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Heat transport and thermal rectification in molecular junctions: A minimal model approach
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Heat conduction properties are investigated in a molecular junction modeled as a two-strand ladder with
strongly asymmetric thermal transport pathways. By confining anharmonic contributions to only one of the
strands, it is shown that tuning of the interstrand coupling can lead to normal heat transport and to the emergence
of a well-defined temperature gradient. More interestingly, thermal rectification is obtained around a critical
value of the interstrand interaction and by appropriate asymmetries induced by the coupling to the thermal baths.
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I. INTRODUCTION

Energy transfer plays a fundamental role at many different
length scales ranging from the macroscopic world down to the
molecular level.1,2 In particular, the development of nanoscale
electronics over the past years and the possibility to design
hybrid devices, where biomolecules also could be integrated,3,4

represent a strong motivation to investigate not only the
mechanisms of heat flow in low dimensions as well as in
biosystems, but also possible ways to control it.5–9 Due to
the structural complexity of such systems, the study of heat
transport on a first-principle level becomes difficult, and thus,
the development of minimal model approaches provides a very
useful starting point.10–14 In this context, the clarification of
issues related to the validity of macroscopic phenomenological
laws, e.g., Fourier’s law, to describe heat propagation in
nanoscale systems has attracted much attention in the field.15,16

Thus, for harmonic systems, anomalous heat transport—
diverging thermal conductivity with increasing system size—
is obtained, and thus, Fourier’s law is not valid. On the
contrary, the inclusion of nonlinear local potentials provides a
sufficient condition for changing this scenario:17 Conservation
of the total momentum breaks down, and Fourier’s law is
revealed as valid. Studies based on the Frenkel-Kontorova
(FK) model,18,19 the φ4 model,20,21 and the Fermi-Pasta-
Ulam model22,23 have appeared, and potential applications
as, e.g., thermal rectifiers or thermal transistors have been
proposed,24–26 which opens the fascinating possibility for
realizing the thermal equivalents to electronic devices.

In this paper, we address heat transport in a molecular
junction, see Fig. 1(a), which may be considered as an effective
model comprising two vibrational subsystems with strongly
different vibrational and, hence, heat conduction properties:
One strand includes only harmonic interactions, while the
other strand additionally contains local nonlinear potential
terms. Although this can be considered as a limiting case,
it serves to illustrate the heat transport properties of the
system in a clear way; our results are also qualitatively
valid in the case where both strands contain nonlinearities
as far as the corresponding strengths strongly differ from
each other. We expect this effective model to mimic, e.g.,
the vibrational structure of complex biomolecular systems,
where the vibrational properties of specific atomic subsets can
be described within the harmonic approximation, while the

remaining vibrational degrees of freedom provide a nonlinear
environment to which the former system is coupled. We
demonstrate that rectification of the heat current is possible
by tuning the coupling between the two subsystems and by
asymmetries induced through the way the thermal baths are
coupled to the system.

II. MODEL AND METHODOLOGY

The (dimensionless) Hamiltonian of the minimal model
consists of three terms, describing a harmonic (H) strand HH,
an anharmonic (A) strand HA, and the harmonic coupling
between them Hint, respectively. Each strand contains n =
1 . . . N sites, and the intersite interactions, both along each
strand as well as between the strands, are assumed to be linear.
Nonlinearities are assumed to appear as local potential terms
in the A strand within the FK model. The Hamiltonian of the
vibrational system is then given by

H = HH + HA + Hint,

HA =
N∑

n=1

1

2
ẋ2

n + W (xn,xn−1) + V (xn),

(1)

HH =
N∑

n=1

1

2
ẏ2

n + W (yn,yn−1),

Hint =
N∑

n=1

kintW (xn,yn).

Here, the generic term W (xn,xm) = 1
2 (xn − xm)2 accounts

for harmonic interactions. For the sake of simplicity, we
have considered the same elastic constants for both chains,
k, which define the harmonic frequency ω0 = k/m. The
interstrand coupling kint is then expressed in units of k. The
nonlinear interactions are given by the FK potential V (xn) =
(−V0/4π2) cos(2πxn/b) with strength V0. Furthermore, the
period of the FK potential b will be taken as the length scale
of the system, and the magnitude kb2 will be the energy unit.

Heat transport in this system will be studied by coupling it
to thermal baths at different temperatures: cold (TC) and hot
(TH ). The dynamics of the chain coupled to the heat baths is
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FIG. 1. (Color online) (a) Schematic of the model molecular
junction considered in this paper. The vibrational properties of each
strand strongly differ: the H strand includes only H interactions,
while the A strand also contains local nonlinearities. Hence, the
thermal conductivity of the whole system will dramatically depend
on the interstrand interaction. In the case shown in the figure, the
H chain is connected to thermal baths at temperatures TC and
TH , respectively. (Bottom panels) Stationary temperature profile
for N = 100 sites connected to two independent heat reservoirs at
temperatures TC = 0.1 and TH = 0.2. The temperature profile is
plotted for a H Tn(H) and an A Tn(A) chain, as well as for the coupled
system Tn. V0 = 5, (b) kint = 0.05 and (c) kint = 1.00. The inset shows
the thermal conductivity as a function of the coupling kint.

assumed to be described by stochastic Langevin equations,15

d2yn

dt2
= −W ′(yn,yn−1) − W ′(yn,yn+1) − W ′(xn,yn)

− γ
dyn

dt
+ fn(t), (2)

where the last two terms, representing friction and random
forces, respectively, are nonzero only for sites n = 1 and n =
N and the prime indicates a derivative with respect to yn.
The random forces satisfy 〈fn(t)fn(t ′)〉 = 2T γ δ(t − t ′). The
dimensionless temperature T is related to the real one T0 as
T = kBT0/kb2, where kB is the Boltzmann constant. The local
heat flux, as defined through the continuity equation, can be
written as

Jn = ẋn

(
∂W ′(xn,xn−1)

∂xn

+ kint
∂W ′(xn,yn)

∂xn

)

+ ẏn

(
∂W ′(yn,yn−1)

∂yn

+ kint
∂W ′(xn,yn)

∂yn

)
. (3)

It is to be noticed that the equations of motion constitute
a source of randomness in the problem, and therefore, it is
crucial to solve them with a proper numerical method. In our
case, we have chosen the procedure proposed by Greenside
and Helfand as a correction to the Runge-Kutta method for
stochastic equations (3O4S2G), see Refs. 27–29 for further
details about the numerical method. Molecular dynamics
simulations are performed within open boundary conditions
by considering a long enough integration time, around 1010

time steps such that the stationary state is established. The time
step is δt = 10−5, and the friction constant of the baths is set to
γ = 0.5 in all simulations. In the final state, the time-averaged

heat flux reaches a constant value along the system such
that J = 〈J1〉 = · · · = 〈JN 〉. Thus, the thermal conductivity
for a finite system can be calculated as κ = JN/(TC − TH ).
Similarly, in the steady state, the time-averaged temperature,
calculated as Tn = 〈ẋ2

n + ẏ2
n〉, will reach the stationary thermal

profile.

III. HEAT CONDUCTION

The first bath configuration we will address is depicted in
Fig. 1(a). Notice that the A chain can only indirectly influence
the heat propagation; its contribution can be tuned via the
interstrand interaction kint. Although, for weak interstrand
coupling, no thermal gradient will be established in the system,
we expect that, by tuning the coupling kint, the A chain will
increasingly influence the vibrational dynamics, and thus, a
constant thermal gradient would emerge. This transition is
shown in the bottom panels of Fig. 1 for a system containing
N = 100 sites, and for two interchain interactions, kint = 0.05
and 1.00. The inset of Fig. 1(c) also shows that the thermal
conductivity along the system decays as a function of kint,
which results from the fact that the anharmonic contributions
become stronger with larger coupling leading to an increased
thermal resistance. It is worth mentioning that, for large
enough coupling kint, in addition to the emergence of a thermal
gradient, a length independent thermal conductivity would be
expected to occur due to the inclusion of local potential terms
in the system.17 Accordingly, Fourier’s law would be expected
to be valid in this parameter regime. Our calculations indeed
seem to be consistent with this presumption for systems of
size N � 200, far from the thermodynamic limit. However,
the simulations needed to satisfactorily show that κ is finite
for larger systems are beyond our computational resources,
and therefore, we cannot present a clear confirmation of this
result.

To provide an estimate of the threshold interaction k∗
int

necessary to create a constant thermal gradient, we introduce
two auxiliary systems. First, a reference harmonic ladder with
V0 = 0 in Eq. (1) is considered, which has two vibrational
bands, an acoustic and an optical one. The latter has dispersion
ω̄2

H(p,kint) = 2kint + 2[1 − cos(p)] with p ∈ [−π,π ] and ω̄

given in units of ω0. An increase in kint, thus, leads to a
shift in ω̄2

H(p,kint) to higher frequencies. Notice that, due
to the anharmonic interactions, one cannot define vibrational
bands in the system of Eq. (1) with V0 �= 0 in a rigorous way.
However, within the self-consistent phonon theory (SCPT),30

the properties of that system can be described in terms of two
effective bands. Second, we consider an isolated FK chain, in
terms of which the effective optical band of Eq. (1) for V0 �= 0
can approximately be described in the limiting case of small kint

(weak band mixing) by using SCPT. This approach consists of
replacing the anharmonic potential by an effective harmonic
model, whose frequency (or force constant) is temperature
dependent,30,31

V (xn) = −V0

4π2
cos(2πxn) → U (T )

2
x2

n. (4)

By performing a variational study,30 the effective interaction
U (T ) for the Hamiltonian HA can be obtained by solving the
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FIG. 2. (Color online) (a) The shadowed region shows the
frequency band of states for a FK chain calculated by SCPT as
a function of temperature and V0 = 8. (b) Comparison between
the analytical estimation of k∗

int with the results from numerical
simulations for N = 100 sites and different values of V0.

following transcendental equation:

U (T ) = V0 exp

( −2T π2

√
U (T )(U (T ) + 4)

)
. (5)

Once U (T ) is known, where T is the average temperature of
the A chain, the dispersion relation of the system ω̄2

A(p,T ) =
U (T ) + 2[1 − cos(p)] with p ∈ [0,π ] and the density of states
(DOS) for the effective harmonic system can be calculated
analytically. The frequency band of the SCPT for V0 = 8 as a
function of the temperature is presented in the shadowed region
of Fig. 2(a). It can be seen that increasing T leads to a softening
of ω̄2

A(p,T ).
Going back now to the original system, Eq. (1), it is evident

that an increase in kint will enhance the effect of the bath onto
the A chain, which hence, will reach a higher T in the stationary
state. As a result, ω̄2

A(p,T ) and ω̄2
H(p,kint) will approach each

other. We claim that, when these two bands overlap, then the
interchain interaction is large enough to couple the spectra
of the H chain and the A chain, namely, band mixing occurs.
Notice that, at k∗

int, due to the formation of the thermal gradient,
the average temperature of the A chain will reach the mean
value T = TM between the cold and the hot baths.

Extensive simulations have shown that the overlap condi-
tion between the bands ω̄2

H(p,kint) and ω̄2
A(p,TM ) sensitively

depends on the temperature, which is a consequence of the
fact that a temperature-induced thermal broadening at high
temperatures is beyond the scope of the SCPT. When such
effects are negligible, we numerically have confirmed that
the thermal gradient arises if approximately half the states
are common to the two above-mentioned bands. Thus, the
interaction threshold can be estimated by

k∗
int = U (TM ) − 2

2
. (6)

Figure 3 shows the formation of a thermal gradient with
increasing kint for N = 100. It also presents the analytical
DOS [computed within the SCPT using ω̄2

A(p,TA)] of a single
A chain at an averaged temperature TA = ∑

n Tn(A)/N as
obtained in the simulations for each kint. The DOS of the
reference harmonic model with an optical band at ω̄2

H(p,kint)
is shown as well (the acoustic band is omitted for simplicity).
In the inset of Fig. 3(c), a well-formed thermal gradient is
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FIG. 3. (Color online) Analytical calculation of the density of
states of a single FK chain at temperature TA as well as that of
the optical band of a reference harmonic ladder for (a) kint = 0.1,
(b) kint = 0.25, (c) and kint = 1.75 and V0 = 8. Insets show the
stationary temperature profile for the H (empty red circles) and the A
chains (filled black circles) for N = 100 sites connected to two heat
reservoirs at TC = 0.1 and TH = 0.2.

established when k∗
int = 1.75, for which the DOS of ω̄2

H(p,k∗
int)

and ω̄2
A(p,TA) overlap over 50% of their area. Figure 2(b)

demonstrates the good agreement between the analytical
estimation of k∗

int and that obtained by numerical simulations
for different values of V0. The latter is obtained by performing
several simulations with increasing interstrand coupling up
to find a well-formed constant thermal gradient along the
system and a length independent thermal conductivity within
the numerical resolution.

IV. HEAT RECTIFICATION

Symmetry breaking and nonlinearities are necessary ingre-
dients to support heat rectification.24–26 Here, we demonstrate
heat rectification by a topological asymmetry related to the
way the thermal baths are coupled to the ladder, similar to
what was considered for charge transport in DNA.32 Panels (a)
and (b) of Fig. 4 show the two considered bath configurations
where TH and TC refer to the temperature of the hot and the
cold heat reservoirs as previously mentioned. Notice that, in
Fig. 4(a), the hot reservoir is connected to the left edge of the A
chain, while in Fig. 4(b), the position of the bath connections
is reversed. This means that the heat current flows in opposite
directions for both cases, but more interestingly, our results
show that these currents reach different values in the stationary
state, and therefore, the system behaves as a thermal rectifier.

In order to analyze the main features of the heat rectifica-
tion, we define κ+ = J+N/(TH − TC) and κ− = J−N/(TC −
TH ), which are microscopic, possibly chain-length-dependent
thermal conductivities. Heat rectification κ+ > κ− is clearly
demonstrated for a certain range of kint in Fig. 4(c). The
difference between both conductivities 	 = κ+ − κ− reaches
a maximum 	max for a coupling k0

int ∼ 0.25, where a strong
rectification effect of about 35% is found. Qualitatively, this
behavior can be understood by the following arguments. When
the interstrand coupling is increased from zero, new channels
connecting both chains allow for the heat to flow from the
hot reservoir to the cold one, and the thermal conductivity
increases. More interestingly, our simulations show that κ+
reaches higher values than κ− for an interchain coupling
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FIG. 4. (Color online) Schematic of the ladder model connected
to two heat reservoirs at temperatures TH and TC in two different
configurations (a) and (b). (c) Thermal conductivity κ+ and κ− for
the cases (a) and (b), respectively, as a function of the interchain
coupling with V0 = 5 and N = 100. The inset shows the system-size
dependence of 	max = κ+ − κ− for V0 = 5. (d) Normalized thermal
conductivity difference 	/	max as a function of the coupling kint

for N = 100 and for V0 = 5 and V0 = 8. Bottom panels present the
stationary temperature profile for the coupled system, N = 100 sites
and V0 = 5 connected in the two considered configurations (a) and
(b). Two different interchain couplings are considered (e) kint = 0.1
and (f) kint = 2.0.

smaller than a limiting one k∞
int, where the rectification effects

vanish.
For moderate interchain couplings, kint < k∞

int, because heat
transport in a harmonic chain is highly efficient, all sites
along that strand quickly reach the temperature of its bath
connection. Thus, every harmonic site affects the A chain as an
effective local heat reservoir at that temperature. As a result, the
stationary thermal profile of the system presents a vanishingly
small gradient close to the temperature of the bath connected to
the H chain, except for some deviations close to the opposite
bath connection, see Fig. 4(e). Figures 4(e) and 4(f) show
the stationary thermal profile along the system for the two
considered configurations in Figs. 4(a) and 4(b) and different
interchain couplings. In Fig. 4(e), it is shown that, in the case of
moderate coupling, there is a clear asymmetry between these
two profiles related to the observed heat rectification.

We can get information about the vibrational states involved
in the heat transport for moderate kint by taking these stationary
profiles, whose mean value will define the position of the SCPT
band of the A strand, into account. As mentioned in Sec. III,
the SCPT band of the A chain is shifted to lower frequencies
at higher temperatures; hence, when the H chain is connected
to the hot bath [Fig. 4(b)], we find an increase in the spectral
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FIG. 5. Numerical calculation of the density of states of the H
(black) and the A (gray) strands in the configurations (a) and (b) of
Fig. 4 for kint = 0.5 and V0 = 8. Notice the increased DOS of the A
strand at the low-frequency region in the case of Fig. 4(b).

density of anharmonic modes in the low-frequency domain, see
Fig. 5(b). Since the main carriers of the heat are low-frequency
modes, this increased spectral density will lead to an enhanced
energy exchange with the A strand and to a global increase in
the thermal resistance.

On the contrary, when the connections to the thermal
baths are reversed [Fig. 4(a)], the A chain reaches a colder
temperature, and its SCPT band shifts to higher frequencies
and so does the low-energy part of its spectral density. Thus,
low-frequency anharmonic states will hardly be activated by
the temperature, and the transport process is mainly supported
by the H strand, see Fig. 5(a). As a result of this behavior,
heat transport mainly occurs through the H chain in the
configuration of Fig. 4(a), while the thermal conductivity
includes much stronger contributions from the anharmonic
interactions in case of Fig. 4(b). Given the fact that the thermal
resistance increases with the anharmonicity, it is expected that
κ+ > κ−, which is consistent with our numerical results. It
should be noticed that, by considering larger systems, the
rectification rate increases, see the inset of Fig. 4(c). This
is because the local bath effects created by the H chain, and
which are responsible for the asymmetry of the stationary
thermal profiles in Fig. 4(e), become stronger.

If kint is large enough, the increasing dominance of
the nonlinear interactions and band mixing will unify the
properties of systems (a) and (b), and it will lead to a decrease
in the thermal conductivity, see the inset of Fig. 1(c). Therefore,
the final thermal gradient of both situations will basically be
the same as shown in Fig. 4(f), and asymptotically, the heat
rectification will be suppressed. In Fig. 4(c), we show that this
situation occurs for kint > k∞

int ∼ 1.0.
How is the strength V0 of the anharmonic interactions

influencing the rectification behavior? As shown in Fig. 4(d),
where 	/	max is plotted as a function of kint for two different
anharmonicities, the qualitative behavior does not depend on
V0, but the main rectifying features are shifted to larger kint.
This is consistent with the fact that band mixing in Fig. 1(a)
occurs for larger couplings when the anharmonicity present
in the system, is strengthened. As a result, we demonstrated
that k∗

int increases with the nonlinearity V0. Although it is not
possible to establish a direct relationship between k∞

int and k∗
int,

the results of the simulations hint at the relation k∞
int > k∗

int.
Therefore, we can predict that the main rectification effects
are expected to appear for kint < k∗

int.
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V. CONCLUSIONS

We have investigated how normal heat conduction can
emerge in a molecular junction modeled via a two-strand
ladder with strongly different vibrational spectra on each
strand. Hereby, the interstrand coupling has turned out to
be the key parameter. Analytical and numerical estimations
have been provided for the threshold interaction at which a
transition to normal heat transport occurs. We have estimated
this threshold by considering the self-consistent phonon theory
for a single A chain in comparison to a fully harmonic
ladder model. The analytical results were in good agreement
with numerical results based on nonequilibrium molecular
dynamics simulations.

Taking advantage of the nonlinear effects present in the
system, it was shown that heat current behaves differently if
the thermal bath connections are interchanged between the
harmonic and the anharmonic subsystems. This mechanism
provides strong heat rectification of more than 30%. The main
qualitative features of the rectifying device do not depend
on the system size nor on the strength of the anharmonicity.
However, the maximum rectification rates increase with the
system size and shift to larger couplings in the case of

stronger anharmonic interactions. Our results remain valid
for temperatures high enough to activate the high-frequency
optical band derived from the anharmonic interactions within
the regime of validity of the SCPT.

Our minimal model is expected to be relevant in the
study of thermal conduction in complex biomolecular systems
where two vibrational subsystems with different degrees of
anharmonicity can interact with each other. In particular,
within the discussed two-strand ladder, thermal properties
of double- or multiple-stranded molecules, such as DNA
molecules or α helices in proteins, can be described.11–13
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