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Abstract
We address exotic optical response of a planar metasurface comprising a monolayer of regularly
spaced quantum three-level emitters with a doublet in the ground state (the so-called
Λ-emitters). All emitters are coupled by the retarded dipole field which depends on the current
state of all emitters. This coupling introduces a feedback into the system. Complex interplay of
the latter with the intrinsic nonlinearity of a three-level system results in several remarkable
effects in the monolayer’s optical response, such as multistability, self-oscillations, and chaos.
The peculiarity of the considered system is that some of the predicted nonlinear effects manifest
themselves at very low excitation field intensities (on the order of 1 W/cm2), which is
advantageous for possible applications: the monolayer can operate as a perfect reflector, a
bistable mirror, and a THz or noise generator. It is argued therefore that the proposed system is a
promising candidate for a building block for various photonic nano-devices.

Keywords: optics of metamaterials, optical nonlinear dynamics, optical instabilities
and complexity

(Some figures may appear in colour only in the online journal)

1. Introduction

After the discovery of graphene [1, 2] other crystal-
line (quasi)two-dimensional (2D) materials with fascinating
optical and transport properties have been fabricated, such
as transition metal dichalcogenides [3–6] hexagonal boron
nitride, black phosphorous, and other inorganic quasi-2D sys-
tems (see for reviews [7–10]), as well as mixed-dimensional
van der Waals heterostructures [11], artificial 2D supercrys-
tals based on semiconductor quantum dots (SQDs) [12–14],
organic 2D polymers [15], and 2D nanostructures assembled
from sequence-defined molecules (DNAs, peptides etc) [16].

Assemblies of SQDs organized periodically are of spe-
cial interest from the viewpoint of optical and opto-electronic
applications because they can absorb light over the whole
optical spectrum, from the infrared to the ultraviolet.

∗
Author to whom any correspondence should be addressed.

Compared to an isolated SQD, heterostructures provide addi-
tional degrees of freedom for controlling their properties, such
as lattice geometry and material parameters, which opens
unprecedented possibilities to engineer optical properties
of these systems opening promising perspectives for nano-
photonics. One of the key ingredients of dense 2D optical
systems is the long range interaction between emitters; it
results in many promising effects (see for example [17–
19] and references therein). In particular, the band structure
[20–24] and linear optical properties [25, 26] of 2D super-
crystals have been also addressed recently, showing that the
lattice geometry alone provides considerable room for tun-
ing of the physical properties of these structures. Nonlin-
ear optical response of these systems is a more intriguing
and challenging problem and has not been widely discussed
so far.

In recent publications, [27–29] the nonlinear optical
response of a 2D supercrystal comprising SQDs with a
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Figure 1. Energy level diagram of a Λ-emitter comprising the upper
state |3⟩ and the lower doublet states |2⟩ and |1⟩. The energies of
these states are ε3 = ℏω3, ε2 = ℏω2, and ε1 = ℏω1 = 0. Solid
arrows indicate the optically allowed transitions with corresponding
transition dipole moments d32 and d31. Wavy arrows denote the
spontaneous decay of the upper state to the states of the doublet
with rates γ32 and γ31. Dashed arrow indicates the relaxation within
the doublet with rate γ21.

ladder arrangement of the energy levels has been investigated
theoretically. It has been found that this system can manifest
fascinating nonlinear optical effects, including multistability,
periodic and aperiodic self-oscillations, chaos, and transient
chaos. 2D arrays of V-type quantum emitters reveal similar
features [30–33]. The underlying characteristic that gives rise
to these nonlinear effects is the secondary field produced by
the optical transition dipoles, which introduces a mirrorless
feedback into the system. The interplay of the latter with
the intrinsic nonlinearity of emitters themselves gives rise
to the above mentioned exotic optical response of the SQD
supercrystals.

In this paper, we investigate theoretically the nonlinear
optical response of a monolayer of Λ-emitters, i.e. three-level
systems with a single upper state and a doublet in the ground
state (see figure 1 for the level schematics). Doped quantum
dots [34] and organic nanocrystals with vibronic structure
of the ground state [35] are some examples of such type
of emitters. Due to high density of emitters and high oscil-
lator strengths of the optical transitions, the total (retarded)
dipole-dipole interactions among emitters have to be taken
into account. The real part of this interaction results in the
dynamic shift of the emitter’s energy levels while the ima-
ginary part describes the collective radiative decay of emit-
ters; both parts depend on the population differences among
levels (see, e.g. [36, 37]). These two effects are crucial for
the nonlinear dynamics of the system. As a result, in addi-
tion to bistability, analogous to that manifested by a thin layer
of two-level emitters, [36–44] we predict multistability, self-
oscillations and chaotic behavior in the optical response of
the supercrystal of Λ-emitters. Within a certain spectral range,
the monolayer operates as a bistable mirror, similar to a 2D
supercrystal of SQDs with the ladder and V arrangement of

the energy levels [27–29, 32]. To uncover the character of the
instabilities, we use the standard methods of nonlinear dynam-
ics, such as the analysis of the Lyapunov exponents, bifurca-
tion diagrams, phase-space maps, and Fourier spectra [45–53].
To the best of our knowledge, a detailed study of the optical
response of assemblies of Λ-emitters has not been carried out
so far (some preliminary results have been reported in a short
paper [54]).

The paper is organized as follows. In the next section,
we describe the model of a monolayer comprising Λ-emitters
and the mathematical formalism that we use to study it. The
formalism is based on the density matrix approach to the
description of the optical dynamics of an isolated emitter
combined with the equation for the field acting on it; the
latter is addressed within the mean-field approximation. In
section 3, we present the results of numerical calculations of
the monolayer optical response, including the stationary solu-
tion (section 3.1), analysis of bifurcations (section 3.2), and
the system dynamics (section 3.3). Discussion of the underly-
ing physical mechanisms of the predicted effects is provided
in section 3.4. In section 4, the close-to-unity reflectance of
the monolayer is discussed. We conclude and argue about the
relevance of our results for practical applications in section 5.

2. Model and theoretical background

We address a 2D N×N square lattice of quantum emitters
spaced by the lattice constant a. All emitters comprising the
monolayer have the Λ-type arrangement of the energy levels
(as shown in figure 1) in which transitions are allowed only
between the upper state |3⟩ and either the doublet |1⟩ or |2⟩
states. These transitions are characterized by the transition
dipole moments d31 and d32, respectively. For the sake of sim-
plicity, we set them to be real and parallel to each other and
to one of the lattice vectors, so that d32 = µd31 ≡ µd. The
upper state |3⟩ can decay spontaneously to the states of the
doublet |2⟩ and |1⟩ with the rates γ32 and γ31, respectively,
which obey the relationship γ32 = µ2γ31. The doublet split-
ting ω21 is assumed to be small compared to the optical trans-
ition frequencies ω32 = ω3 −ω2 and ω31 = ω3 −ω1. We con-
sider also the normal incidence of the external field polarized
along the transition dipole moments (which is not an essential
restriction6) and having the frequency ω0.

The optical dynamics of the monolayer is governed by the
Lindblad quantum master equation for the density operator
ρ(t) [55, 56]. Within the mean-field and the rotating wave
approximations this equation reads

ρ̇(t) =− i
ℏ
[
HRWA(t),ρ(t)

]
+L{ρ(t)}, (1a)

HRWA(t) = ℏ(∆21σ22 +∆31σ33)

− iℏ [Ω31(t)σ31 +Ω32(t)σ32] + h.c., (1b)

6 Considerations of other polarizations of the incident field would introduce
an unnecessary technical complications while it can be taken into account by
rescaling the incident intensity.
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L{ρ(t)}= 1
2
γ31 ([σ13ρ(t),σ31] + [σ13,ρ(t)σ31])

+
1
2
γ32 ([σ23ρ(t),σ32] + [σ23,ρ(t)σ32])

+
1
2
γ21 ([σ12ρ(t),σ21] + [σ12,ρ(t)σ21]) , (1c)

σij = |i⟩⟨ j|, i, j= 1,2,3, (1d)

where the dot in equation (1a) denotes the time derivative, ℏ
is the reduced Plank constant,HRWA is the Λ-emitter Hamilto-
nian in the rotating wave approximation (RWA), square brack-
ets denote commutators, L is the Lindblad relaxation oper-
ator given by equation (1c) [55, 56]. In equation (1b), ℏ∆21 =
ℏ(ω2 −ω1) is the doublet energy splitting, while ℏ∆31 =
ℏ(ω3 −ω0) is the energy of the state |3⟩ in the rotating frame.
Alternatively, the quantity∆31 can be interpreted as the detun-
ing of the incident field frequency ω0 from the resonance fre-
quency of the 1↔ 3 transition. Likewise, ∆32 =∆31 −∆21

is the detuning from the frequency of the 2↔ 3 transition.
We define also Ω31(t) = d31 ·E(t)/ℏ≡ Ω(t) and Ω32(t) =
d32 ·E(t)/ℏ≡ µΩ(t), where E(t) is the slowly-varying amp-
litude of the total mean field acting on a Λ-emitter. The latter
field is the sum of the amplitude of the incident field, E0(t),
and the amplitude of the secondary field produced by all oth-
ers dipoles at the position of the given Λ-emitter. Thus, Ω(t)
is the Rabi amplitude of the mean field and can be written in
the following form [29] (hereafter, we omit the explicit time
dependence in all variables)

Ω= Ω0 +(γR − i∆L)(ρ31 +µρ32), (2)

where Ω0 = d31 ·E0/ℏ is the Rabi amplitude of the incident
field and the second term represents the Rabi amplitude of
the secondary field, in which the two terms proportional to γR
and ∆L are far-zone and near-zone fields, respectively. The
near-zone field is analogous to the Lorentz local-field correc-
tion [57]. In the general case, γR and∆L depend on the lattice
geometry and the ratio of the reduced excitation wavelength
λ̄= λ/(2π) to the linear system size. For a simple square lat-
tice of emitters with the linear size Na one obtains [29]

γR =
3
8
γ31N

2, (3a)

∆L ≈ 3.39 γ31

(
λ̄

a

)3

, (3b)

if Na≪ λ̄ (point-like system). In the opposite case of Na≫ λ̄
(extended system), γR and∆L are given by [29]

γR ≈ 4.51 γ31

(
λ̄

a

)2

, (4a)

∆L ≈ 3.35 γ31

(
λ̄

a

)3

. (4b)

As follows from equations (3a) to (4a), γR is determined by
either the total number of emitters in the system (for a point-
like system: Na≪ λ̄) or by the number of emitters within the
area of λ̄2 (for an extended sample: Na≫ λ̄). The physical
meaning of the parameter γR is clear then: it is nothing but
the Dicke superradiant constant [29, 58–60] which determ-
ines the collective radiation relaxation rate ofΛ-emitters in the
monolayer.

On the other hand, the parameter ∆L is almost independ-
ent of the system size; [29] it describes the near-zone dipole-
dipole interaction of a Λ-emitter with all others. The lat-
ter interaction is what introduces a strong feedback into the
system; for realistic systems ∆L ≳ 1000 γ31, giving rise to
an additional strong nonlinearity. Also, for a dense extended
sample (λ̄≫ a), which is the most interesting case we address
hereafter: ∆L ≫ γR.

In the basis of the states |1⟩, |2⟩, and |3⟩, the system of
equations equations (1a)–(1c) for the density matrix elements
ραβ (α,β = 1,2,3) of a Λ-emitter in the monolayer reads

ρ̇11 = γ21ρ22 + γ31ρ33 +Ω∗ρ31 +Ωρ∗31, (5a)

ρ̇22 =−γ21ρ22 + γ32ρ33 +µ(Ω∗ρ32 +Ωρ∗32), (5b)

ρ̇33 =−(γ31 + γ32)ρ33 −Ω∗ρ31 −Ωρ∗31

−µ(Ω∗ρ32 +Ωρ∗32), (5c)

ρ̇31 =−
[
i∆31 +

1
2
(γ31 + γ32)

]
ρ31

+Ω(ρ33 − ρ11)−µΩρ21, (5d)

ρ̇32 =−
[
i∆32 +

1
2
(γ31 + γ32 + γ21)

]
ρ32

+µΩ(ρ33 − ρ22)−Ωρ∗21, (5e)

ρ̇21 =−
(
i∆21 +

1
2
γ21

)
ρ21 +µΩ∗ρ31 +Ωρ∗32 . (5f )

Equations (5a)–(5f ) conserve the total population, ρ11 + ρ22 +
ρ33 = 1, i.e. we consider the spontaneous decay to be the only
channel of the population relaxation. Dephasing of the Λ-
emitter states is also neglected, which is a reasonable assump-
tion for the cryogenic temperatures.

3. Numerical results

In our numerical calculations we used the following set of
parameters (similar to those in [29]): γ31 ≈ 3× 109 s−1, the
ratio µ= d32/d31 = (γ32/γ31)

1/2 is taken to be unity for sim-
plicity. The magnitudes of γR and∆L depend on the ratio λ̄/a.
Taking λ̄∼ 100 ÷ 200 nm and a∼ 10 ÷ 20 nm, we obtain
the following estimates: γR ∼ 1012 s−1 and ∆L ∼ 1013 s−1.

3
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Accordingly, we set γR = 100γ31 and ∆L = 1000γ31. In what
follows, the spontaneous emission rate γ31 is used as the unit
of all quantities having dimension of frequency, while γ31

−1

is used as the time unit.
The remaining two parameters are the doublet splitting∆21

and the relaxation rate γ21 in the 2→ 1 channel. As we show
below, the optical response of the system is very sensitive to
these two parameters which can be tuned in an experiment,
for example, by the magnetic field or the temperature, for
which reason they are considered to be variable quantities.
We note that in the case of the ladder-like arrangement of the
energy levels (see for example, [29]), there are no analogs of
the low-frequency coherence ρ21 and its adjustable relaxation
described by the rate γ21, making the Λ-type system qualitat-
ively different from the ladder-like one. The 2→ 1 relaxation
channel provides an additional tunable degree of freedom that
can be used to tailor the optical response of the monolayer of
Λ-emitters.

First, we address the optical response for the case in
which the incident field is in resonance with the transition
1↔ 3 of an isolated Λ-emitter, i.e. ∆31 = 0, ∆32 =−∆21.
Here, it is important to point out that the bare resonances,
∆31 = 0 and ∆32 = 0, are renormalized (dressed) by the sec-
ondary field which acts on the emitter. Apart from shifting
the energy levels the secondary field couples the two trans-
itions, 1↔ 3 and 2↔ 3. As the result, one of these dressed res-
onances remains approximately unchanged ∆̃31 ≈∆31 = 0,
while the other shifts down to ∆̃31 ≈∆L (see section 3.4 for
more detailed discussion). The monolayer optical response
in the vicinity of ∆31 =∆L will be considered as well
(section 4).

The system of equations (5a)–(5f ) is a system of stiff dif-
ferential equations, characterized by several significantly dif-
ferent time scales. In our case, they are γ−1

31 ≫ γ−1
R ≫∆−1

L .
The doublet splitting ∆21 and the relaxation rate γ21 bring in
two additional time scales. To solve the system numerically
we use specialised routines for stiff systems.

3.1. Stationary analysis

In this section we consider the stationary regime, setting to
zero all time derivatives in equations (5a)–(5f ). To solve
these stationary equations, we use the new analytical method
developed in the recent paper, [29]. The results calculated for
two values of the doublet splitting∆21 and two relaxation rates
γ21 are presented in figure 2.

As is seen from figure 2, the Rabi magnitude |Ω| of the
mean field can have several solutions (up to five for γ21 = 0.05
and ∆21 = 15) for some values of the Rabi magnitude |Ω0| of
the incident field. To explore the stability of different solutions,
we used the standard Lyapunov exponents analysis [48, 49]
calculating the eigenvalues Λk (k= 1,2, . . . ,8) of the Jacobian
matrix of the right hand side of equations (5a)–(5f ) as a
function of |Ω|. The Lyapunov exponent with the maximal
real part determines the character of a stationary solution: if
maxk{Re [Λk]}⩽ 0 the solution is stable and unstable other-
wise. The values of maxk{Re [Λk]} are plotted in the right part
of each panel in figure 2.

Note a very important feature of the stationary character-
istics: not only branches with the negative slope are unstable,
which is always the case, but also some parts of branches
with the positive slopes. Quite remarkably, both the lower and
upper stationary branches are only partially stable. In partic-
ular, for ∆21 = 100, the stationary curve is unstable within a
wide range of Rabi magnitudes |Ω0|.

3.2. Bifurcation diagrams

The bifurcation diagram is a powerful tool to explore possible
scenarios of a dynamical system behavior [47, 48, 50, 53].
The diagram represents the system dynamics qualitatively as
a function of some controlling (bifurcation) parameter. In our
case, the most natural bifurcation parameter is the Rabi mag-
nitude |Ω0| of the incident field, while the Rabi magnitude of
the mean field |Ω| is one of the possible measurable outputs.
Below, we describe briefly an efficient procedure of construct-
ing the bifurcation diagram, which was proposed in [29].

For each value of |Ω0| and appropriate sets of initial con-
ditions, equations (5a)–(5f ) are integrated until all transi-
ents vanish and the system reaches an attractor. Then all the
extrema of |Ω(t)| on the attractor are obtained over a suffi-
ciently long time interval T. All the extremal values of |Ω(t)|
are then plotted as points for the current value of the Rabi mag-
nitude |Ω0|. The set of such points plotted for all values of |Ω0|
form the bifurcation diagram. The distribution of the extrema
of |Ω(t)| provides qualitative information on possible types of
the system dynamics. For example, if the dynamics converges
to a stable fixed point, all the extrema collapse onto a single
point given by the corresponding stable stationary solution. If
the system is on a periodic orbit, all the extrema collapse onto
a finite set of points separated by gaps. Quasiperiodic motion
would appear as vertical bars separated by gaps, while chaos
would manifest itself as a continuous vertical line. For more
detail, see [29].

Figures 3 and 4 show the bifurcation diagrams, calcu-
lated as described above, for the case when the incident field
is tuned to the resonance 1↔ 3 of the isolated Λ-emitter
(i.e. ∆31 = 0,∆32 =−∆21). The data presented in figure 3 are
obtained for the doublet splitting ∆21 = 15, while those in
figure 4—for ∆21 = 100. The relaxation constant γ21 = 0.01
in both cases. The double-S-shaped stationary characteristics
(solid black and dashed red curves), which are taken from
figure 2, are also given for reference. Upper panels in both
figures display the overall bifurcation diagram, while the lower
ones show blow ups of regions with interesting bifurcations.

Trivial parts of the bifurcation diagrams coincide with the
stable part of the corresponding stationary curves (stable fixed
points). However, there are also parts of the bifurcation dia-
grams which reveal more interesting dynamics. For example,
there are sets of thin lines of points separated by gaps corres-
ponding to some periodic orbits or limit cycles (see the vicinity
of |Ω0| ≈ 50). There are also dense features formed by vertical
very dense lines of points, suggesting that the extrema of the
mean-field Rabi magnitude |Ω(t)| are distributed randomly, so
that the signal can be of the chaotic nature. Thus, for differ-
ent values of the Rabi magnitude |Ω0| of the incident field,
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Figure 2. Stationary solutions to equations (2) and (5a)–(5f ) obtained for the case when the incident field is in resonance with the transition
1↔ 3 of an isolated Λ-emitter (∆31 = 0) for two values of the relaxation rate γ21 = 0.01 (left column) and γ21 = 0.05 (right column) and
two values of the doublet splitting ∆21 = 15 (upper row) and∆21 = 100 (lower row). Left panels in each plot present the stationary
|Ω|-vs-|Ω0| dependence: stable (unstable) stationary solutions are shown by the solid black (dashed red) lines. Right-hand sides of the
panels show the maximum value of the real parts of Lyapunov exponents. Filled circles in the upper left panel indicate the points that were
further used as initial conditions for time-domain calculations of |Ω(t)| (see figure 5). Arrows in the lower left panel show the Rabi
magnitudes |Ω0|, for which the time-domain behavior of |Ω(t)| was calculated for the ground state initial condition (see figure 6).

the system dynamics manifests various types of attractors. We
address their properties in more details below (see section 3.3).

Figures 3 and 4 show that the system has different bifurc-
ation points. Consider, for example, the vicinity of |Ω0| ≈ 15
in the lower panel of figure 3; the system can only converge
to the lower stable branch of the steady state (a fixed point)
given by the thick solid black line. If |Ω0| is increased the
system would follow the lower branch until the latter looses
stability at |Ω0| ≈ 25 (the line changes from solid black to
dashed red). At this point the system switches abruptly to the
stable limit cycle which is enclosing the steady state branch
(the limit cycle is given by thin black lines). Such a scenario
is known as a subcritical Andronov-Hopf bifurcation. Then,
if the field magnitude |Ω0| is swept back the system would
remain at the stable limit cycle attractor until the latter disap-
pears at the saddle-node bifurcation of limit cycles (limit cycle
folding point) [47, 50, 53] at |Ω0| ≈ 19.3. Note that the two
bifurcations occur at different values of |Ω0|, so the bifurca-
tion diagram manifests a typical hysteresis.

The next couple of bifurcations can be seen at about |Ω0| ≈
120–130 in figure 3, where two limit cycles seem to get fol-
ded. Finally, at about |Ω0| ≈ 160 (the left side of the dense fea-
ture) a limit cycle switches to a chaotic trajectory. From that
moment on, if the field amplitude is increased slowly enough,
the system remains on a chaotic trajectory until the latter disap-
pears at about |Ω0 ≈ 210|, and the system switches to a stable
fixed point (the upper stable branch of the stationary solution).
Note that upper stable branch coexists with other attractors
within a wide range of the bifurcation parameter, which sug-
gests that their basins of attraction are well separated.

As far as the chaotic trajectories in figure 3 are concerned,
given that they coexist with fixed points, such a chaos can be
of the transient nature. If the system is let to evolve for suffi-
ciently long time, it might finally end up at the stable stationary
point (a steady-state). However, the lifetime of a chaotic tran-
sient can be very long, and it is hardly predictable; this time
is known to be very sensitive to initial conditions and even to
the integration method, which is a typical feature of a transient

5
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Figure 3. Top: the overall bifurcation diagram (extrema of the Rabi
magnitude |Ω(t)| of the mean field as a function of the Rabi
magnitude |Ω0| of the incident field) calculated for the case when
the incident field is in resonance with the transition 1↔ 3 of an
isolated Λ-emitter (∆31 = 0). Here, the doublet splitting ∆21 = 15
and the relaxation rate γ21 = 0.01. The stationary (double S-shaped)
solution is given for reference. Bottom: the blow-up of the part of
the bifurcation diagram with nontrivial dynamics.

chaos (see [61, 62] and references therein). In our calculations,
the system remained on the chaotic trajectory for the whole
simulation time (over hundreds of orbits). We can therefore
believe that it is an attractor. Nevertheless, we can not dis-
card completely that it is a very long living transient in this
case.

A very different scenario can be seen in the case of
∆21 = 100 shown in figure 4. Here, there are bufurcations in
which the limit cycle is converted into a chaotic trajectory
and vice versa (see the vicinity of the dense feature blown
up in the lower panel). In this case there are no coexisting
stable fixed points, and the chaotic trajectories are real attract-
ors. We have confirmed their chaotic nature by addressing

Figure 4. Same as in figure 3, but for ∆21 = 100.

their Fourier spectra and Lyapunov exponents (see the next
section).

Finally, we would like to note that bifurcation diagrams
of 2D systems of Λ-emitters are completely different from
those of ladder-like systems [29], in particular, in the former
case there are wide windows of parameters within which there
are no stable solutions. Moreover, the instabilities are pre-
dicted here for very low intensities of the incident field (see
also section 4), which is advantageous for experimental meas-
urements and applications. A more detailed analysis of all
possible bifurcations in the system is a stand-alone problem,
which is beyond the scope of the present work.

3.3. Dynamics

In this section, we address a variety of nontrivial attractors. To
do this, we solve equations (5a)–(5f ) with two types of ini-
tial conditions: (a) the system is initially in the ground state
(the only non-zero density matrix element is ρ11(0) = 1), and

6
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Figure 5. First column—time-domain behavior of the Rabi magnitude |Ω(t)| of the mean field, second column—the Fourier magnitude
spectrum f̄(ω), the third column—the two-dimensional phase-space map (ReΩ, ImΩ) of the attractor, calculated for the initial conditions
that were the following points on the stationary characteristics: (a) |Ω0|= 50 and |Ω|= 0.0923, (b) |Ω0|= 100 and |Ω|= 1.5213,
(c) |Ω0|= 150 and |Ω|= 2.3637, (d) |Ω0|= 180 and |Ω|= 2.9251. The inset shows the blow up of a quasi-continuous feature of the
Fourier spectrum. Right column—time-domain behavior of the Rabi magnitude |Ω(t)| calculated for the ground state as the initial condition
and at the same values of Rabi magnitude |Ω0| of the incident field as in the left plot: (a) |Ω0|= 50, (b) |Ω0|= 100, (c) |Ω0|= 150, and
(d) |Ω0|= 180. All quantities were calculated for the doublet splitting∆21 = 15 and the relaxation constant γ21 = 0.01.

(b) the system is initially in a stationary state. If the sys-
tem was exactly in a stationary state it would remain there
forever. However, due to the finite precision of calculations
the system is always within a small vicinity of an exact sta-
tionary state. Therefore, it is either attracted to the station-
ary state if the latter is a steady-state, or drifts away from it
otherwise.

The results of our numerical calculations are presented
in figure 5 (for the doublet splitting ∆21 = 15) and figure 6
(for ∆21 = 100). The relaxation constant γ21 = 0.01 in both
cases. Figure 5 shows the time-domain behavior of the mean-
field magnitude |Ω(t)| in the first column, the Fourier mag-
nitude spectra f̄(ω) = |

´
TΩ(t)e

iωtdt | in the second column,
and the two-dimensional phase-space map (ReΩ, ImΩ) of
the attractor in the third column. These results were calcu-
lated using the following stationary points (shown by filled
circles in the upper panel of figure 2) as the initial conditions:
(a) |Ω0|= 50 and |Ω|= 0.0923, (b) |Ω0|= 100 and |Ω|=
1.5213, (c) |Ω0|= 150 and |Ω|= 2.3637, and (d) |Ω0|= 180
and |Ω|= 2.9251. In the first three cases (a)–(c), the system
evolves towards limit cycles, which is confirmed by the fact
that the Fourier spectrum is a set of equidistant lines, while

the trajectory in the phase space is apparently closed. Contrary
to that, in the case (d) the attractor has characteristics typical
for a chaotic motion: its Fourier spectrum is quasi-continuous,
while the trajectory fills a finite area in the phase space. We
have also calculated the Lyapunov exponents on the latter tra-
jectory and found that one of them was positive, which con-
firms that the trajectory is chaotic.

The right column in figure 5 shows the time-domain beha-
vior of the mean-field magnitude |Ω(t)| for the case when the
system is initially in the ground state and for the same set of the
incident field magnitudes |Ω0|: (a) |Ω0|= 50, (b) |Ω0|= 100,
(c) |Ω0|= 150, and (d) |Ω0|= 180. In first two cases (pan-
els (a) and (b)), the system evolves towards the limit cycles
described by the Fourier spectrum and the phase map in rows
two and three respectively. However, as it can be seen from
the comparison of the dynamics presented in the first and the
last columns (rows (a) and (b)), when the system starts from
the ground state, it reaches the same limit cycle attractor much
faster. On the other hand, in the last two cases (panels (c) and
(d)) the system converges to fixed points on the upper stable
branch of the stationary characteristics. Sensitivity to the ini-
tial conditions is an inherent property of dynamical systems
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Figure 6. Time-domain behavior of the Rabi magnitude |Ω(t)| of the mean field (left column), the Fourier magnitude spectrum f̄(ω)
(central column), and the two-dimensional phase-space map (ReΩ], ImΩ) of the attractor (right column) calculated for the ground state as
the initial condition, the doublet splitting∆21 = 100, and the relaxation constant γ21 = 0.01. Three values of the Rabi magnitude |Ω0| of the
incident field were used in these calculations: upper row (a) |Ω0|= 100, row (b) |Ω0|= 200, row (c) |Ω0|= 301.4, and lower row
(d) |Ω0|= 400. The inset blows up a continuous feature of the Fourier spectrum.

and is considered to be one of the possible ways to encode
information [63].

Figure 6 shows the mean-field dynamics calculated for
the doublet splitting∆21 = 100, the relaxation constant γ21 =
0.01, and the ground-state initial conditions. Three values of
the Rabi magnitude |Ω0| of the incident field were considered
(these are indicated by arrows in lower left panel of figure 2):
upper row (a) |Ω0|= 100, row (b) |Ω0|= 200, row (c) |Ω0|=
301.4, and lower row (d) |Ω0|= 400. The three columns show
the time-domain behavior, the Fourier spectrum, and the phase
map, respectively.

As can be seen from figure 6, for lower external field mag-
nitudes, such as |Ω0|= 100 and |Ω0|= 200 the system evolves
towards limit cycles, whereas for the larger |Ω0|= 301.4 the
attractor is rather a chaotic orbit; the latter was also confirmed
by the Lyapunov exponents analysis. As the external field is
increased further, the system’s attractor converts back to a
simple limit cycle: see the case |Ω0|= 400 in figure 6. Bifurc-
ations corresponding to these changes of the attractors can be
clearly seen in figure 4 (they have been discussed above). In
these four cases there is only one attractor for each value of
|Ω0| and therefore the system evolves towards it for whatever
initial condition.

3.4. Qualitative reasoning

As was shown above, the monolayer optical response mani-
fests a variety of fascinating properties: hysteresis, self-
oscillations, and chaos. The physical origin of these effects is
the secondary field acting on an emitter; the latter field depends
on the current state of the emitter itself resulting in a nonlinear
feedback which gives rise to various instabilities.

To demonstrate our reasoning, we consider equations (5d)
and (5e). Substituting therein the expression (2) for the mean-
field Rabi amplitude Ω, one obtains

ρ̇31 =− [i∆31 +Γ31

− (γR − i∆L)(Z31 −µρ21)]ρ31

+µ(γR − i∆L)(Z31 −µρ21)ρ32

+Ω0(Z31 −µρ21), (6a)

ρ̇32 =− [i∆32 +Γ32

− µ(γR − i∆L)(µZ32 − ρ∗21)]ρ32

+(γR − i∆L)(µZ32 − ρ∗21)ρ31

+Ω0(µZ32 − ρ∗21), (6b)

8
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where Γ31 =
1
2 (γ31 + γ32), Γ32 =

1
2 (γ31 + γ32 + γ21), Z31 =

ρ33 − ρ11, and Z32 = ρ33 − ρ22. Equations (6a) and (6b)
describe two coupled nonlinear oscillators driven by external
forces. An important peculiarity of this system is that all
oscillator characteristics, such as frequencies, relaxation rates,
coupling strengths, and the driving force amplitudes depend on
the current state of the Λ-emitter. These dependencies origin-
ate from the secondary field (produced by all other emitters)
which acts on the given emitter. Note that such field is absent
in equations for an isolated emitter. The secondary field results
in (a) the renormalization of the transition frequencies, that is
ω31 → ω31 +∆LZ31 +µ Im[(γR− i∆L)ρ21] and ω32 → ω32 +
µ2∆LZ21 +µ Im[(γR− i∆L)ρ

∗
21] for transitions 1↔ 3 and

2↔ 3, respectively, and (b) in the additional damping of the
two transitions described by −γRZ31 +µRe[(γR− i∆L)ρ21]
and −µ2γRZ32 +µRe[(γR− i∆L)ρ

∗
21]. As can be seen, both

renormalizations depend on the current state of the considered
emitter itself, thus having a dynamic nature.

In the absence of the incident field the states |2⟩ and |3⟩
are not populated, for which reason Z32(0) = 0 and ρ21(0) = 0
whereas Z31(0) =−1 and, therefore, only the transition 1↔ 3
experiences the above mentioned renormalization. The initial
conditions in this case are the following: the actual detun-
ing from the 1↔ 3 resonance is (∆31 −∆L) while the initial
relaxation rate of this transition is (γ31 + γ32)/2+ γR. Given
that ∆L ≫∆31 and γR ≫ (γ31 + γ32)/2, it is ∆L and γR that
determine the resonance detuning and the relaxation rate of
the 1↔ 3 transition initially. All other resonance detunings
and decay rates remain unchanged.

The second terms in the right-hand sides of equations (6a)
and (6b) couple the two oscillators through the sec-
ondary field: ρ31 is coupled to ρ32 with the strength
(γR − i∆L)(Z31 −µρ21) while ρ32 is coupled to ρ31 with the
strength (γR − i∆L)(µZ32 − ρ∗21). Initially, the oscillators are
decoupled because Z32(0) = ρ32(0) = ρ21(0) = 0. However,
they start coupling to each other as soon as the upper doublet
state |2⟩ is populated, which occurs immediately after the
population of the upper state |3⟩ and subsequent decay to the
state |2⟩ of the doublet. Such coupling of the transitions 2↔ 1
and 3↔ 2 results in an additional dynamic coupling-driven
renormalization of the transition frequencies and relaxation
rates. In what follows, we will refer to the whole secondary-
field-driven renormalization of Λ-emitter’s states/transitions
as to dressing.

We believe that a complicated interplay of the above men-
tioned dynamic dressing effects, which change the resonance
conditions and redistribute population among levels, gives rise
finally to various instabilities of the system’s response.

4. Reflectance

In our analysis of the monolayer optical response we used the
Rabi amplitude Ω of the mean field as the studied output. In
experiment, however, the reflected or transmitted field intens-
ity is commonly measured. These two fields are determined
by the far-zone part of Ω and are given by the following
expressions:

Ωrefl = γR(ρ31 +µρ32) . (7a)

Ωtr =Ω0 + γR(ρ31 +µρ32) . (7b)

The reflectance R and transmittance T (reflection and trans-
mission coefficients of the light flow, respectively) are then
defined as

R=

∣∣∣∣Ωrefl

Ω0

∣∣∣∣2 , T=

∣∣∣∣Ωtr

Ω0

∣∣∣∣2 . (8)

4.1. Stationary reflectance

First, we address the linear regime of excitation (|Ω0| ≪ 1) and
restrict ourselves to the analysis of the steady-state reflectance
(hereafter we use the term steady-state referring to a state with
a constant amplitude in the RWA). Under this condition and
at |Ω0| ≪ 1, the major contribution to Ωrefl comes from ρ31
which is given by

ρ31 =− Ω0

i(∆31 −∆L)+
1
2 (γ31 + γ32)+ γR

. (9)

Substituting equation (9) into equation (8), for the reflectance
R we get

R=
γ2
R

(∆31 −∆L)2 +
[
1
2 (γ31 + γ32)+ γR

]2 . (10)

From this expression, it follows that for the range of detun-
ing ∆31 ⩽ 100 used in our calculations so far, the reflectance
R≈ (γR/∆L)

2 ≪ 1, because∆L ≫∆31,γR,γ31 + γ32 for the
chosen parameter set. Note that all features of the mean field
Ω, predicted in section 3, will also manifest themselves in the
reflected fieldΩrefl and thus they can be observed in the reflec-
tion geometry despite the fact that the reflectance is low.

On the other hand, in the vicinity of the resonance renor-
malized by the near field (∆31 ∼∆L), the reflectance is close
to unity, R≈ 1. Therefore, in this range of frequencies, the
monolayer of Λ-emitters can operate as an almost perfect
reflector. Similar behaviour has been reported recently for a
monolayer of MoSe2 [5, 6] and arrays of atoms trapped in
optical lattices [64].

Next, we analyze the steady-state reflection in the nonlinear
regime in the vicinity of the detuning∆31 ∼∆L, where the lin-
ear reflectance is high. Figure 7 shows the intensity-dependent
reflectance calculated for two values of the relaxation rate:
γ21 = 0.01 (left column) and γ21 = 0.05 (right column), and
two values of the doublet splitting: ∆21 = 15 (upper pan-
els) and ∆21 = 100 (lower panels). Stable branches of these
dependencies are given by solid black lines, while the unstable
ones by dashed ones. The figure shows that the reflectance is
non-monotonous, it can be multivalued and unstable for dif-
ferent detunings ∆31 (specified in each panel). For the vast
majority of the considered parameter sets, the reflectance is
unstable in a very wide range of incident field intensities:
see, for example, the curve for ∆31 = 1000 in the upper-left
panel; it is striking also that the reflectance is unstable at

9
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Figure 7. Intensity dependence of the stationary reflectance R calculated for detunings∆31 in the vicinity of∆31 =∆L for two values of the
relaxation rate γ21 = 0.01 (left plot) and γ21 = 0.05 (right plot) and two values of the doublet splitting ∆21 = 15 (upper panels) and
∆21 = 100 (lower panels). The values of ∆31 are specified next to the corresponding curves. Stable (unstable) branches of the reflectance
are shown by solid (dashed) lines. The arrow indicates the threshold case in which the reflectance becomes bistable.

very low external field intensities, which manifests itself in
its auto-oscillations (see below). Another unusual feature of
the nonlinear reflectance is that it is double-peaked for some
parameter sets. Surprisingly, the reflection at these peaks is
close to the total one, R≈ 1. The double-peak structure of
the reflectance suggests that the system is driven into reson-
ance with the incident field twice as the intensity of the lat-
ter is changed. Below we provide an explanation of such a
behaviour.

Despite the fact that the system is now in a strongly non-
linear regime, the problem can be partially handled analytic-
ally in the following way. Consider equations (6a) and (6b) in
the stationary regime: ρ̇31(t) = ρ̇32(t) = 0. Solving them form-
ally for the variables ρ31 and ρ32, we can derive the quantity
ρ31 +µρ32 which determines the Rabi amplitude of the reflec-
ted field Ωrefl and obtain the reflectance R:

R=

∣∣∣∣ γR ρ̄

(i∆31 +Γ31)(i∆32 +Γ32)− (γR − i∆L)ρ̄

∣∣∣∣2 ,

(11)

ρ̄= µ(i∆31 +Γ31)(µZ32 − ρ∗21)+ (i∆32 +Γ32)(Z31 −µρ21) .

The denominator D of the fraction in this expression is a
quadratic function in ∆31 (recall that ∆32 =∆31 −∆21) and
can therefore be written asD= (∆31 −∆+)(∆31 −∆−). The
latter suggests that the peaks in reflection are related to
the complex-valued poles ∆± of the fraction, i.e., with the
complex-valued zeroes of the denominator D. The real parts
of the poles ∆± determine peak positions, while the imagin-
ary parts—peak widths. As the poles∆± depend on the dens-
ity matrix elements, they are obtained after solving the whole
nonlinear stationary problem.

The physical meaning of the poles ∆± can be understood
bearing in mind that the denominator D in equation (11) is
also the determinant of the system of equations (6a) and (6b)
in the stationary regime. Therefore, the zeros ∆± determine
the ‘eigen detunings’ (or eigen frequencies) of the two dressed
Λ-emitter steady states. Thus, the two peaks of the steady-state
reflectance emerge when the incident field is in resonance with
one or the other dressed Λ-emitter transitions.
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Figure 8. Intensity dependence of the poles∆± of equation (11) (solid curves) calculated for∆31 = 1125 (left plot) and∆31 = 1200 (right
plot). Dashed curves show the rescaled reflectance (∆31R ) which is given for reference; horizontal thin lines denote the level∆31 which
correspond to the unity rescaled reflectance. Parameters of the doublet are: ∆21 = 15, γ21 = 0.01. Other parameters are specified in the text.

Figure 8 shows the intensity dependencies of the poles∆±
(solid curves) calculated for the doublet splitting ∆21 = 15,
relaxation rate γ21 = 0.01, and two values of the incident field
detunings:∆31 = 1125 (left plot) and∆31 = 1200 (right plot).
The corresponding dependencies of the reflectance (scaled by
∆31) are shown by dashed lines. Thin horizontal grid lines
indicate the value ∆31. It becomes clear from the plots that
peaks in the reflectance occur when the real part of the pole
crosses the grid line: Re∆+ =∆31, i.e. when a dressed state
is in resonance with the incident field. At ∆31 = 1125, there
are two such intersections giving rise to two peaks of the
reflectance R. The fact that the peak value of R is close to
unity (almost total reflection) can be explained by the reson-
ant nature of the excitation in which case the incident and the
secondary fields are almost equal in magnitude, but opposite
in phase; they interfere destructively resulting in almost zero
transmitted field and almost total reflection.

In the case of ∆31 = 1200 (see the right panel in figure 8),
there is no intersection of the curve Re∆+ with the grid line
at ∆31. However, the curve approaches close enough to the
line, which gives rise to one single strong peak in the reflect-
ance. Because Re∆+ is never equal to∆31, the system is never
in exact resonance and therefore the incident and the second-
ary fields are compensating each other to a lesser extent. Con-
sequently, the peak value of R is somewhat smaller than in the
resonant case. The reflectance in the vicinity of the second root
∆− is not shown here because it is low.

The double-peak structure of the reflectance is a unique fea-
ture of the systems which differs it from other three-level sys-
tems such as the ladder-like one [29]. Finally, we note that

figure 7 shows that the stationary reflectance can be unstable
even for very low incident field intensities for some parameter
sets. This suggests that 2D systems of Λ-emitters can mani-
fest nonlinear behavior under low excitation conditions, which
can be an advantage for applications; it also makes such sys-
tems very different from may other nonlinear ones. In the next
section we explore this peculiar behaviour in the time domain.

4.2. Reflectance dynamics

As we showed in the previous section, the reflectance R can
be unstable within some range of the incident field intensities
|Ω0|2. Surprisingly, instabilities can appear at relatively low
values of intensity |Ω0|2 ≲ 1 (see, for example, the upper left
panel of figure 7). To uncover the character of these instabil-
ities, we performed time-domain calculations of the reflect-
ance Rwithin the unstable region for different sets of paramet-
ers and |Ω0|2 = 1. The results are presented in figure 9 which
shows that in all considered cases the system manifests peri-
odic self-oscillations. The latter can be understood from the
equidistant character of the peaks in the Fourier magnitude
spectrum f̄refl(ω) = |

´
TΩrefl(t)eiωtdt | (see plots in the middle

column) and the fact that the trajectory is closed in the phase-
space (ReΩrefl, ImΩrefl) (see the panels in the right column).
We have not found other types of attractors in the case of mod-
erate intensities, |Ω0|2 ∼ 1.

Note that the Fourier spectrum of self-oscillations contains
harmonics in the THz domain (see panels b and d of figure 9).
Thus, the system can operate as a source of coherent THz
radiation.
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Figure 9. Time-domain behavior of the reflectance R (left column), the Fourier magnitude spectrum f̄refl(ω) (middle column) and the
two-dimensional phase-space map (ReΩrefl, ImΩrefl) of the attractor (right column) obtained by solving equations (5a)–(5f ) for the
detuning∆31 = 1000 with the ground-state initial condition, and Rabi magnitude of the incident field |Ω0|= 1. Other parameters are:
(a) ∆21 = 15, γ21 = 0.01; (b) ∆21 = 100, γ21 = 0.01; (c) ∆21 = 15, γ21 = 0.05; (d) ∆21 = 100, γ21 = 0.05. The insets blow up the
dynamics.

5. Summary

We have studied theoretically the optical response of a
quantum metasurface comprising regular array of Λ-emitters
subjected to a CW quasi-resonant excitation. The total field,
driving the optical transitions of an emitter, has been taken
into account within the framework of the mean-field approx-
imation; this field depends on the current state of the emitter
itself and introduces a feedback into the system, giving rise to
various nonlinear effects.

First, we have addressed the stationary optical response and
analyzed its stability using the local Lyapunov exponents. We
have shown that the optical response can be multi-valued and
unstable within a wide range of parameters. We have demon-
strated also that under some conditions the unstable state is the
only possible state of the system, which makes it very different
from other 2D nonlinear systems. Second, we have calculated
the bifurcation diagram for the system in order to get a gen-
eral insight into possible kinds of the system optical dynamics.
Different types of bifurcations, such as supercritical and sub-
critical Andronov-Hopf ones, limit cycle folding points, and
limit cycle–chaos bifurcations have been found. Bifurcation
diagrams show also that instabilities can emerge even at very

low incident field intensities, which is an important advantage
of the considered system from the point of view of practical
applications. We argue that the unstable dynamics originates
from the complicated interplay of the secondary field–driven
dynamic dressing of the emitter’s transitions and dynamic pop-
ulation redistribution among the dressed states.

Remarkably, for frequencies in the vicinity of the collective
(excitonic) resonance, the monolayer reflects the incident field
almost completely, operating as a perfect mirror. Unlike other
nanoscale 2D systems with similar properties, the reflectance
of the metasurface of Λ-emitters can have two almost unity
peaks, which is a unique feature that can be useful for applica-
tions. Besides, the reflectance canmanifest bistability and hys-
teresis: it can therefore be switched abruptly between low and
high state back and forth by small variations of the incident
field intensity.

Using the time domain calculations, we have demonstrated
that the monolayer optical response can have very different
types of dynamics under a CW excitation, ranging from vari-
ous periodic self-oscillations to chaotic behavior. We have
shown also that the frequency of the self-oscillations depends
on the incident field magnitude and, for some sets of paramet-
ers, falls in the THz domain.
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Our results suggest various practical applications of metas-
urfaces of quauntum Λ-emitters, such as a nanometer-size
bistable mirror, a tunable generator of coherent THz radiation
(in the self-oscillation regime), or an optical noise generator
(in the chaotic regime). The intrinsic sensitivity of the optical
response to the initial conditions in the chaotic regime could
be of interest for the information encryption [63]. The pro-
posed metasurface could be taken as yet another example of
a nanoscale 2D system with remarkable optical properties.
We showed, however, that unlike other systems a metasur-
face comprising Λ-emitters can manifest nonlinear properties
at very low field intensities (on the order of 1 W/cm2); this
is a very unusual property which will be addressed in more
detail elsewhere. Also, systems based on the SQDs as quantum
emitters have an important advantage: their properties can be
engineered by choosing the geometry, sizes, and materials of
the underlying nanostructures. Moreover, we showed that the
optical response of the system is very sensitive to the doublet
splitting and relaxation, which can be tuned in an experiment,
for example, by the magnetic field, the temperature, etc. The
latter provides a possibility of the real-time control and tun-
ing of the optical response, which makes the proposed systems
particularly suitable for applications. All these findings make
the considered system a promising candidate for the all-optical
information processing and computing devices; they can also
be a useful guide for new experiments.
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