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Abstract
We investigate a pentagonal monolayer of palladium diselenide, a stable two-dimensional system,
as a material realization of a crystalline phase with nontrivial topological electronic properties. We
find that its electronic structure involves an atomic obstructed insulator related to higher-order
topology, which is a consequence of the selenium-selenium bond dimerization along with
inversion and time-reversal symmetry). By means of first-principles calculations and the analysis of
symmetry indicators and topological invariants, we also characterize the electronic corner states
associated with the atomic obstruction and compute the corresponding corner charge for a finite
geometry, which is found to be not quantized but still inversion-protected. Applying tensile strain
to the finite geometry we verify the robustness of the corner states and also achieve a
strain-controlled variation of the corner charge magnitude.

1. Introduction

In recent years the realization of topological phases
of matter in crystalline structures has unleashed a
paradigm shift in materials research due to the prom-
ising technological and scientific applications that
these systems could furnish. Several types of topolo-
gically nontrivial systems have been discovered over
the past decades, such as Chern insulators, spin Hall
insulators, topological semimetals, topological super-
conductors and topological crystalline insulators, just
to name a few instances. In particular, topological
crystalline insulators have been identified as a fam-
ily of systems for which crystalline symmetry is a cru-
cial ingredient, since it allows for topologically pro-
tected states [1]. Within this broad group of mater-
ials, there exists a subgroup of crystalline insulators
that can exhibit what is called higher-order topology
(HOT) [2]. This higher-order attribute implies that
the nontrivial response is realized when the bulk sys-
tem is embedded in a (d− k)-dimensional geometry,
where k labels the order of the topological insulator
[3]. In the case of two periodic dimensions in real
space, d= 2, one encounters that systems with HOT

have finite systems which present zero-dimensional
states with nontrivial properties, such as corner states
and corner charges [4]. These HOT structures repres-
ent a class known as two-dimensional (2D) obstruc-
ted atomic insulators (OAI) [5], which are defined as
insulatorswhose electronic structure can be described
by a set of atomic orbitals (Wannier functions), some
of them located away from the atomic positions of
the material [5, 6]. Several systems with obstruc-
ted higher-order phases have been proposed recently.
Particular examples are graphdyine [7, 8], graphyne
[9], phosphorene [10], Xenes [11], transition metal
dichalcogenides [12–14] and also other families of
materials, such as those described in [15–18]. Along
this line, in what follows, we report on the realiza-
tion of an OAI phase in pentagonal palladium disel-
enide (PdSe2) in its monolayer form. This mater-
ial is appealing since it has been recently synthes-
ized in bulk and layered samples [19, 20]. It is also
the first experimental realization of a family of com-
putationally proposed systems known as pentagonal
materials, which have a lattice structure resembling
the Cairo tiling [21]. In particular, pentagonal PdSe2
has been characterized to have notable electrical and
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optical transport characteristics [19], and good ther-
moelectric properties [22]. Most importantly, it is
stable in the air, so it can be explored for applic-
ations of topological 2D pentagonal materials. In
light of the promising features that PdSe2 entails, a
topological characterization, analyzing the possible
nontrivial phases that can coexist, will add valu-
able insights to previous findings and put forward
guidelines for novel potential applications. Thus, the
HOT phase encountered in this work coexists with
another topological phase in the same material, as
reported in [23]. This establishes pentagonal PdSe2
as a platform to study diverse topological phenomena
and their physical implications.

The organization of the article is as follows. First,
we present the real-space properties of the material,
including lattice symmetries and the preponderant
orbital features of interest. Next, we analyze the prop-
erties of the system by means of first-principles elec-
tronic structure calculations, including band struc-
ture and other electronic properties. Additionally,
we perform a topological characterization using
the well-established theories of symmetry-indicated
band topology, as presented in [5, 24, 25]. Topological
invariants suitable for the identification of the non-
trivial phases are calculated. Further first-principles
calculations in a finite geometry will be presented,
comprising eigenvalues and charge analysis, in order
to explore the properties of the crystalline higher-
order topological phase of the material. Additional
details of themain text results are available in the sup-
plementary information.

2. Basic properties of monolayer PdSe2

We focus on PdSe2 monolayer, a 2D material with a
pentagonal lattice structure composed of palladium
and selenium atoms. The lattice structure is formed
by irregular type-2 pentagons with buckled geo-
metry, as presented in figure 1(a). Palladium atoms
have coordination number 4, while Se atoms possess
coordination number 3. Crystalline 2D pentagonal
PdSe2 has a tetragonal lattice with three symmetry
operations [20] besides identity: spatial inversion I
and two non-symmorphic operations, namely, a π
rotation about an axis along the a1 direction followed
by a half translation, (C2|1/2,1/2), and a mirror
reflection of a plane perpendicular to the a1 direction
combined with a half translation, (My|1/2,1/2). The
fractional translation vector in these two last opera-
tions is expressed in terms of the unit cell vectors, a1
and a2, respectively. These symmetries compose the
space group (SG) P21/c, also denoted as SG 14. The
four chalcogen atoms in the unit cell are interchanged
by the symmetries of the SG and should be collectively
identified by the generic Wyckoff position (WP) 4e,
following the notation of [26]. The transition metal
atoms sit at a maximalWP, the 2c position in our unit

cell choice. The location of the WP of interest for this
work is sketched in figure 1(b).

From a chemical perspective the buckled
pentagonal tiling shows two main types of direct
bonds, Se–Se and Se–Pd bonds, as seen in figure 1(a).
We have verified that low-energy physics is mainly
described by the Se–Se dimers which are the strongest
bonds. This implies that the Se p-orbitals play the
most significant role for the top valence bands and
low-lying conduction bands, as detailed in the results
below. To corroborate the dimerized nature of PdSe2
monolayer we analyze the difference between the
Se–Se and Se–Pd bonds by means of first-principles
calculations.

Being a pentagonal PdSe2 monolayer a 2Dmater-
ial, a signature of its HOTwould be the appearance of
zero-dimensional localized states, i.e. corner charges.
Indeed, the dimensional hierarchy in topological 2D
materials implies that a first-order topological 2D sys-
tem will hold edge states, whereas a second-order
topological character manifests in the occurrence of
corner states, as schematically depicted in figure 1(c).

3. Results

In general, obstructed phases can be linked to the
presence of anomalous localization of the electronic
charge centers concerning the atomic sites. This
charge center mismatch is the basic signature of an
atomic obstructed insulator [5].

The identification of a potential obstructed phase
requires in the first place to carry out an electronic
characterization of the material. From the electronic
structure calculations, the symmetry of the states in
real andmomentum space can be obtained. This sym-
metry information indicates whether this anomalous
charge localization is unavoidable or not.

Second, we have to compute a topological invari-
ant derived from the bulk information of the mater-
ial (the monolayer in this case) and find out whether
it has a nontrivial value. This allows us to identify
the specific phase realized by PdSe2. If the invariant
indicates a nontrivial behavior, physical manifesta-
tions of this characteristic must be identified. In fact,
in 2D OAI systems nontrivial states have a higher-
order character. That is to say, there must exist a
symmetry-protected feature in zero-dimensional sys-
tems derived from these OAIs, also known as flakes or
quantum dots, which are finite in all spatial dimen-
sions. The existence of corner states is a physical con-
sequence of an OAI. In what follows, we detail this
procedure for PdSe2.

3.1. Electronic characterization
We start by presenting in figure 2(a) the character-
ization of the bonding information in PdSe2 arising
from the electron localization function [27]. It can be
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Figure 1. (a) The lattice structure of monolayer PdSe2. (b) Wyckoff positions for the two-dimensional version of space group 14.
(c) Schematic depiction of the dimensional hierarchy in topological 2D materials, particularized for PdSe2. (d) Two-dimensional
Brillouin zone.

Figure 2. (a) Electron localization function. Electronic bands from first principles including SOC with k-resolved projected
density of states (k-PDOS) for (b) Pd d-orbitals and (c) Se p-orbitals.

observed that the tendency of the electrons to local-
ize outside the atomic sites occurs mostly along the
direct Se–Se bonds, while the regions corresponding
to Pd–Se bonds are mostly depleted. This indicates
the special role played by the Se–Se interaction in the
physics of PdSe2. In fact, these Se-Se dimers effect-
ively realize a material example of a 2D version of
the Su–Schrieffer–Heeger (SSH)model, similar to the
cases reported in [28–32]. The resemblance with the
SSH model stands as a starting guide to explore non-
trivial electronic states, since SSH systems can present
obstructed phases [29, 31].

To confirm the presence of the aforementioned
phase we study the electronic band structure of the

material obtained from density functional theory cal-
culations along a high-symmetry path in the Brillouin
zone, as specified in figure 1(d). The band struc-
tures computed including spin-orbit (SOC) coup-
ling are shown in figure 2. The bands without SOC
is presented in the supplementary information. Our
calculation confirms an indirect fundamental gap of
approximately 1.3 eV employing a Perdew–Burke–
Ernzerhof (PBE) functional [33], as previously noted
in other studies [19]. While higher gaps have been
reported using hybrid functionals or many-body cor-
relations, we stay with the PBE results since the
valence bands are well-described at this level of
approximation.
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Table 1. Band representations (BR) present in the valence band
manifold of monolayer PdSe2. The first column gives the irreps
content for each BR, the second column shows the number of
occurrences for a particular BR, and the third column links the
BR with the respective inducing Wyckoff position. The last two
BRs cannot be induced from EBRs, and thus are stable topological
(Z2 = 1). However, as they are both below the Fermi level they
add to a trivial phase, which can in principle be induced from one
EBR from 2a WP plus another EBR from 2c WP.

Band representations Multiplicity Inducing WP

2Γ3Γ4—D3D3D4D4 3 2a
2Γ3Γ4—D5D5D6D6 5 2c
2Γ5Γ6—D3D3D4D4 4 2c
2Γ5Γ6—D5D5D6D6 1 2a
Γ3Γ4Γ5Γ6—D5D5D6D6 1 —
Γ3Γ4Γ5Γ6—D5D5D6D6 1 —

Bearing in mind that the material belongs to SG
14, we can deduce certain characteristics of its elec-
tronic properties. To start, we observe that the non-
symmorphic symmetries fix the multiplicity of the
maximal WP to two. This can be combined with the
spinful (spinless) features of the material and with
time-reversal symmetry (TRS). With all this inform-
ation we can conclude that, for the generic 4e WP,
the orbitals must form groups of eight (four). On the
other hand, orbitals must form groups of four (two).
From the symmetry-based topological band theory
[5, 34] it is known that the maximal WP induce the
so-called elementary band representations (EBRs),
from which some generic bands can be formed and
analyzed. Combining the orbital input with the band
details immediately leads us to the conclusion that
all bands must appear as four-connected sets. The
actual symmetry data can be extracted from the elec-
tronic structure calculations in momentum space. In
particular, we have computed the symmetry eigen-
values and corresponding irreducible representations
(irreps) for the high-symmetry points (HSP) of the
material. The results are presented in table 1 for the
valence bands of interest. In this table, we present
the multiplicity of each EBR within the valence band
manifold of monolayer PdSe2. It is worth noticing
that all connected sets of bands are EBRs. This implies
that the valence band manifold realizes an atomic
limit. However, it is readily seen that some of the EBRs
must be induced by orbitals located at the unoccupied
WP 2a. What is more, this 2a WP lies at the middle
point of the line that forms the Se–Se bond. In con-
sequence, information extracted from the electronic
structure suggests that there is an unavoidable con-
tribution of unoccupied sites in real space.

3.2. Identification of OAIs: topological invariants
The procedure for a system with and without SOC
is similar, since the definition of the invariant only
involves counting eigenvalues. The difference stems

from the labels of irreps. Using that inversion sym-
metry is part of the SG, we could use inversion-based
symmetry invariants to prove the obstruction. For
this, we follow [3, 35], and start from the standard
Wilson loop (WL) invariants, that are suitable for
the study of this model. A simplified version of these
WL invariants will be used due to the existence of
inversion symmetry. First, we have to consider that
the WL should be defined for particular directions
in reciprocal space. There are two directions in our
case, kx and ky; see figure 1(c). The kx direction is
related with Γ and B HSP, while ky is related with Γ
and Z points. Then, each direction yields one topo-
logical invariant, respectively denoted as νB and νZ
[35]. A third invariant is related to the nestedWL [3].
This last invariant gives information about the mul-
tipole properties of the system [35], and is related to
the Γ and D HSP. It is denoted as νD. Thus, overall,
we have at our disposal three topological indices. For
inversion symmetric systems, the general form of the
invariants is νΛ =#Λ−#Γ (valid with and without
SOC), where #A is the number of inversion-odd
eigenvalues at point A in momentum space [36]. The
information about these eigenvalues can be extrac-
ted from the irreps calculation that was presented
before.

The computation of the above WL invariants
for PdSe2 yields νB = 1 and νZ = 1, confirming the
nontrivial character of the material. The remaining
invariant is calculated to be νD = 0. This last invari-
ant is related to the presence of a bulk quadru-
pole moment [36]. In summary, the SG 14 obstruc-
ted phases can be characterized by three invariants,
(νB,νZ,νD), and monolayer PdSe2 realizes the non-
trivial phase (1,1,0). This phase implies formally the
presence of edges polarizations and no quadrupole
moment.

A complementary perspective can be gained by
invoking the aforementioned relation to the SSH
model. The nontrivial SSH phase host states that have
formal polarizations with values of 0 or 1/2 (modulo
1) [29], a fact that is related to the 0 and π restriction
of the Zak phase in momentum space. Therefore, it is
the π Zak phase of the SSH model which is related to
nontrivial behavior. In addition,WL is directly linked
to the Zak phase of quasi-one-dimensional systems
that are localized in one direction and delocalized
along the other. This is because WL is constructed
from hybrid Wannier charge centers [37]. Therefore,
a nonzero WL invariant value is analogous to having
a π obstructed Zak phase.

It is pertinent to introduce a slight simplifica-
tion at this stage. A correlation, coming from the
nonsymmorphic bulk SG, arises between the num-
ber of odd-inversion eigenvalues at B and Z; they are
always equal. This is due to the fact that the type
of irreducible representations at both points always
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coincide, both for the spinless and spinful cases. In
consequence, the system at hand satisfies the condi-
tion νB = νZ, and the classification is simplified to
only two indices (νB,νD). Considering this, the PdSe2
phase can be labeled as (1,0).

3.3. Characterization of OAIs: corner response
In general bulk-boundary correspondence implies
the existence of a low-dimensional anomalous
boundary state (1D or 0D) in a system with a non-
trivial bulk (in this case 2D). The anomalous states
could be edge states or corner states, according to the
case. The correspondence is characterized by a num-
ber that indicates a property of the boundary system,
based on features deduced from the bulk structure.
For example, in Chern insulators, the indicator is the
Chern number, and its magnitude indicates the num-
ber of gapless states that the system has. In the case of
OAIs, which can be related to a higher-order phase,
the correspondence is related to the corner charge.
Consequently, a bulk number is calculated based on
the polarization and quadrupole moment of the sys-
tem. The physically meaningful (gauge-invariant)
combination of these two quantities is defined as the
corner charge. Thus, a nontrivial systemwill manifest
a boundary (corner) response due to the nontrivial
bulk polarization and/or quadrupole moment.

Therefore, the physical implications of this phase
can be related to boundary responses that materialize
the obstruction. If we reduce to one dimension, we
can construct ribbons with edges having a nonzero
polarization. In fact, PdSe2 nanoribbons have been
recently synthesized and characterized [38].However,
it has been argued that polarization would not be
directly measurable, due to other edge effects and
gauge dependence [39]. This also applies in general
for the bulk quadrupole moment. On the other hand,
fullymeasurable responses can be linked to the corner
states and associated charges that appear at open
boundary systems. This is what is called a higher-
order bulk-boundary relation [40]. The presence or
absence of corner charges is also a topological indic-
ator, since it is related to previous invariants.

A subtle point must be made here in relation to
the use of finite systems. Since the SG of the mono-
layer is nonsymmorphic, as we construct a flake struc-
ture, we will invariably break the symmetries that
involve fractional translations. Then, in our case, the
resulting flakes will have inversion as the only spatial
symmetry operation. Therefore, we must study how
the properties of SG 14map to SG 2, the SG with only
spatial inversion (and TRS). To establish a link to SG 2
wemake use of a procedure dubbed as representation
subduction [41]. In simple terms, this method allows
mapping the irreps in an SG to the irreps of a sub-
group of it. The result of the subduction procedure is
as follows:

SG14 → SG2
Γ3Γ4 → Γ3Γ3

Γ5Γ6 → Γ2Γ2

D3D3 → T3T3

D4D4 → T3T3

D5D5 → T2T2

D5D5 → T2T2

Z2Z2 → Y2Y2 +Y3Y3
B2B2 → Z2Z2 +Z3Z3.

Here the labels T, Y and Z in SG 2 correspond to the
same location in the BZ as the original SG 14 points
to which they are related by induction.

From this mapping, we can conclude that the dis-
tinction between BRs induced from 2a and 2c WP
is preserved. This is a significant result that indic-
ates that the phase distinctions arising from bulk
topological obstruction can be carried down to low-
dimensional systems. For a system with inversion
using the simplification in the WL explained before,
the corner charge can be defined as

Qc =
νB
2

νD
4
1 (1)

for the spinless case [3] and as

Qsoc
c = νB −

νD
2
2 (2)

for a spinful system [35]. For the PdSe2 monolayer,
we obtain Qc = 1/2, Qsoc

c = 1. A nonzero value of the
corner charge invariant implies the presence of pro-
tected charges at inversion-related corners of a finite
structure. In order to prove this result we have cal-
culated the eigenvalue spectrum for flakes based on
the PdSe2 monolayer. We chose a 100-atom flake
with two obstructed corners. In practice, the obstruc-
tions are implemented by cutting along the dimerized
bonds right at the boundary. The resulting eigenvalue
spectrum is displayed in figure 3.

It can be observed that the system presents a
metallic phasewith four degenerate states at the Fermi
level. This phenomenon is due to the appearance of a
filling anomaly [36]. The metallic states are enforced
since the topological obstruction prevents the system
to be simultaneously charge-neutral, symmetric, and
gapped [42]. Thus one of the features should be put
down for the system to be realizable. For this particu-
lar flake, the states are localized at the corners, as can
be verified in figure 4 where the local density of states
of the in-gap states has been plotted.

Another way to extract the quantized value of
the corner charge for each state is by means of an
eigenvalue calculation. This is related to the Fermi
level position of the filling anomaly [42]. Namely,
by electron counting, the filling of the flake states
means that two of the metallic states must be occu-
pied, leaving two empty states. The energy spectrum
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Figure 3. Energy spectrum, where the Fermi level is set at zero energy and marked by a dashed blue line. The inset shows the
geometry of the selected 100-atom flake.

Figure 4. (a) Local density of states (LDOS) close to the Fermi energy for a 100-atom flake. (b) The numerical tile charge
calculation for the 100-atom flake. Values within the pentagons represent the charge from Bader analysis modulo 2.

in figure 3 exhibits four degenerate states at the Fermi
level. Therefore, two extra electrons must be supplied
to resolve the anomaly. This directly indicates that
each corner will have a corner charge of one elec-
tron, which coincides with the value obtained using
equation (2). It should be noted that, since the only
spatial symmetry of the finite system is the inversion,
the exact value obtained above is in general not pro-
tected and deviations from this value are expected
[39]. This last result opens the possibility to have frac-
tional charges of equal size at related corners and to
control them by external perturbations that preserve
inversion.

3.4. Robustness of the obstructed states
Inversion can impose limitations and prohibitions
on interactions that might disturb or hybridize the
obstructed states. Consequently, obstructed phases
can maintain their robustness and preserve their dis-
tinctive characteristics under the action of inversion-
preserving perturbations. As supporting evidence, to

probe the corner states, the PdSe2 flake presented in
the previous section was subjected to varying degrees
of stress and strain, both in tension and compression.
The results for the variation of the eigenvalue spec-
trum are displayed in figure 5. It can be seen that
the energies of the states above or below the Fermi
energy, are affected by the perturbation. Remarkably,
as we approach the Fermi level the states become
more insensitive to strain and this entails that the
metallic states are not altered. Thus, for stress and
strain respecting spatial inversion the states at the
Fermi level remain intact and localized at the corners.

In addition to strain, we examined the response
of the flake to structural perturbations such as atomic
vacancies. We present one illustrative example in
the supplementary information, figure S.4. Note that
these vacancies break inversion symmetry. In sum-
mary, the results show that the energy spectrum
still possesses metallic states if the vacancies do not
affect the atomic sites composing the corners. This
reinforces the fact that the corner states are highly
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Figure 5. Eigenvalue spectrum of the 100-atom flake of PdSe2 under (a) biaxial tensile stress and (b) biaxial compressive stress.

localized. To test inversion symmetry more dramatic-
ally, we have also studied two flakes with a shape that
clearly breaks inversion symmetry, by removing one
of the regions where the corner states appear (figures
S.5 and S.6 of the supplementary information). In
these cases the corner states are not present, although
the four states at the Fermi energy persist, but their
electronic localization changes.

Focusing on the study of corner charge, we
have performed a numerical charge analysis for
the unstrained and strained flakes with the aim to
quantify the corner charge anomaly and the possib-
ility to have a non-quantized value. To this end, we
carried standard Voronoi and Bader’s calculations to
analyze the atomic charge distribution of the flakes.
The resulting values of the atomic charges are presen-
ted in the supplementary information. Using this
charge analysis we compute the numerical value of the
corner charge for the flakes by adapting the proced-
ure presented in [43]. In this approach, an effective
charge is assigned to the pentagonal units of the flake,
considering that the measurable quantity is defined
only modulo 2. The results of this process are presen-
ted in figure 4(b). It can be seen that these pentagonal
tiles form the corners and edges of the flake. The

calculation of the corner charge for the flake, Qflake
c ,

is carried by use of the relation (equation (2) in [43])

Qflake
c = ρ−

(
σtop +σbottom

)
, (3)

where ρ is a charge of the corner zone and the σi

correspond to the net charge of the top and bot-
tom edges, that delimit the corner. As both edges
are shared by the left and right corners of the flake,
only half of the charge is used in the calculation of
Qflake

c . For values of the unstrained flake, we obtain
a corner charge of 1.42e (mod 2) for both corners,
showing the inversion protection of the response. As it
wasmentioned previously, this value departs from the
value deduced from the bulk calculation, since inver-
sion is the only symmetry that survives the dimension
reduction. However, we further explore how the non-
quantized corner charge is affected by the external
strain. We repeat the procedure above for the differ-
ent values of strain presented in figure 5 and report
the corner charges values in table 2. Only the value for
one corner is reported, as in all cases inversion-related
corners yield the same value. It can be observed that
the corner charge can be monotonically varied with
positive and negative strain. This behavior along with

7
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Table 2. Numerical corner charge from Bader analysis for different strain applied to the 100-atom flake. Values of the charges are
modulo 2.

Strain 0% −5% −10% −15% +5%

Corner charge 1.45e 1.42e 1.36e 1.27e 1.49e

inversion protection allows for a controllable manip-
ulation of the charge by external means, which gives
the possibility of using this mechanism in device
applications.

The remarkable localization of the corner states
shown in figure 4 is a clear indication of their per-
sistence at larger structures. However, these corner
states may hybridize and delocalize if the flake size is
reduced. We have performed calculations for smal-
ler sizes and verified that even in 32-atom flakes
the corner states remain at the Fermi energy and
they are distinguishable, although they start to spread
along the edges, see figure S.3 of the supplementary
information. Therefore, these states are very robust
concerning size reduction. We observe that with
respect to system size, metalization is more persist-
ent than localization at the edges when the flakes get
smaller.

Table 2 presents huge values of tensile strain. It
should be noted that nanomaterials are capable of
sustaining higher strains than their bulk counterparts;
even in epitaxial growth, which poses a strong limit on
the values of strain in 2D materials, it is possible to
grow nanowires and nanodisks with small radii with
high values of strain, from 3% to 7% and up to 10
% in some cases, stemming from their small lateral
size. This lateral thickness is minimal in flakes of 2D
materials, so the tolerance to mismatch will be even
larger, see [44].

4. Conclusions

In summary, we have revealed the obstructed phase
of the monolayer PdSe2 and characterized it by
topological invariants and the presence of corner
charges. This 2D pentagonal material exhibits robust-
ness against spatial perturbations due to the protec-
tion provided by inversion symmetry. About other
materials similar to PdSe2, such as the pentagonal
allotropes of PdS2, PdTe2, PtSe2, PtS2, and PtTe2,
further investigations can be conducted to explore
their electronic properties and potential topological
phases. These materials may exhibit similar charac-
teristics and symmetry-based topological band struc-
tures; see for example figure S2 in the supplementary
information, which presents the spectrum of a PtSe2
flake.

Metallic obstructed states could be spotted by
atomic force microscopy (AFM), detecting the elec-
trostatic forces produced by the corner charges. This
could be achieved by employing conductivity AFM

and scanning quantum dot microscopy, as sugges-
ted in [45]. A potential and promising experimental
application recently proposed is related to catalysis:
obstructed surface states show an enhanced catalytic
response at the boundary of the structure, i.e. at the
corner states, different from that at the inner regions
of the flakes [46].

Extensions of this work could involve studying
the implications of the valence band phase in optical
responses. This would imply investigating the optical
properties, such as absorption, emission, and polariz-
ation of the material in the presence of the non-trivial
phase. The understanding of the interplay between
the valence-band phase and the strong topology of
the low-lying conduction bands, it is another avenue
for exploration. This would provide insights into
the electronic structure and potential applications in
electronic and optoelectronic devices.

Overall, these extensions would contribute to a
deeper understanding of the electronic and optical
properties of materials with similar characteristics to
PdSe2, paving the way for advancements in topolo-
gical materials and their technological applications.

4.1. Computational details
We have utilized the SIESTA [47] and QUANTUM
ESPRESSO (QE) [48, 49] codes, employing the PBE
generalized gradient approximation for exchange-
correlation functional [33]. The vacuum spacing
between adjacent layers was set to 20 Å to pre-
vent interaction with neighboring periodic replicas.
With the QE code, we relaxed the pentagonal struc-
tures with a cutoff energy of 80 Ry, and a force tol-
erance of 10−5 eVÅ−1 per atom along with a 12×
12× 1 Monkhorst–Pack grid for total energy conver-
gence. For flake-related calculations, we employed the
SIESTA code with a fixed mesh cutoff of 450 Ry, an
electronic temperature of 10meV, and a selfconsist-
ent field convergence tolerance of 10−5 for the dens-
ity matrix. We used the Python package IrRep [50]
to compute the irreducible representations (irreps)
for the HSPs of the material. This tool calculates the
symmetry eigenvalues of first-principles electronic
Bloch states in crystalline solids and identifies the cor-
responding irreducible representations under which
they transform.
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included within the article (and any supplementary
files).
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[50] Iraola M, Mañes J L, Bradlyn B, Neupert T, Vergniory M G

and Tsirkin S S 2022 Comput. Phys. Commun. 272 108226

9

https://orcid.org/0000-0002-7131-1266
https://orcid.org/0000-0002-7131-1266
https://orcid.org/0000-0002-7131-1266
https://orcid.org/0000-0002-4293-5213
https://orcid.org/0000-0002-4293-5213
https://orcid.org/0000-0002-4293-5213
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1038/s42254-021-00323-4
https://doi.org/10.1038/s42254-021-00323-4
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://arxiv.org/abs/2106.10276
https://arxiv.org/abs/2106.10276
https://doi.org/10.1038/s41535-019-0206-8
https://doi.org/10.1038/s41535-019-0206-8
https://doi.org/10.1103/PhysRevLett.123.256402
https://doi.org/10.1103/PhysRevLett.123.256402
https://doi.org/10.1021/acs.nanolett.9b02719
https://doi.org/10.1021/acs.nanolett.9b02719
https://doi.org/10.1103/PhysRevB.104.125302
https://doi.org/10.1103/PhysRevB.104.125302
https://doi.org/10.1038/s41524-021-00695-2
https://doi.org/10.1038/s41524-021-00695-2
https://doi.org/10.1038/s41598-019-41746-5
https://doi.org/10.1038/s41598-019-41746-5
https://doi.org/10.1103/PhysRevB.104.L161108
https://doi.org/10.1103/PhysRevB.104.L161108
https://doi.org/10.1103/PhysRevB.105.045417
https://doi.org/10.1103/PhysRevB.105.045417
https://doi.org/10.1038/s41535-022-00498-8
https://doi.org/10.1038/s41535-022-00498-8
https://doi.org/10.1103/PhysRevB.106.155144
https://doi.org/10.1103/PhysRevB.106.155144
https://doi.org/10.1002/advs.202202564
https://doi.org/10.1002/advs.202202564
https://doi.org/10.1016/j.scib.2021.12.025
https://doi.org/10.1016/j.scib.2021.12.025
https://doi.org/10.1021/jacs.9b02593
https://doi.org/10.1021/jacs.9b02593
https://doi.org/10.1021/jacs.7b04865
https://doi.org/10.1021/jacs.7b04865
https://doi.org/10.1016/j.physrep.2022.03.003
https://doi.org/10.1016/j.physrep.2022.03.003
https://doi.org/10.1002/adfm.202004896
https://doi.org/10.1002/adfm.202004896
https://doi.org/10.1039/D2CP01822E
https://doi.org/10.1039/D2CP01822E
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1524/zkri.2006.221.1.15
https://doi.org/10.1524/zkri.2006.221.1.15
https://doi.org/10.1002/anie.199718081
https://doi.org/10.1002/anie.199718081
https://doi.org/10.1103/PhysRevA.101.063839
https://doi.org/10.1103/PhysRevA.101.063839
https://doi.org/10.1103/PhysRevLett.118.076803
https://doi.org/10.1103/PhysRevLett.118.076803
https://doi.org/10.1103/PhysRevB.99.041117
https://doi.org/10.1103/PhysRevB.99.041117
https://doi.org/10.1103/PhysRevB.100.075437
https://doi.org/10.1103/PhysRevB.100.075437
https://doi.org/10.1103/PhysRevB.105.L121101
https://doi.org/10.1103/PhysRevB.105.L121101
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1146/annurev-conmatphys-041720-124134
https://doi.org/10.1146/annurev-conmatphys-041720-124134
https://doi.org/10.1103/PhysRevResearch.1.033074
https://doi.org/10.1103/PhysRevResearch.1.033074
https://doi.org/10.1103/PhysRevB.99.245151
https://doi.org/10.1103/PhysRevB.99.245151
https://doi.org/10.1002/smll.201902789
https://doi.org/10.1002/smll.201902789
https://doi.org/10.1103/PhysRevB.103.035147
https://doi.org/10.1103/PhysRevB.103.035147
https://doi.org/10.1103/PhysRevResearch.2.043012
https://doi.org/10.1103/PhysRevResearch.2.043012
https://doi.org/10.1103/PhysRevB.102.035110
https://doi.org/10.1103/PhysRevB.102.035110
https://doi.org/10.1103/PhysRevResearch.3.013239
https://doi.org/10.1103/PhysRevResearch.3.013239
https://doi.org/10.1103/PhysRevResearch.3.023121
https://doi.org/10.1103/PhysRevResearch.3.023121
https://doi.org/10.1038/natrevmats.2017.70
https://doi.org/10.1038/natrevmats.2017.70
https://doi.org/10.1103/PhysRevLett.115.026101
https://doi.org/10.1103/PhysRevLett.115.026101
https://doi.org/10.1002/adma.202201328
https://doi.org/10.1002/adma.202201328
https://doi.org/10.1088/0953-8984/14/11/302
https://doi.org/10.1088/0953-8984/14/11/302
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1016/j.cpc.2021.108226
https://doi.org/10.1016/j.cpc.2021.108226

