained,

�1,1
��� =

N

2
,

�2,1
��� =

N�N + 1�
4

,

�3,1
��� =

N2�N + 3�
8

,

�4,1
��� =

N�N3 + 6N2 + 3N − 2�
16

,

�5,1
��� =

N�N4 + 10N3 + 15N2 − 10N�
32

,

] �18�

Though not shown here, it is worthy noticing the unexpected result that the scaling law �18� holds
for the escort moments of the binomial distribution for any value of Q, that is, for the binomial
distribution, one gets

� j,Q
��� �

1

2 j N
j, ∀ Q . �19�

On the other hand, the standard �q=1� cumulants � j,1
��� of the binomial distribution can be obtained

making use of Eq. �4� or, alternatively, as the derivatives of the cumulant-generating function
g�t�=N ln��1+et� /2�,

�1,1
��� =

N

2
, �2,1

��� =
N

4
, �3,1

��� = 0, �4,1
��� = −

N

8
, �5,1

��� = 0, . . . , �20�

where all the odd cumulants vanish from the third on. It has to be noticed that for N→�, while the
moments follow the rule � j,1

����Nj, the cumulants remain extensive, that is, � j,1
����N. In fact, we

easily verify that the results in Eq. �20� satisfy Eq. �6�.

B. Leibnitz limit

In the specially simple Leibnitz case �	=1�, the probability distribution �13� reduces to the
uniform one, pN,n

�1� =1 / �N+1�, which once introduced in Eq. �16� yields � j,Q
�1� = �1 / �N+1��	n=0

N nj for
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all Q, so the escort moments are independent of the value of Q, thus coinciding with the standard
�Q=1� moments, which may again be calculated as the derivatives of the corresponding moment-
generating function M�t�= �etx�= �1 / �N+1��	n=0

N etn= �1 / �N+1����1−e�N+1�t� / �1−et��, M�0�=1,

�1,Q
�1� =

N

2
,

�2,Q
�1� =

N2

3
+

N

6
,

�3,Q
�1� =

N3

4
+

N2

4
,

�4,Q
�1� =

N4

5
+ 3

N3

10
+

N2

30
−

N

30
,

�5,Q
�1� =

N5

6
+

N4

3
+

N3

12
−

N2

12
,

] �21�

In turn, the standard �q=1� cumulants � j,1
�1� of the discrete uniform distribution can be obtained

through Eq. �4� or from the cumulant-generating function g�t�=ln��1 / �N+1��

��1−e�N+1�t� / �1−et���, g�0�=0,

�1,1
�1� =

N

2
,

�2,1
�1� =

N2

12
+

N

6
,

�3,1
�1� = 0,

�4,1
�1� = −

N4

120
−

N3

30
−

N2

20
−

N

30
,

�5,1
�1� = 0,

] �22�

where again the odd cumulants of order greater than 1 vanish. Scaling of cumulants �22� may be
expressed as � j,1

�1���Bj / j�Nj, with Bj being the Bernoulli numbers �B1=1 /2, B2=1 /6,
B3=0 , B4=−1 /30, B5=0 , B6=1 /42, . . .�.

C. General case

We shall now allow 	 to take on any positive value in �16�. In principle, Q may take on any
real value. However, as we will be interested in the escort moments involved in the expression of
the unnormalized q-cumulants �10�, we will first focus on the case Q= j��q−1�+1 �the extra index
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j� has been introduced in order to allow for a more general description, though the only escort
moments appearing in Eq. �10� are those with j�= j�. Furthermore, for the escort moment of the 	
triangle we will take either q=q	 or q= q̄	 as given in Table I.

Figure 4 shows the scaling of the escort moments �
j,j��q	−1�+1
�	� on the orders of j=2, 3, and 4,

for 	=2 and 3 and different values of j�. The following trend is observed:

� j,j��q	−1�+1
�	� � Aj,j�,q	

Nj, ∀ 	, ∀ j�, �23�

so the exponent of the scaling of the escort moments depends only on the order of j of the moment
not on j�, neither on q	, which considerably simplifies the discussion. From now on, we will
restrict ourselves to the case j�= j �and correspondingly denote Aj,q	

�Aj,j�=j,q	
in �23��. Not shown

results reveal that Eq. �23� is also valid for Q= j��q−1�+1 with q= q̄	.
The prefactor Aj,q	

in the scaling law �23� has already been analytically obtained in the
Leibnitz �q=−�� case as Aj,−�= 1

�j+1� as well as in the opposite limit, the Boltzmann–Gibbs

�q=1� case as Aj,1=1 /2 j �see Eqs. �21� and �18�, respectively�. A transition between both behav-
iors is expected for the limit q→1�. In order to numerically obtain Aj,q	

, Fig. 5�a� shows the ratio
� j,j�q	−1�+1

�	� /Nj for 	=50 as a function of N for different values of j. It is observed that Aj,q50

�1 /2 j. Figure 5�b� shows again Aj,q	
, now approximated as the ratio � j,j�q	−1�+1

�	� /Nj for N=500 as

a function of 	. It is clearly observed the expected asymptotic limit

lim
	→�

Aj,q	
=

1

2 j . �24�

A further generalization for the scaling of the Q-moments must be done. Not shown calculations
reveal that relation �23� still holds when Q= j�q−1�+1 and q takes on any real value, not neces-
sarily the values indicated in Table I �which, in turn, implies that Q may take on any real value�.
Thus, it can be stated that
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FIG. 4. Scaling of the escort moments �16� with Q= j��q	−1�+1 for different values of j�: for 	=2 �up�, 	=3 �down� and
j=2 �left�, j=3 �center�, and j=4 �right�. The behavior for q= q̄	 is totally analogous. For the not shown j=1 case, all the
curves collapse in one: �

1,j��q	−1�+1

�	� =N /2 since relation �17� is satisfied.
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� j,j�q−1�+1
�	� � Aj,q,	Nj, ∀ q, ∀ 	 , �25�

which means that the whole family of triangles �11� or, equivalently, �15� share the same scaling
behavior for their escort moments � j,Q

�	� .

V. SCALING OF THE UNNORMALIZED q-CUMULANTS

We shall now turn to the study of the unnormalized q-cumulants � j,q� given in Eq. �10�.
Inasmuch the unnormalized q-cumulant on the order of j, � j,q� , is a linear combination of products
of unnormalized Q-moments, which is homogeneous on the order j of the q-cumulant �see restric-
tion 	i=1

j ini= j in the sum defining the unnormalized q-cumulant in Eq. �10��, the scaling of � j,q�
will coincide with the scaling of the unnormalized Q-moment � j,Q� with Q= j�q−1�+1.

Figure 6 shows the asymptotic behavior of the unnormalized escort moments � j,j�q−1�+1
��	� for the

	=3 �q3=1 /2, q̄3=9 /7� triangle for q=3 /2 �left� 2 �center� and 5/2 �right�. The following scaling
relation is fulfilled:

� j,j�q−1�+1��	� � Aj,q,	� Nj�2−q�. �26�

Thus, the independence of the value of q characterizing the scaling exponent of the escort mo-
ments �see Eq. �25�� no longer holds for the unnormalized escort moments. Some comments must
be made on the validity of scaling law �26�. It is valid for any positive q for 	�1 �though it may
fail for q close to 0 and values of j
1�. In the case 	�1, Eq. �26� holds only for q�1, while the
exponent scaling depends on the value of 	�1 in a complicated fashion for q
1. It must be said,
however, that relation �26� is only approximated when q approaches 2. For q=2, in the transition
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FIG. 5. �a� Ratio � j,j�q	−1�+1
�	� /Nj with 	=50 as a function of N and j=1, 2, 3, 4, and 5 from top to bottom. �b� Aj,q	

,

calculated as the ratio � j,j�q	−1�+1
�	� /Nj with N=500, as a function of 	 and the same values of j as in �a�.
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�center� and 5/2 �right� for j=1–5. The scaling law �26� is obtained.
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from the increasing to the decreasing trend of � j,Q
��	� with N, a slight increase of the unnormalized

Q-moments with N is observed �see Fig. 6� instead of the expected constant value. We will discuss
this point in detail later when studying the scaling of the unnormalized q-cumulants. Finally, for
q=1 the unnormalized moments reduce to the standard ones and relations �25� and �26� coincide.

By comparing Eqs. �16�, �25�, and �26�, the scaling law for the normalizing coefficients of the
escort distributions �Q

�	� is readily deduced as

� j�q−1�+1
�	� �

Aj,q,	�

Aj,q,	
Nj�1−q� �27�

within the same range of parameters as stated above. For the q=1 case, Eq. �27� is trivially
fulfilled, representing the normalization of the family of probability distributions �13� as �1

�	�

=	n=0
N pN,n

�	� =1.
As already mentioned, an analogous relation to �26� holds for the unnormalized q-cumulants,

� j,q��	� � Cj,q,	Nj�2−q�, �28�

with the same restrictions for the values of q and 	. Special cases are q=0, for which all the
unnormalized 0-cumulants vanish except for the first one �see Eq. �9��, which coincides with the
corresponding unnormalized escort moment �1,0��	�=�1,0��	��N2, and q=1, for which the standard
cumulants are recovered as well as an analogous scaling law as that for the Leibnitz case �22� for
any value of 	, that is, � j,1

�	��Nj with vanishing odd cumulants from the third on.
Nevertheless, relations �26�–�28� are no longer valid in the 	→� limit, that is, for the bino-

mial distribution. It may be shown that in this case the scaling for N→� is

� j,j�q−1�+1���� � � j,q���� � Nj�3−q�/2, � j�q−1�+1
��� � Nj�1−q�/2, �29�

which coincide with relations �26�–�28� for q=1. The very slow and nonuniform character of the
convergence in lim	→� rN,n

�	� =1 /2N and the numerical difficulties in dealing with coefficients rN,n
�	�

for large 	 and N make it subtle to study in more detail the transition of the scaling exponents from
the 	�� to the Boltzmann–Gibbs case. Figure 7 shows the scaling of the first unnormalized
3/2-cumulant for triangles with 	=10, 20, and 30, together with the Boltzmann–Gibbs case. The
crossover from the scaling exponent 1/2 given by �28� for 	�� and exponent 3/4 indicated in �29�
for 	=� is clearly observed. Finally, Eq. �29� is valid for q�1 for the unnormalized escort
moments � j,j�q−1�+1

���� and their corresponding normalizing coefficients � j�q−1�+1
��� . However, for the

unnormalized q-cumulants � j,q
����, its validity restricts to q
1. The case q=1 must be excluded
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FIG. 7. Scaling of �1,3/2��	� =�1,3/2��	� for 	=10, 20, 30, and �. The scaling exponent is 1/2 for 	�� and 3/4 for 	=�.
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since the 1-cumulants �normalized or not� coincide with the standard ones, whose scaling � j,1
���

�N has been already obtained in �20�.
Let us connect now the values of 	 and q in Eq. �28�, i.e., let us study, for the 	 triangle �11�,

the q-cumulants with q being the corresponding limiting value of the q-Gaussian �14�. As stated in
Table I, there is only one limiting value, qlim= q̄	 for 	� �0,1�, but two different options, namely,
qlim=q	 and qlim= q̄	, for 	�1. We shall denote with q�	� any of them and calculate the unnor-
malized q-cumulant � j,q�	�

��	� .

Following the comments made for the validity of Eqs. �26�–�28�, we may substitute q by q�	�
in Eq. �28� if 	�1 since it is valid for any value of q. The 	�1 case must be studied separately
since for this case q�	�= q̄	
1 and, as already mentioned, Eq. �28� no longer holds. Nevertheless,
provided 1 /2�	�1, Eq. �28� still holds but now only for the specific value q=q�	�. On the
contrary, for 	�1 /2 �hence, q̄	
2�, the scaling exponent reverts its sign. Summarizing, the
following scaling law is obtained

� j,q�	�
��	� � Cj,q�	�

Nj�2−q�	��. �30�

Some comments on the validity of relation �30� must be made. As shown in Fig. 8, for q̄1/2=2, a
logarithmic increase with N of �1,2��1/2�=�1,2��1/2� is obtained instead of the expected constant value
predicted by �30�, which therefore is no longer valid in this case and has to be replaced by a
logarithmic law �1,2��1/2��A+B ln N, whose coefficients are found to be A=0.315 and B=0.105.
This logarithmic correction influences numerically the scaling relation �30� for q�	� close to 2, as
can be seen in Fig. 8. Finally, for the q�0 case, the scaling law still works �30� for j=1. Figure
9 shows the actual value of the scaling exponent �1,q�	�

= �2−q�	�� of the first-order unnormalized

q-cumulant �1,q�	�
��	� =�1,q�	�

��	� �C1,q�	�
N�1,q�	�. A small deviation from the scaling law �30� is observed

for q�	�
2.
Concerning the proportionality coefficient in �30�, it must be noticed that

lim
	→�

Cj,q�	�
=

�1j

2
, �31�

so the dominant term in the scaling law �30� vanishes for j
1. Subdominant terms are also
negligible, but in the limit 	→�, a dominant linear term arises so one recovers the extensive
behavior � j,1

����N advanced in �20�.
The left panel of Fig. 10 shows the order 1 q�	�-cumulants in the Boltzmann–Gibbs limit 	

→�. The predicted trend lim	→� �1,q�	�
��	� =�1,1����=N /2 is clearly observed. The right panel of Fig. 10

shows the limit �31� for j=1 and 2. �Notice that Figs. 7 and 10 differ in the fact that for Fig. 7 we
take the 	→� limit for a q-cumulant with a fixed q=3 /2 value, whereas in Fig. 10 we take the
same 	→� limit but for the corresponding q�	�-cumulant, so q�	�→1�.
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VI. CONCLUSION

We have studied in detail the scaling with the system size of the Q-moments as well as the
q-cumulants—normalized or not—of the family of scale-invariant triangles introduced in Sec. III.
We summarize the scaling laws that we have established in Table III. The prefactors have been
indicated whenever known. For the range of validity of expressions in the last column of the table,
see Sec. V. The scalings with N of the 	�� column reduce to the 	→� column for q=1 except
for the unnormalized q-cumulants for j
1. This unexpected feature �see Fig. 7�, i.e., the fact that
the q→1 and N→� limits do not commute, constitutes an interesting result of the present paper.

We believe that the present generalization of the cumulant expansion could be of interest for
analytically discussing long-range-interacting systems �e.g., Refs. 28 and 29�, for which moments
above a given order typically diverge.
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APPENDIX: q-EXPONENTIAL AND q-LOGARITHM FUNCTIONS

For q�R, q�1, the q-exponential function and its inverse, the q-logarithm function, are
defined as

eq
x � �1 + �1 − q�x�1/�1−q�, �A1�

lnq x �
x1−q − 1

1 − q
, �A2�

where the standard logarithm and exponential functions are recovered in the limit q→1. Their
respective Taylor expansions are given by �see, for instance, the last of Refs. 4�

eq
x = 	

n=0

�
e�q,n�

n!
xn, e�q,n� = �1, n = 0,1

q�2q − 1� ¯ ��n − 1�q − n + 2� , n 
 1,
�

lnq�1 + x� = 	
n=1

�
�− 1�n−1

n!
l�q,n�xn, l�q,n� = �1, n = 1

q�q + 1� ¯ �q + n − 2� , n 
 1.
� �A3�

TABLE III. Unnormalized Q-moments, normalization factors, ordinary
Q-moments and unnormalized q-cumulants for de Boltzmann–Gibbs case
�third column�, and the family of triangles �fourth column� for j=1, 2 and
the general case. In all cases, the symbols � and � are to be understood in
the N→� limit.

	→� �Q=q=1� 	�� �Q= j�q−1�+1�

j=1 �1,Q��	� N /2 �N�2−q�

�Q
�	� 1 �N�1−q�

�1,Q
�	� =�1,Q��	� /�Q

�	� N /2 N /2

�1,q��	� N /2 �N�2−q�

j=2 �2,Q��	� �N2 /4 �N2�2−q�

�Q
�	� 1 �N2�1−q�

�2,Q
�	� =�2,Q��	� /�Q

�	� �N2 /4 �N2

�2,q��	� N /4 �N2�2−q�

j � j,Q��	� �Nj /2 j �Nj�2−q�

�Q
�	� 1 �Nj�1−q�

� j,Q
�	� =� j,Q��	� /�Q

�	� �Nj /2 j �Nj

� j,q��	� �N �Nj�2−q�
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