News

In a recent paper [Journal of Colloid and Interface Science 596, 64 (2021)], Elena Díaz et al present a luminescence platform that can be used as point of care system for determining the presence and concentration of specific oligonucleotide sequences. This sensor exhibited a limit of detection as low as 50 fM by means of: (i) the use of single-stranded DNA (ssDNA) functionalized magnetic microparticles that captured and concentrated ssDNA-upconverting nanoparticles (ssDNA-UCNPs) on a solid support, when the target sequence (miR-21-5p DNA-analogue) was in the sample, and (ii) a photoligation reaction that covalently linked the ssDNA-UCNPs and the ssDNA magnetic microparticles, allowing stringent washes. The presented sensor showed a similar limit of detection when the assays were conducted in samples containing total miRNA extracted from human serum, demonstrating its suitability for detecting small specific oligonucleotide sequences under real-like conditions. The strategy of combining UCNPs, magnetic microparticles, and a photoligation reaction provides new insight into low-cost, rapid, and ultra-sensitive detection of oligonucleotide sequences.

In a recent paper [Scientific Reports 11, 5810 (2021)], José Luis Hernando et al theoretically address the impact of a random distribution of non-magnetic impurities on the electron states formed at the surface of a topological insulator. The interaction of electrons with the impurities is accounted for by a separable pseudo-potential method that allows us to obtain closed expressions for the density of states. Spectral properties of surface states are assessed by means of the Green’s function averaged over disorder realisations. For comparison purposes, the configurationally averaged Green’s function is calculated by means of two different self-consistent methods, namely the self-consistent Born approximation (SCBA) and the coherent potential approximation (CPA). The latter is often regarded as the best single-site theory for the study of the spectral properties of disordered systems. However, although a large number of works employ the SCBA for the analysis of many-impurity scattering on the surface of a topological insulator, CPA studies of the same problem are scarce in the literature. In this work, they find that the SCBA overestimates the impact of the random distribution of impurities on the spectral properties of surface states compared to the CPA predictions. The difference is more pronounced when increasing the magnitude of the disorder.

In a recent paper [Journal of Physics: Condensed Matter 32, 275301 (2020)], C. Núñez et al present a thorough study of the thermoelectric properties of silicene nanoribbons in the presence of a random distribution of atomic vacancies. By using a linear approach within the Landauer formalism, they calculate phonon and electron thermal conductances, the electric conductance, the Seebeck coefficient and the figure of merit of the nanoribbons. They found a sizable reduction of the phonon thermal conductance as a function of the vacancy concentration over a wide range of temperature. At the same time, the electric properties are not severely deteriorated, leading to an overall remarkable thermoelectric efficiency. They conclude that the incorporation of vacancies paves the way for designing better and more efficient nanoscale thermoelectric devices.

In a recent paper [New Journal of Physics 23, 023008 (2021)], Yuriko Baba et al study the effect of the Rashba spin-orbit coupling on the Fermi arcs of topological Dirac semimetals. The Rashba coupling is induced by breaking the inversion symmetry at the surface. Remarkably, this coupling could be enhanced by the interaction with the substrate and controlled by an external electric field. They study analytically and numerically the rotation of the spin of the surface states as a function of the electron's momentum and the coupling strength. Furthermore, a detailed analysis of the spin-dependent two-terminal conductance is presented in the clean limit and with the addition of a random distribution of impurities.} Depending on the magnitude of the quadratic terms in the Hamiltonian, the spin-flip conductance may become dominant, thus showing the potential of the system for spintronic applications, since the effect is robust even in the presence of disorder.

In a recent paper [Physica E 116, 113769 (2019)], Yuriko Baba and Marta Saiz-Bretín study electronic transport in graphene/ferromagnetic insulator hybrid devices. The system comprises an armchair graphene nanoribbon with a lens-shaped EuO ferromagnetic insulator layer deposited on top of it. When the device supports a large number of propagating modes, the proximity exchange interaction of electrons with the magnetic ions of the ferromagnetic insulator results in electrons being spatially localized at different spots depending on their spin. They found the spin-dependent electron focusing is robust under moderate edge disorder. A spin-polarized electric current can be generated by placing a third contact in the proper place. This opens the possibility to use these effects for fabricating tunable sources of polarized electrons.

Page 1 of 3