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ABSTRACT

We study thermal effects on spin transport along a deformable helical molecule in the presence of chiral-induced spin–orbit coupling. The
carrier–lattice interaction is modeled by the well-established Peyrard–Bishop–Holstein model within the Langevin approach to include tem-
perature as a stochastic noise. The carrier–lattice interaction causes the occurrence of polaron states in the molecule. We demonstrate the
existence of two well-differentiated spin-dependent polaron transport regimes as a function of temperature. In the low-temperature regime,
the spatial separation of the two spin-dependent polaron wave-packets results in a nonzero spin current. On the contrary, the spin current
becomes negligible if the temperature of the system is high enough. Finally, we characterize this transition and estimate the critical tempera-
ture at which it takes place.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0109240

Solitons and polarons in organic helical molecules acquired a
remarkable relevance after they were considered by Davydov to
explain energy storage and transport in proteins.1 They also play a
fundamental role to understand denaturation during the DNA tran-
scription according to the so-called Peyrard–Bishop (PBH) model.2 In
the last few decades, these models have widely been considered to ana-
lyze charge and energy transport properties of biological helical mole-
cules.3–9 The key point in all these descriptions is the major role that
carrier–lattice interaction plays in organic molecules that have been
demonstrated to be easily deformable.

More recently, a new intriguing phenomenon has attracted much
attention to long-range carrier transport properties of helical and other
chiral molecules, namely, the so-called chiral-induced spin selectivity
(CISS). Indeed, there is a large variety of experimental evidence of
spin-selective transport in chiral organic molecules.10–22 To date, a
number of theoretical models have been proposed to explain this phe-
nomenon within different frameworks,23–37 but none of them was able
to successfully reproduce the large spin polarization observed in
experiments. Therefore, this physical effect is still up for debate
although there is a general agreement on the key ingredient that leads
to CISS, namely, the influence of the helical spin–orbit coupling
(SOC) and the exchange effects on the carrier dynamics derived from
the helical conformation of the molecule. In the last few years, some
studies have thoroughly investigated the carrier–lattice interaction

impact on spin transport in organic helical molecules38–44 and, in
some cases, temperature effects have been considered as well.44–46 This
opened a new field of study where the propagation of spin-dependent
polarons, as well as soliton solutions, is very relevant within the scope
of non-linear quantum dynamics that we further explore in this work.
Our results will be also relevant for other nonlinear physical systems
where the influence of a helical SOC can be studied, i.e., Bose–Einstein
condensates.47–49

In the following, we briefly introduce the non-linear model that
describes spin transport in a deformable helical molecule. In addition
to the unconventional Rashba-like SOC arising from its motion in the
helical molecule, the carrier–lattice interaction is included by the way
of the PBH model. Moreover, thermal effects are considered within
the Langevin approach that makes necessary to use a special numerical
algorithm to deal with stochastic Schr€odinger equations. We then turn
to the main goal of the work, namely, the detailed analysis of the spin-
dependent wave-packet propagation and the resulting spin current
along the system. As a major result, we find a crossover from coherent
to incoherent spin-dependent transport on increasing temperature.
Remarkably, the spin-dependent current displays a universal shape as
a function of a reduced temperature, defined as the temperature scaled
by the coupling constant of the underlying atomic lattice. This paves
the way for an experimental validation of the model studying different
helical molecules.
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In order to provide an accurate description of the nucleotide
dynamics and its effects on spin transport, our starting point is the
PBH model.2–6 In this model, the lattice dynamics is nonlinear,
beyond the harmonic approximation, and it allows for a better
description of large-amplitude vibrations of nucleotides. Notice that
the most remarkable success of the PBHmodel is focused on the DNA
denaturation occurring in the transcription process.2,3

The PBHHamiltonian splits into three contributions

H ¼H lat þH e þH int: (1)

The first term, H lat, describes the lattice by mapping the double
stranded DNA helix onto a one-dimensional (1D) lattice where every
node represents a base pair.2 Thus, a single degree of freedom yn, rep-
resenting the displacement from its equilibrium position, is assigned
to every site. Under these considerations,H lat reads

H lat ¼
XN
n

1
2
m _y2n þ VðynÞ þWðyn; yn�1Þ

� �
; (2)

where m is the nucleotide mass and n ¼ 1; 2;…;N labels the sites of
the molecule.

Apart from the kinetic energy, there exist two other potential
terms in Eq. (2): a local Morse potential VðynÞ and a nonlinear stack-
ing interaction potentialWðyn; yn�1Þ. They are defined as follows:

VMðynÞ ¼ V0 e�ayn � 1ð Þ2;

Wðyn; yn�1Þ ¼
k
4

2þ e�bðynþyn�1Þ
� �

ðyn � yn�1Þ2:
(3)

The former takes into account the interactions within a DNA base
pair as well as the repulsion between backbone phosphates and other
surrounding solvent. The latter represents the nonlinear anharmonic
coupling between nearest-neighbor nucleotides which gives rise to
long-range interactions. Both potential terms depend on fitting param-
eters which were chosen to reproduce experimental DNA melting
curves. Hereafter, we will use the following set of optimized parame-
ters:m ¼ 300 amu, V0 ¼ 0:04 eV, a ¼ 4:45 Å�1, k ¼ 0:04 eV/Å2, and
b ¼ 0:35 Å�1.3.

The carrier Hamiltonian,H e, describes the spin transport along
the helical molecule, as derived by Gutierrez et al.26 It is worth men-
tioning that the latter agrees with the one proposed by Guo et al.27 for
the case of a pure radial helical electric field. In particular, we will con-
sider a single strand and a single carrier level per site. The carrier
Hamiltonian of the helical molecule reads

H e ¼
XN
n¼1

enc
†
ncn þ

XN�1
n¼1

c†nscnþ1 þ itsoc
†
na

ncnþ1 þH:c:
� �

; (4)

where c†n ¼ ðc†n"; c†n#Þ and cn ¼ ðcn"; cn#Þ
T are the creation and annihi-

lation operators at site n of a helical molecule of length N. Here, the
superscript T refers to the transpose and H:c. stands for the Hermitian
conjugate. The on-site energies en, the effective SOC constant tso, and
the intersite hopping are considered within the matrix s ¼ diagðt"; t#Þ
that will be assumed uniform along the molecule. The helical symme-
try is included in the last term that is expressed as a function of the
Pauli matrices, rx;y;z , such that an ¼ ðrn þ rnþ1Þ, being
rnþ1 ¼ rz cos hþ sin h½rx sin ðnDuÞ � ry cos ðnDuÞ�, where h is the
helix angle and Du refers to the twist angle between neighboring

sites.27 Hereafter, h ¼ 0:66 rad and Du ¼ p=5 rad will be considered
as typical values for DNA molecules, corresponding to 10 sites per
turn with a distance between consecutive sites of Dz ¼ 0:34 nm.
Figure 1 presents a planar view of a deformable helical molecule, indi-
cating the various spin-dependent couplings between neighboring
molecular sites. The last term in the Hamiltonian (1),H int, takes into
account the carrier–lattice interaction proposed by Holstein as an on-
site energy correction as follows:4

H int ¼ v
XN
n¼1

ync
†
ncn: (5)

Here, v denotes the charge–lattice coupling constant that might
depend on the sequence and the number of nucleotides.50 It should be
noted that ab initio estimations of this coupling v are scarce, so in our
simulations we will take a reference value to study its effects on the
carrier dynamics as done in the previous works.

The equations of motion for the PBH model can be derived by
treating the bases as classical oscillators, while the carrier is described
quantum mechanically. This semiclassical approach is justified by the
different time-scales of the charge and the lattice dynamics.6

According to this formalism, the dynamics of the spinor components
in the specific system of interest can be studied by the way of the fol-
lowing Schr€odinger equations:

i�h
dw"n
dt
¼ enw

"
n þ ðt"þitsoanþ11;1 Þw

"
nþ1 þ ðt"�itsoan�11;1 Þw

"
n�1

þ itsoa
nþ1
1;2 w#nþ1 � itsoa

n�1
1;2 w#n�1 þ vynw

"
n ;

i�h
dw#n
dt
¼ enw

#
n þ ðt#þitsoanþ12;2 Þw

#
nþ1 þ ðt#�itsoan�12;2 Þw

#
n�1

þ itsoa
nþ1
2;1 w"mþ1 � itsoa

n�1
2;1 w"n�1 þ vynw

#
n; (6)

where w"n (w#n) is the probability amplitude of the charge carrier
located at the nth base with spin up (down). The last term in Eq. (6)
describes the carrier–lattice coupling through the constant v and the
displacement yn of the nth nucleotide. Newton’s equations of motion
for the displacement yn become

m
d2yn
dt2
¼ �V 0MðynÞ �W 0ðyn; yn�1Þ �W 0ðyn; ynþ1Þ � vjwnj

2; (7)

FIG. 1. Planar sketch of a deformable helical molecule. The parameters of the
tight-binding Hamiltonian (4) and the carrier and the SOC between neighboring
sites are shown.
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where the prime indicates differentiation with respect to yn and
jwnj

2 ¼ jw"nj
2 þ jw#nj

2.
In order to include finite temperature effects on the spin trans-

port, we consider the Langevin approach for the lattice dynamics.
Therefore, we introduce two additional terms in Eq. (7) as follows:

m
d2yn
dt2
¼ �V 0MðynÞ �W 0ðyn; yn�1Þ �W 0ðyn; ynþ1Þ

�vjwnj
2 �mc

dyn
dt
þ fnðtÞ : (8)

The force fnðtÞ describes the stochastic action of the environment
due to thermal noise that is statistically balanced by the dissipative
term that depends upon the parameter c. In our simulations, we set
c ¼ 0:75 fs�1. According to the fluctuation–dissipation theorem, the
following white-noise statistical properties hold:

hfnðtÞi ¼ 0;

hfnðtÞf 0nðt0Þi ¼ 2cmkBTdnn0dðt � t0Þ;
(9)

where kB is the Boltzmann constant and T is the temperature of the sys-
tem. Such an approach is a microscopic model characterizing a water-
type environment in terms of the collisions between the system and the
fast reservoir molecules.7,51 Due to the existence of stochastic terms in
the lattice dynamics, a particular numerical approach is needed. In our
simulations, we will use a suitable algorithm to integrate stochastic dif-
ferential equations known as the 3O4S2G procedure.52,53

In this work, we are interested in studying the propagation of
a spin-dependent polaron along a helical molecule. Therefore, our
starting point for all simulations will be an initially spin-
unpolarized wave-packet in a lattice at equilibrium, so that
ynð0Þ ¼ 0. As noticed in Ref. 39, in the absence of carrier–lattice
interaction, the chiral-induced SOC may give rise to a spatial sepa-
ration of the two spin-dependent components of the wave-packet.
The propagation of both spins in opposite directions induces a
finite spin current. In what follows, we will provide evidence that
this trend remains only at low temperature. However, as we will
demonstrate, such spin current is strongly temperature-dependent
and we will focus on analyzing its behavior at a finite temperature.

For simplicity, hereafter, we will use spin-independent on-site
energies en ¼ 0:03 eV and intersite hopping t" ¼ t# � t ¼ 0:5 eV.
Moreover, our initial normalized wave-packet will be Gaussian
such that w"nð0Þ ¼ w#nð0Þ / exp ½�ðn� n0Þ2=w2�. All simulations
were performed in a helical chain of size N¼ 1500, with initial parame-
ters n0 ¼ N=2 and w¼ 30. Finally, since our focus of interest is the
effect of finite temperature when there exists SOC, we will use a refer-
ence value of the charge–lattice coupling constant v ¼ 0:2 eV/Å.
Simulations with different values of v within the range of 0:1–0:6 eV/Å
have shown similar results. In order to assess the spin-transport prop-
erties of the helical molecule, we will monitor two related physical
quantities. On the one hand, we will characterize the polaron propaga-
tion by means of the centroid c(t) of both spin-dependent components
of the wave-packet as follows:

crðtÞ ¼
XN
n¼1

njwr
nðtÞj

2 � n0; (10)

with r ¼"; #. On the other hand, and more relevant in the develop-
ment of potential spintronic devices, we will calculate the resulting
spin current with the following definition:54

JsðtÞ ¼
2Dz

�h

XN
n¼1

Im t̂
�
w"�nþ1ðtÞw"nðtÞ � t̂w#�nþ1ðtÞw#nðtÞ

h i
: (11)

Here, we define t̂ ¼ t þ 2itso cos ðhÞ.
In order to evaluate the stationary spin current when the temperature

of the system is finite, a thermal average over time is required. Such aver-
age is performed by integrating the spin current for every time step, JsðtiÞ,
over a period of time Dt. Averaging starts when the spin current has
approximately reached its stationary value and finishes after a long enough
time for which the dispersion of the mean value barely varies. Moreover,
the small fluctuations at large times is taken as an estimation of the error
bar for the spin current. Thus, the average spin current is characterized by
the mean value as well as by the square root of the variance as follows:

hJsi ¼
1
Nt

X
ti2Dt

JsðtiÞ;

DJs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nt

X
ti2Dt

JsðtiÞ � hJsi½ �2
s

;
(12)

where Nt is the number of time steps in the simulations.
First, we analyze the dynamics of an initially spin-unpolarized

polaron centered at the middle of the chain. Figure 2 shows the com-
ponents of the carrier wave-function at time of t ¼ 400 fs for different
values of the temperature. The top panel displays the observed behav-
ior of the spin-dependent polaron at T¼ 0, in agreement with the

FIG. 2. Spin-dependent carrier wave-function at time t ¼ 400 fs as a function of
position in a lattice of N¼ 1500 sites with a SOC of tso ¼ 0:03 eV for different val-
ues of the system temperature (a) T¼ 0, (b) T ¼ 100, and (c) T ¼ 200 K.
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results of Ref. 39. We observe a spatial separation of the two spin-
components, signaling the appearance of a finite spin current. When
the temperature reaches a value of T ¼ 100K, the wave-function still
shows the same behavior, indicating the existence of a finite spin cur-
rent across the molecule, as depicted in Fig. 2(b). However, on further
increasing temperature up to T¼ 200K, thermal noise spoils the
coherence and the spatial separation of both components is almost
unnoticeable, as shown in Fig. 2(c).

In order to get a better insight into the spatial propagation of the
polaron, Fig. 3 presents the time-evolution of the centroid of every
spin-component of the wave-function. Figure 3(a) shows the centroids
as a function of time for different values of tso and T¼ 0. As can be
observed, the SOC is mainly responsible for the spin separation in the
helical molecule. Indeed, such behavior disappears when tso ¼ 0 and
becomes more relevant when tso is increased. On the other hand, Fig.
3(b) shows the same magnitudes for a fixed tso ¼ 0:03 eV at different
temperatures. These curves establish that thermal effects destroy
coherence needed to spatially separate the two spin-components and,
therefore, to give rise to a non-zero spin current, in agreement with

Fig. 2. These results point out the existence of a transition with regard
to the spin transport as a function of temperature. For the particular
parameters considered in the simulations shown in Fig. 3, such a tran-
sition takes place at a temperature between T ¼ 100 and T ¼ 200K.

We now discuss the spin current, defined in Eq. (11), resulting
from the separation of both spin components. As we are mainly inter-
ested in the temperature of the transition of the spin current, we will
present it in arbitrary units. Figure 4 shows the time-dependent spin
current for several values of temperature. In all considered cases but
the case at T¼ 0, one can see how thermal effects gives rise to a noisy
spin current that, for long enough times (t > 200 s), reaches a plateau.
In Fig. 4, we provide additional evidence of the existence of the ther-
mal transition occurring within the temperature range 100� 200K.
For T < 100K, the obtained spin current is quite steady around a
clear non-zero value. However, if T > 200K, the spin current rapidly
evolves to zero, although its fluctuations around this value increase
with temperature. In view of these results, we can conclude that two
well differentiated regimes for long-range spin transport exist in the
helical molecule when temperature changes.

Once the thermal transition in the system has clearly been estab-
lished, this section is devoted to its characterization. In order to do
that, we focus now on the thermal average of the spin current as
explained before. It is worth noticing that in our model thermal effects
are included by the way of the lattice dynamics represented in Eq. (8)
so that any thermal effect comes from the phonon bath. In view of the
lattice potentials given by Eq. (3), it is clear that the most relevant
parameter for the phonon dynamics is the lattice constant k.
Therefore, the transition temperature between the two spin-transport
regimes needs to be related to k.

Figure 5(a) shows the average spin current as a function of the
temperature of the system for several values of the lattice constant
around the PBH value (k¼ 0.04 eV/Å2). In all considered cases, a

FIG. 3. Centroid of the spin-dependent carrier wave-function in a lattice of
N¼ 1500 sites for (a) different values of the SOC at T¼ 0 and (b) different temper-
atures but a fixed tso ¼ 0:03 eV.

FIG. 4. Time-evolution of the spin current during thermalization in a chain of
N¼ 1500 sites for different values of the system temperature.
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smooth thermal transition is clearly established. Dispersion of the data
is almost negligible at low temperature when the spin current reaches
a well-defined non-zero value. However, they increase as the tempera-
ture rises up to the thermal transition to get the largest values when
the spin current presents strong fluctuations around zero (see Fig. 4).
Figure 5(a) also reveals that the thermal transition is shifted to higher
temperatures when the lattice-constant is increased. The latter can be
roughly understood by considering a 1D harmonic lattice. In such a
case, the phonon bandwidth is D ¼ �h

ffiffiffiffiffiffiffiffiffiffiffi
4k=m

p
. The latter must be

compared to the energy associated with the thermal vibrations in order
to separate the two spin-transport regimes. Thus, if D� kBT , the sys-
tem will be in the low-temperature regime and vice versa. This means
that the critical temperature will be then smaller if the lattice constant
is reduced. This is consistent with the results shown in Fig. 5(a). Figure
5(b) provides further support to the previous reasoning. Here, the spin
current is represented as a function of a reduced temperature T=

ffiffiffi
k
p

so that the dependence on the phonon bandwidth is removed. As
expected, the transition of the spin current now occurs for the same
reduced temperature, independently of the considered lattice constant.
Finally, we obtain the value of the critical temperature by fitting
the spin current shown in Fig. 5(a) to the function
FðTÞ / 1� tanh½ðT � TcÞ=a�. The inset of Fig. 5(b) represents the
obtained critical values on top of the curve TðkÞ ¼

ffiffiffi
k
p

, showing a
really good agreement. Once more, this supports our understanding of
the thermal transition in regard to the phonon dynamics in the
molecule.

Finally, we analyze how these results will be affected by the
change in the most characteristic parameters of the model, namely, the
spin–orbit coupling and the charge–lattice interaction. Figures 6(a)

and 6(b) present the average spin-current as a function of the tempera-
ture for the case of reference considered in Fig. 4 but different values
of tso or v, respectively. In all considered cases, the thermal transition
is still clearly present. Nevertheless, the magnitude of the low-
temperature spin-current and the transition temperature Tc depend
on the particular values of the model parameters. Figure 6(a) shows
that the nonzero spin-current is strongly reduced if the spin–orbit cou-
pling in the system decreases. This was already pointed out in Fig.
3(a). However, it turns out that such spin-current saturates for a large
enough tso and hardly depends on the charge–lattice coupling [see Fig.
6(b)]. On the other hand, an increase in v or a decrease in tso, although
to a lower extend, gives rise to a shift of the transition temperature to
lower value. This will lead eventually to a reduction in the thermal
operating window of the spin transport in the system.

In this paper, we have proposed a formalism to include thermal
effects in the long-range spin transport in helical molecules. Our pro-
posal is to combine two different approaches already demonstrated as
powerful tools to describe carrier dynamics in DNAmolecules. On the
one hand, the carrier dynamics is described by way of a tight-binding
Hamiltonian already established to describe the chiral-induced spi-
n–orbit coupling in helical molecules.26,27 On the other hand, the car-
rier–lattice coupling, in addition to the effect of temperature, is
modeled by means of the PBH model combined with the Langevin
approach.2,7 The consideration of this thermal noise needs a particular
numerical algorithm to integrate stochastic differential equations.52,53

We characterize the time-evolution of an initially spin-
unpolarized spinor wave-packet located in the lattice in its equilib-
rium configuration. We establish that there exists a thermal transition
between two well-differentiated regimes. At temperatures below a criti-
cal one, our results demonstrate that, due to the chiral-induced
spin–orbit coupling, the wave-packets associated with both spinor

FIG. 5. Thermalized spin current for different values of the stacking potential
parameter k as a function of (a) temperature T and (b) the reduced temperature
T=

ffiffiffi
k
p

. Inset shows the transition temperature as a function of k. Symbols refer to
fitting values in comparison with the solid line

ffiffiffi
k
p

.

FIG. 6. Thermalized spin current for different values of the spin–orbit tso and charge–
lattice v couplings as a function of temperature T.
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components propagate in opposite directions. This is a clear evidence of
the existence of a nonzero spin current. Such a behavior is consistent
with a previous study at T¼ 0, in which no carrier–lattice interaction
was considered.39 However, if the temperature of the system is larger
than the critical one, this remarkable feature disappears since the spinor
wave-packet spreads out very quickly and no net spin separation can be
observed. Therefore, the resulting spin current oscillates around zero
due to the thermal fluctuations. Lowering the charge– carrier and spi-
n–orbit coupling constants below the values widely used in the litera-
ture results in a slight decrease in the transition temperature, but the
general trend of the phenomenon remains. Finally, we discuss this ther-
mal transition and calculate the critical temperature in comparison with
the phonon dynamics of the PBH lattice.2 Here, we take as a reference
scenario a 1D harmonic lattice to estimate that the critical temperature
scales with the stacking constant as

ffiffiffi
k
p

. We numerically demonstrate
that in the system under consideration, although it is clearly more com-
plex than the 1D harmonic lattice [see Eq. (8)], such a trend still holds.

It is worth mentioning that the charge transport in DNA mole-
cules has been proved to be clearly affected by disorder correlations due
to dynamical fluctuations from the surrounding solvent.55 Although a
detailed study of this issue is beyond the present study, let us briefly dis-
cuss this regard. Indeed, such effects result in a widening of the system
transmission band which can be effectively considered as an increase in
its electronic hopping. In Ref. 56, it was also demonstrated that the
effective hopping increases with lowering the temperature in molecular
nanowires. Therefore, the eventual inclusion of on-site disorder correla-
tions in our model would lead to a lower effective temperature in our
simulations. Thus, the transition temperature at which the system stops
supporting a non-zero spin-current will be higher and a larger thermal
operating region for our proposed device would be expected.
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