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Abstract
We calculate the binding energy of on- and off-center hydrogenic impurities in a parabolic
quantum dot subjected to an intense high-frequency laser field. An exactly solvable model that
replaces the actual Coulomb interaction with the donor by a non-local separable potential is
introduced for calculating the binding energy. The separable potential allows us to solve the
problem exactly and all calculations are carried out analytically. The action of the laser
irradiation results in dressed Coulomb and confinement potentials. At low laser intensity the
binding energy is found to decrease when the impurity is shifted away from the origin. At high
laser intensity and strong confinement the opposite behavior is observed. We propose a simple
one-dimensional model that explains the observed crossover.

(Some figures may appear in colour only in the online journal)

1. Introduction

During the past several years, much experimental and
theoretical work has been done on the binding energy of
hydrogenic impurities located in quantum dots (QDs) and
quantum rings [1–11]. The spatial confinement of carriers
leads to a strong enhancement of the binding energy in these
nanostructures, as compared to bulk semiconductors or even
quantum wells or quantum wires [12, 13]. The enhancement
of the binding energy can be detected by optical techniques
since absorption lines in nanostructures are blue-shifted and
carry information about the confinement of carriers. As a
consequence, the blue-shift of the absorption lines makes
spectroscopy tools very useful for characterizing electron
states bound to hydrogenic impurities in zero-dimensional
nanostructures [14]. Most importantly, changes in the
electronic and optical properties of nanostructures may
be controlled by an appropriate selection of the sample
geometry and material parameters, opening up new potential
applications in optoelectronics.

The use of optical techniques requires theoretical
modeling of the influence of the laser field on the binding

energy of carriers bound to hydrogenic impurities. Previously,
Fanyao et al calculated the binding energy of an on-center
donor hydrogenic impurity in a quantum well [15] and in a
QD [16] subjected to an intense high-frequency laser. The
confinement of carriers in the QD was modeled by a spherical
potential well with a finite or infinite barrier. The intense laser
field dresses the Coulomb potential and makes it dependent
on the laser intensity [17–21]. A variational approach was
used to calculate the binding energy of the on-center donor
hydrogenic impurity. They predicted a fast decrease of the
binding energy with increasing laser intensity. Recently,
Yesigul et al observed a similar behavior for impurities in
QDs when the confining potential is also dressed by the
laser radiation [22]. They analyzed the effect of shifting
the impurity from the center to the middle of the QD,
keeping the laser polarization parallel to the growth direction.
Furthermore, in these works only the weak confinement
regime was considered because the sizes of the QDs were
larger than the effective Bohr radius. Therefore, a detailed
study of the strong confinement regime and the effects of
varying the laser polarization is needed.
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In this work we present an alternative approach based on
the non-local (separable) potential (NLP) method, in which
the actual Coulomb potential is replaced by a projective
operator [23, 24]. The NLP method has already been
successfully used to determine the binding energy of confined
excitons in parabolic QDs in a closed form [25]. This
method yields an exactly solvable envelope-function equation
from which the electron states can be readily obtained with
the desired accuracy. In addition, the NLP method can be
generalized to describe a dressed Coulomb potential when a
quantum wire is irradiated by an intense high-frequency laser
field [26]. Using this generalized NLP method, an increase
of the exciton energy with increasing laser intensity was
found [26]. The exciton energy reaches a saturation value at
very high laser intensity, that is larger for small radii of the
quantum wire. The NLP method is particularly useful when
the confining potential is parabolic since the Green’s function
takes a simple form [25], although it can be applied to other
models of confining potentials.

Our aim in this paper is to show that closed expressions
for the binding energy of hydrogenic impurities can be
obtained even if the system is subjected to an intense laser
field. To this end we consider the laser effects on both
the Coulomb potential (replaced by a NLP) and the QD
confinement potential [15]. In addition, our approach is more
general than the one presented by Fanyao et al [16] and
Yesigul et al [22] since it is valid for both on-center and
off-center impurities and different laser polarizations. As a
main result, we find a crossover of the binding energy as the
donor is shifted from the origin: At low laser intensity the
binding energy decreases but the opposite trend is observed
under strong laser irradiation. A simple one-dimensional
model is proposed to explain the observed trend.

2. Theoretical model

We consider a two-dimensional (2D) electron gas of
noninteracting electrons confined in a semiconductor QD.
In the framework of the effective-mass approximation [27],
the single-electron Hamiltonian in the presence of a donor
hydrogenic impurity can be written as H = p2/2m+VQD(r)+
Vd(r). The pair p and r is the usual momentum and coordinate
in the plane of the 2D electron gas, respectively. The effective
mass of the electron is denoted by m. Here VQD(r) is the
parabolic QD potential, assumed to be radially symmetric and
independent of the polar angle. The Coulomb potential due to
a hydrogenic donor impurity located at position rd from the
origin and screened by the background dielectric constant ε is
Vd(r) = −e2/ε|r− rd|.

2.1. Intense high-frequency laser field

We now subject the system to the action of an intense
laser field, represented by a linearly polarized plane wave
of frequency �. Under the dipole approximation the
corresponding vector potential is A(t) = A0û cos�t, where
û is a unit vector that indicates the polarization. In
order to obtain the electron–laser interaction potential, we
follow the nonperturbative theory previously developed to

describe atomic states under intense high-frequency laser
fields [17–21]. Applying the time-dependent substitution r→
r+ α(t), the Schrödinger equation can be written as

ih̄
∂ψ(r, t)

∂t
=

[
−

h̄2

2m
∇

2
+ VQD(r+ α(t))+ Vd(r+ α(t))

]
× ψ(r, t), (1)

where α(t) = −(e/mc)
∫ tA(t′)dt′ = α0 sin�t. Here α0 ≡

−(eA0/m�c) û represents the quiver motion of a classical
electron in the laser field. The Schrödinger equation (1) can be
cast in a set of coupled time-dependent differential equations
for the Floquet components of the wavefunction. It could
be solved by an iteration scheme but to the lowest order of
the iteration; namely in the high-frequency limit, the system
reduces to the time-independent Schrödinger equation [17][

p2

2m
+ VQD(r,α0)+ Vd(r,α0)

]
ψ0(r) = Eψ0(r), (2)

where ψ0 is the zeroth Floquet component of the
wavefunction and E is the energy. V(r,α0) is defined as
the dressed potential that depends on the parameters of the
laser field only through α0. In Gaussian units, the dressing
parameter α0 ≡ |α0| is related to the time-averaged irradiance
of the laser beam I, referred to for simplicity as intensity, as
follows

α0 =

√
8π I

c

e

m�2 . (3)

Under these circumstances, in the high-frequency regime,
the electron only feels the static distorted potential V(r,α0),
the dressed potential associated with the original interaction
potential V(r). Actually this dressed potential is time averaged
over a period of the oscillating potential V(r,α(t)), which is
given by the integral [17]

V(r,α0) =
1
π

∫ 1

−1
V(r+ ξα0)(1− ξ2)−1/2 dξ. (4)

Proceeding further, it has been shown that for the case
of the Coulomb potential, its dressed counterpart can be
reasonably well written as [19]

Vd(r,α0) = −
e2

2ε

[
1

|r− rd − α0|
+

1
|r− rd + α0|

]
, (5)

and, following the same approach, the confining potential
becomes

VQD(r, α0) =
1
4 mω2

[(r+ α0)
2
+ (r− α0)

2
], (6)

where we assume that the QD can be described by a parabolic
potential with frequency ω. These dressed potentials have also
been used in other studies of hydrogen impurities in quantum
wires [15] and QD [16]. The single-electron Hamiltonian in
the presence of the hydrogenic donor under the laser field
becomes

H =
p2

2m
+

1
2

mω2r2
+

1
2

mω2α2
0

−
e2

2ε

[
1

|r− rd − α0|
+

1
|r− rd + α0|

]
. (7)
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Some considerations about the range of intensity values
within which this approach is valid are in order. The first
assumption of the present approach is that the laser field
can be properly described under the dipole approximation.
Therefore, the dressing parameter α0 should remain much
smaller than the laser wavelength in order to satisfy this
condition. This imposes an upper limit on the intensity values
applicable to this study. In general, it is greater than those
used in experimental setups, so it is not a real limit to our
calculations. Nevertheless, the real condition for the intensity
values comes from comparing α0 with the size of the bound
system in the absence of the laser field, namely the effective
Bohr radius, in 2D for the system under consideration,
denoted as a2D hereafter. We impose as limiting values for
intensity those that make α0 ∼ a2D. Therefore, from (3)
one obtains that the maximum intensity scales as Imax ∼

a2
2D�

4 [15, 28]. As an example, for a typical semiconductor
such as GaAs and a laser of practical interest, such as CO2

(� = 2×1014 s−1), the model is applicable when the intensity
I is in the range 107–1012 W cm−2, which is available in
practice.

2.2. Non-local separable potential

The eigenfunctions of the corresponding Schrödinger equa-
tion (2) cannot be expressed in terms of elementary functions.
From (5) it becomes apparent that under the laser field the
system is equivalent to a single electron in a two-center
Coulomb field confined in a parabolic QD. This analogy
allows us to replace the effective Coulomb potentials in (5)
by a pair of NLPs to obtain the envelope-function |χ〉 from
the effective-mass equation [25, 26]

H|χ〉 −→ (H0 + VNL)|χ〉 = E|χ〉, (8)

with H0 = p2/2m + VQD(r, α0). The NLP is projective
operator defined as

VNL ≡ −
gh̄2

4m
[|v+〉〈 v+| + |v−〉〈 v−|]. (9)

v± will be referred to as shape functions and they will be
specified later, and g is named coupling constant. Equation (8)
can be solved exactly for any arbitrary NLP, provided
the eigenstates of the H0 are known. We compute the
envelope-function |χ〉 as follows

|χ〉 = −
(

H0 − E
)−1

VNL|χ〉

=
gh̄2

4m

∑
ν

∑
s=±

|ϕν〉〈ϕν |

Eν − E
|vs 〉〈 vs|χ〉, (10)

where |ϕν〉 denotes the eigenstates of H0 with eigenvalues Eν .
Projecting onto the kets |v±〉 and requiring the determinant of
the resulting matrix to vanish we arrive at

[S+(E)− 1][S−(E)− 1] = |C(E)|2, (11a)

where for brevity we have introduced the following
definitions:

S±(E) =
gh̄2

4m

∑
ν

1
Eν − E

|〈 v±|ϕν〉|
2,

C(E) =
gh̄2

4m

∑
ν

1
Eν − E

〈v+|ϕν〉〈ϕν |v−〉.
(11b)

The transcendental equation (11a) provides the electron
energy E in the nanostructure in the presence of the laser field,
for any arbitrary shape functions v± and coupling constant g.

The coupling constant g is not an adjustable parameter
of the model. This can be understood from the fact that we
might obtain the energy level of an electron bound to the donor
impurity in an infinite 2D semiconductor, E2D = −4 Ry∗,
when the confining potential is switched off (ω→ 0) and the
nanostructure is not under laser irradiation (α0 → 0). Here
Ry∗ is the effective Rydberg, which is the impurity binding
energy in a three-dimensional bulk semiconductor. Therefore,
the resulting value of the coupling constant depends on the
shape functions chosen and the dimensionality of the system
under study. We take a Gaussian shape function which was
formerly used for studying hydrogenic impurities located at
position rd in a QD [10, 11]. The dressing effect of the
laser field on the Coulomb potential is included in the shape
functions through a displacement ±α0 as follows:

v±(r) =
1

πa2 exp
(
−
(r− rd ± α0)

2

a2

)
, (12)

where a is a free parameter that must be set properly to
account for the ground state of the hydrogenic impurity in an
infinite 2D semiconductor.

The calculation of the coupling constant g is easily
carried out in momentum space when ω = 0 and α0 = 0.
Due to the translational invariance of H0 in this case, we
can set rd = 0 without loss of generality. The Hamiltonian
reduces to H0 = p2/2m and its eigenstates are plane waves
with momentum p and energy Ep = p2/2m. Thus, the energy
spectrum is continuous and the summation appearing in (11b)
is replaced by an integration in momentum space. The
shape function (12) simplifies to the one proposed in [10]
and finally (11a) reduces to a much simpler transcendental
equation. The coupling constant can be calculated easily from
the Fourier transform of the shape function. Performing the
same steps as in [10], the coupling constant is found to be

g =
4πe−µ/2

0(0, µ/2)
, (13)

where 0(b, z) is the incomplete Gamma function [29] and
µ = (a/a2D)

2 is an adjustable parameter. This should be as
small as possible in the numerical calculation so that the
Gaussian function approaches the δ-function limit.

2.3. Donor-bound electron in a parabolic quantum dot

After having obtained the coupling constant, we now turn to
the normalized eigenfunctions of H0 needed in order to find
the energy from (11a) when the laser field is switched on and
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the impurity is located at an arbitrary position rd. From (7) we
notice that the eigenfunctions of H0 are those of an electron
in a parabolic potential plus a constant potential mω2α2

0/2

ϕn`(r, θ) = Rn`(r)
ei`θ
√

2π
, (14)

with quantum numbers ` = 0,±1,±2 . . . and n = 0, 1, 2, . . ..
The radial function is given by [30]

Rn`(r) =

√
2 n!

(n+ |`|)!

r|`|

L|`|+1 e−r2/2L2
L|`|n

(
r2/L2

)
, (15)

where L =
√

h̄/mω is the QD size and L|`|n denotes the
generalized Laguerre polynomial [29]. The eigenvalues are
En` = h̄ω(2n+ |`| + 1)+ mω2α2

0/2.
We set rd along the X axis without loss of generality. The

overlap between the shape functions v± defined by (12) and
the eigenfunctions ϕn` is given by

〈 v±|ϕn`〉 =

√
2π

πa2

× exp
[
∓i`λ± −

1

a2 (r
2
d + α

2
0 ∓ 2rdα0 cosφ)

]
×

∫
∞

0
dr rer2/a2

Rn`(r)I|`|

×

[√
1+ δ2

±

(
2rrd ∓ 2rα0 cosφ

a2

)]
, (16)

where φ is the angle between α0 and the X axis, namely
the polarization angle of the laser radiation. The following
parameters are defined in order to simplify the notation:
δ± = α0 sinφ/(rd ∓ α0 cosφ) and λ± = arctan δ±. I|`| is the
modified Bessel function [29]. After some algebra we obtain

〈 v±|ϕn`〉 =

√
2π

πa2 κn`

× exp

(
∓i`λ± −

z2
d

2µβ
−
γ 2

µ
±

2zdγ cosφ

µ
√

2β

)

× exp

(
µβρ2

±(1+ δ
2
±)

2(1+ µβ)

)

× L|`|n

(
µ2β2ρ2

±(1+ δ
2
±)

1− µ2β2

)
, (17)

with

ρ± =
zd

µβ
∓

2γ cosφ

µ
√

2β
,

κn` =

√
n!

(n+ |`|)!

(
1− µβ
1+ µβ

)n (
1+

1
µβ

)−|`|−1

× ρ
|`|
± (1+ δ

2
±)
|`|/2.

For brevity we have introduced the confining parameter β ≡
a2

2D/2L2. This parameter determines the magnitude of the
donor-bound electron confinement in the QD since the larger
β is, the higher the confinement. The parameter γ ≡ α0/a2D
gives the ratio between the laser intensity, parameterized by

α0, and the Coulomb interactions defined by the Bohr radius,
a2D. In this study we will restrict ourselves to the range
0 ≤ γ ≤ 1, which has been commonly used in the literature
[16, 22]. The position of the impurity will be measured in units
of the size of the QD, zd = rd/L.

Inserting (17) in (11a) we obtain a transcendental
equation that it is solved numerically with minimal
computational effort for any chosen set of parameters. In order
to compare the results for different confinement strengths,
impurity positions and laser intensities, we focus on the
binding energy of the ground state, EB = mω2α2

0/2+ h̄ω−E.

3. Results

We present our results for different values of the confining
parameter β = a2

2D/2L2 and the parameter γ = α0/a2D.
Energy will be measured in units of the 2D effective Rydberg
4 Ry∗. In [10] it has been shown that good accuracy is
achieved with µ = 0.01 in the coupling constant (13) and
hereafter we take this value.

Figure 1 shows the binding energy of the ground state as
a function of the parameter γ = α0/a2D for polarization angle
φ = 0 and for three sizes L. From top to bottom L = 2a2D,
a2D and a2D/2, which allows us to study the full range from
weak (L > a2D) to strong (L < a2D) confinement regimes.
The curves correspond to different values of the impurity
position, which is continuously shifted from the center to the
edge of the QD. Different trends in the dependence of the
binding energy on the laser intensity and the QD size are
observed and discussed below.

Binding energy when the laser is switched off. We
introduce a much simpler one-dimensional approach to
explain qualitatively the decrease of the binding energy
when the impurity is slightly shifted from the origin and
γ = 0, observed in figure 1. It should be mentioned that
similar behavior was reported previously in [16, 22] for
different confinement potentials and theoretical approaches.
The simplified model considers an electron moving in
one dimension and replaces the Coulomb potential by a
δ-function. The Hamiltonian reads H =H0−(e2/ε)δ(x−xd),
where H0 = p2/2m + (1/2)mω2x2 is the Hamiltonian of a
harmonic oscillator. Introducing the Green’s function of the
harmonic oscillator, it is a matter of simple algebra to arrive at
the following equation for the energy levels G0(xd, xd;E) =
ε/e2, namely

G0(xd, xd;E) =
∞∑

n=0

|ψn(xd)|
2

En − E
=
ε

e2 , E < En, (18)

where the sum runs over the eigenstates of the harmonic
oscillator. The largest contribution to the sum in (18) comes
from the ground state of the unperturbed oscillator n = 0.
Taking into account that E0 − E = EB, equation (18) can
be approximated as |ψ0(xd)|

2/EB = ε/e2. When the impurity
is slightly shifted from the origin the probability density
|ψ0(xd)|

2 decreases and consequently EB must decrease too,
as observed in figure 1.

Binding energy when the laser intensity is switched on.
Figure 1 shows that EB decreases when γ is not large (namely

4
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Figure 1. Binding energy in units of the 2D effective Rydberg as a
function of the parameter γ = α0/a2D for three values of QD size,
indicated on each plot, and different impurity positions rd. The
polarization angle is φ = 0. The inset shows the linear dependence
of the value of γ at the crossing on the QD size.

α0 < L), no matter the impurity position. However, when the
confinement is enhanced and the size of the QD is of the
order of the Bohr radius or even smaller the curves show a
well-defined crossing in the range 0 ≤ γ ≤ 1. As the impurity
approaches the edge of the QD, the binding energy around
the crossing point even increases with increasing γ . The
crossing of the curves appears when the magnitude of the
laser intensity is such that α0 is of the order of the QD size L.
Using the condition α0 = L we can obtain an estimation of the
value of the parameter γ at the crossing γcrossing = 1/

√
2β =

L/a2D. The inset of figure 1 shows this magnitude calculated
from the crossing point of the curves for rd = 0.001L and
1.0L for different L/a2D. As expected, a linear dependence of
the crossing on the QD size is observed.

In order to explain this result we can proceed along the
same lines as before. Now the one-dimensional Hamiltonian
reads H = H0 − (e2/2ε) [δ(x− xd − α0)+ δ(x− xd + α0)]

with H0 = p2/2m + (1/2)mω2
(
x2
+ α2

0

)
. The resulting

eigenvalue equation is(
G++(xd, xd;E)−

2ε

e2

)(
G−−(xd, xd;E)−

2ε

e2

)
= G+−(xd, xd;E)G−+(xd, xd;E), (19a)

where

G±±(xd, xd;E) =
∞∑

n=0

ψn(xd ± α0)ψ
∗
n (xd ± α0)

En − E
,

E < En. (19b)

Considering only the contribution of the ground state to the
sum (19b), the binding energy is found to be EB = E0 − E ∼
|ψ0(xd + α0)|

2
+ |ψ0(xd − α0)|

2, namely

EB ∼ exp

(
−
(xd + α0)

2

L2

)
+ exp

(
−
(xd − α0)

2

L2

)
. (19c)

As explained before, from this simplified one-
dimensional model a decrease in the binding energy when
the laser is switched off (α0 = 0) is predicted. It can be also
observed that when the impurity is located at the origin (xd =

0) a decrease in EB is also expected, in agreement to what is
observed in figure 1. Nevertheless, when the laser intensity
and the impurity position are modified simultaneously, two
clear regimes are observed. At low laser irradiation α0 < L,
equation (19c) predicts that the binding energy decreases after
shifting the impurity from the origin or increasing the laser
irradiation. This prediction is in perfect agreement with the
results shown in figure 1 (see the curves of the lower panel
at the left of the crossing point). On the other side, when
α0 > L, an increase in the binding energy after increasing xd
is deduced from (19c), in agreement with the results shown
in figure 1 (see the curves of the lower panel to the right
of the crossing point). Then, we are led to the conclusion
that the one-dimensional model gives the behavior observed
in figure 1 even in the presence of the laser irradiation.

The binding energy also depends on the angle between
the polarization direction and the impurity position rd.
Figure 2 shows the binding energy as a function of the
parameter γ in the strong confinement regime (L = a2D/2)
and two different angles, φ = π/4 and π/2. Results should be
compared with those shown in the bottom panel of figure 1,
corresponding to φ = 0. When the impurity is close to the
center of the QD (rd � L), the binding energy is almost
independent of the polarization angle, as expected. However,
the binding energy is strongly influenced by the polarization
angle when the impurity is located close to the edge of the QD
(rd ' L). As a result, the crossing appears at higher values
of the parameter γ . This shift can be easily understood by
noting that the projection of the vector α0 on the X axis is
α0 cosφ. Therefore, the laser intensity must be increased by
a factor 1/ cosφ to compensate for this. In other words, the
crossing scales as γcrossing(φ) ∼ 1/ cosφ, as seen in the inset
of figure 2.

In order to experimentally observe the crossing effect,
the QDs should be based on a semiconducting material such
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Figure 2. Binding energy in units of the 2D effective Rydberg as a
function of the parameter γ = α0/a2D for two values of the
polarization angle, indicated on each plot, and different impurity
positions rd. The QD size is L = a2D/2. The inset compares the
value of γ at the crossing (open circles) with the theoretical
prediction γcrossing(φ) = γcrossing(0)/ cosφ (solid line).

that the effective 2D Bohr radius is of the order of the actual
achievable QD size. A good candidate is InSb/GaSb, for
which a2D ∼ 30 nm. QDs based on InSb/GaSb with lateral
sizes in the range 20–30 nm [31] or even smaller, of the order
of 10 nm [32], have been grown by molecular-beam epitaxy.
As we pointed out before, the intensity values for which our
approach is valid should be in the range 107–1012 W cm−2

for commonly used laser frequencies. Therefore, as long as
these values are used, the crossing effect should be detected
experimentally. In the case of semiconductors with smaller
effective 2D Bohr radii, the crossing should be observed at
higher intensity values.

4. Conclusions

We have introduced an exactly solvable model from which
the binding energy of on-center and off-center hydrogenic
impurities in a QD under high-frequency laser irradiation
can be obtained. In the framework of the effective-mass
approximation, the confining potential arising from the QD
is assumed to be parabolic with confining frequency ω. Our
study is based on the NLP approach, in which the dressed
Coulomb interaction between the electron and the donor is
replaced by a projective operator. We have taken a Gaussian
NLP, which was found to be suitable for describing off-center
hydrogenic impurities in QDs [10, 11]. As a major result, we

have shown that the binding energy is found to decrease as the
impurity moves away from the center under low irradiation
intensity. However, the opposite trend is observed under
strong irradiation. The transition between these two regimes
occurs when the laser-dressing parameter equals the size of
the QD. Finally, to elucidate the physics underlying the effect
observed, we have introduced a simplified one-dimensional
model that captures the relevant regimes observed in our
calculations.
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[8] Zaratiegui J, Pietiläinen P and Hyvönen P 2002 Phys. Rev. B

66 195324
[9] Garcı́a L F, Marı́n J H and Mikhailov I D B 2006 Brazilian J.

Phys. 36 878
[10] Lima R P A, Amado M and Domı́nguez-Adame F 2008

Nanotechnology 19 135402
[11] Lima R P A and Amado M 2008 J. Lumin. 128 858
[12] Bastard G 1981 Phys. Rev. B 24 4714
[13] Bastard G 1982 Surf. Sci. 113 165
[14] Morgan G P, Ogawa K, Hiruma K, Kakibayashi H and

Katsuyama T 1991 Solid State Commun. 80 235
[15] Fanyao Q, Fonseca A L and Nunes O A C 1996 Phys. Rev. B

54 16405
[16] Fanyao Q, Fonseca A L and Nunes O A C 1997 J. Appl. Phys.

82 1236
[17] Gavrila M and Kaminski J Z 1984 Phys. Rev. Lett. 52 613
[18] Pont M, Walet N R, Gavrila M and McCurdy C W 1988 Phys.

Rev. Lett. 61 939
[19] Ehlotzky F 1988 Phys. Lett. A 126 524
[20] Kramers H 1956 Collected Scientific Papers (Amsterdam:

North-Holland) p 866
[21] Henneberger W C 1968 Phys. Rev. Lett. 21 838
[22] Yesigul U, Sakiroglu S, Kasapoglu E, Sari H and Sokmen I

2011 Physica B 406 1441
[23] Knight B W and Peterson G A 1963 Phys. Rev. 132 1085
[24] Sievert P R and Glasser M L 1973 Phys. Rev. B 7 1265
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[30] Chruściński D 2006 Ann. Phys. 321 840
[31] Tasco V, Deguffroy N, Baranov A N, Tournié E, Satpati B,
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Trampert A, Dunaevskii M S, Titkov A and Ramonda M
2007 J. Appl. Phys. 101 124309

7

http://dx.doi.org/10.1016/j.physleta.2010.03.029
http://dx.doi.org/10.1016/j.physleta.2010.03.029
http://dx.doi.org/10.1103/PhysRevA.23.3335
http://dx.doi.org/10.1103/PhysRevA.23.3335
http://dx.doi.org/10.1016/j.aop.2005.11.005
http://dx.doi.org/10.1016/j.aop.2005.11.005
http://dx.doi.org/10.1063/1.2425041
http://dx.doi.org/10.1063/1.2425041
http://dx.doi.org/10.1063/1.2748872
http://dx.doi.org/10.1063/1.2748872

	Binding energy of hydrogenic impurities in quantum dots under intense laser radiation
	Introduction
	Theoretical model
	Intense high-frequency laser field
	Non-local separable potential
	Donor-bound electron in a parabolic quantum dot

	Results
	Conclusions
	Acknowledgments
	References


