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Abstract
We consider the three-dimensional Hamiltonian for Bi2Se3, a second-generation topological
insulator, under the effect of a periodic drive for both in-plane and out-of-plane fields. As it
will be shown by means of high-frequency expansions up to second order in the Floquet
Hamiltonian, the driving induces anisotropies in the Dirac cone and opens up a quasienergy
gap for in-plane elliptically polarized fields. Analytic expressions are obtained for the
renormalized velocities and the quasienergy gap. These expressions are then compared to
numerical calculations performed by discretizing the Hamiltonian in a one-dimensional lattice
and following a staggered fermion approach, achieving a remarkable agreement. We believe
our work may have an impact on the transport properties of topological insulators.
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1. Introduction

Three-dimensional topological insulators host an odd number
of massless helical Dirac fermions at the surface which owe
their existence to the non-trivial topology of the bulk Hilbert
space [1–3]. A plethora of proposals exist towards exploiting
these Dirac cones in quantum transport devices due to their
unprecedented characteristics (see reference [4] for a review).
As such, reshaping the linear spectrum becomes particularly
interesting as it corresponds to modifying the Fermi velocity
[5–10]. In particular, anisotropies in the dispersion are becom-
ing particularly relevant [11–15] and it has been shown to have
a direct impact on the conductance [16]. Another key feature
of the Dirac cones is their protection by time-reversal sym-
metry. By breaking such a symmetry, the Dirac cones at the
surface are gapped out and the three-dimensional topological
insulator hosts chiral hinge modes, thereby becoming a higher-
order topological insulator [17]. In other words, the surface of
the three-dimensional topological insulator becomes a Chern
insulator [18, 19].

On a different front, Floquet engineering of topological
phases leads to novel states which can be manipulated by exter-
nal periodic drivings [20–29]. Examples include quasienergy
gaps and Dirac cone widening in graphene [27, 30–32] and
topological insulators [27, 33]. This dynamic tuning of the
spectrum proves to be necessary in view of the aforemen-
tioned effect on transport properties. Previous works on topo-
logical insulators consider surface effective Hamiltonians [27]
and are therefore limited to in-plane configurations. As it has
been recently shown in reference [34], out-of-plane fields also
reshape the Dirac cones. However, in contrast to in-plane
fields, hybridization with the bulk states becomes unavoid-
able, a fact that is not accounted for by surface effective
Hamiltonians. In this paper, we propose to consider the full
three-dimensional Hamiltonian to obtain a Floquet Hamilto-
nian up to second order in a high-frequency expansion. As it
will be shown, the reshaping of the cones becomes apparent
and analytic expressions for the velocities and the quasienergy
gaps are obtained. These analytic expressions are compared to
numerical calculations obtained by discretizing the Hamilto-
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nian along the direction perpendicular to the interface between
the topological insulator and a trivial insulator and using
a staggered fermion approach [35, 36]. The details of the
numerical calculations will not be presented herein and can
be found in reference [34] or in the supplementary material
(https://stacks.iop.org/JPCM/32/495501/mmedia). As it will
be shown, the agreement between both approaches is note-
worthy. The results presented herein therefore provide further
support to those introduced in reference [34], while also pro-
viding analytical expressions to explore both the symmetries
and the effect of the driving field on the Dirac cones. In partic-
ular, it allows to clearly see the dependence of the anisotropies
and the quasienergy gap on the parameters of the driving field.
We firmly believe that the results presented in this paper will
be relevant quantum transport experiments which will profit
from the dynamic modulation of the Dirac cones.

2. Theoretical model

The model we shall use is a continuum low-energy Hamil-
tonian around the Γ-point for Bi2Se3. Such a model can be
obtained by means of the theory of invariants and to lowest
order it is corresponds to a (3+ 1)-Dirac equation for the enve-
lope function [37]. This Hamiltonian possesses two topolog-
ically distinct insulating ground states which can be labelled
by means of a Z2 topological index [38–40]. Such index cor-
responds to the sign of the mass term in the Dirac Hamil-
tonian [41]. The bulk-boundary correspondence predicts the
existence of surface states upon placing together two systems
of different index, thereby creating a topological boundary
[41].

In the orbital-spin basis, the low-energy description of
Bi2Se3 is therefore given by

H = α · p+ mβ, (1)

whereαi = τ xsi and β = τ z are the Dirac matrices, with τ i and
si the Pauli matrices in the orbital and spin subspaces, respec-
tively, and p is the momentum operator. We are working in
dimensionless units where m = ±1 is half the bulk energy gap.
In the bulk where there is continuous translation symmetry,
momentum is a good quantum number and the quasiparticles
are massive Dirac fermions

E = ±
√

p2 + m2, (2)

where p = |p|. Therefore, the spectrum for m and −m is
exactly the same. However, the insulating ground states corre-
sponding to these two opposite energy gaps belong to different
topological sectors, characterized by a Z2 topological index,
ν = sgn(m). In fact, this model belongs to the AII class as
it possesses time-reversal symmetry squaring to minus one,
which indeed predicts a Z2 index characterizing two topologi-
cally distinct phases [38]. The bulk-boundary correspondence
states that if a topological boundary is considered, meaning
a system comprising two materials of opposite index, there
will be massless excitations at the boundary [41]. The sim-
plest model to show that this is indeed the case is to consider a
sharp boundary where m only changes sign upon crossing the

boundary, that is, m = sgn(z). In that case, the in-plane
momentum p⊥ = (px, py, 0) is still a good quantum number
since there is translation symmetry along the XY plane. There
is also continuous rotation symmetry about the Z-axis, which
implies that the spectrum must be isotropic and can only
depend on p⊥ = |p⊥|. Thus, the Hamiltonian for a topological
boundary is

H = α · p+ β sgn (z), (3)

so that HΨ = EΨ. We want to find surface states localized at
the boundary. Thus, we use as an ansatz Ψ = exp(−λ|z|)|Φ〉
where λ > 0 and |Φ〉 is position-independent. If p⊥ = 0, we
expect from symmetry that the surface state will be at zero
energy and |Φ〉 satisfies

iαzβ|Φ〉 = λ|Φ〉, (4)

which implies that λ2 = 1. Since λ > 0, we must have λ = 1,
so Ψ = exp(−|z|)Φ. Thus, Φ is an eigenvector of iαzβ = τ ysz

with eigenvalue +1. There are two such doubly-degenerate
eigenvectors

|Φ〉± =
1√
2
|±〉y|±〉z, (5)

where σi|±〉i = ±|±〉i. These are related by the time-reversal
symmetry operator T = isyK where K denotes complex con-
jugation. Indeed, |Φ〉− = T |Φ〉+. In other words, |Φ〉+ and
|Φ〉− form a Kramers’ pair.

The term α⊥ · p⊥ breaks the degeneracy for p⊥ �= 0 by
coupling |Φ〉+ and |Φ〉−. In fact, we can see that αx|Φ〉± =
∓i|Φ〉∓ and αy|Φ〉± = |Φ〉∓, which implies that the diago-
nal elements are zero, whereas the off-diagonal elements are
simply ∓〈Φ|αx|Φ〉± = ∓i and ∓〈Φ|αy|Φ〉± = 1. Hence, the
Hamiltonian in the subspace of the surface states will be

HS =
(
σ × p⊥

)
· ẑ, (6)

which corresponds to a Rashba Hamiltonian with σi being
the Pauli matrices in the surface states’ subspace. Because
of the absence of a p2

⊥ term in the Hamiltonian, the spec-
trum is not that of Rashba but an isotropic Dirac cone instead,
E = ±p⊥. The surface states show well-defined helicities or
spin-momentum locking where 〈σ〉 and p⊥ are orthogonal to
each other.

3. Periodically driven topological boundary

Consider a topological boundary described by the Dirac
Hamiltonian of equation (3) and irradiate it with a periodi-
cally driven field. We work in a gauge where the electrostatic
potential vanishes and consider small enough samples so that
the vector potential is only a function of time and we consider
it to be periodic with period T, A(t) = A(t + T). Minimally
coupling to this gauge field we have

H = α · ( p+ A) + β sgn (z). (7)

We shall consider for A(t)

A = a eiωt + a∗ e−iωt, (8)

2

https://stacks.iop.org/JPCM/32/495501/mmedia


J. Phys.: Condens. Matter 32 (2020) 495501 A D́ıaz-Fernández

where a is a vector whose components are aj =
( fj/2ω)exp(iθ j) with j = 1, 2, 3. Here fj is the amplitude
of the jth component of the electric field, the phases θ j are
included to allow for the study of different polarizations, and
ω = 2π/T is the driving frequency. Since the Hamiltonian
is time-periodic we shall use Floquet theory to find the
quasienergies of the system. As discussed in the appendix A,
a Floquet Hamiltonian can be introduced as a static version
of the actual Hamiltonian under stroboscopic evolution of
the system [29]. It must be carefully remembered that such a
Floquet Hamiltonian is not the true Hamiltonian of the system,
although for high frequencies it captures essentially the same
physics as the Hamiltonian of the system [29]. Analytic
expressions can be obtained for the Floquet Hamiltonian by
performing high-frequency expansions [42–44]. The relevant
expressions are given in the appendix A. Additionally, we will
solve equation (7) numerically by discretizing the Z-direction
in a lattice and using staggered fermions to avoid fermion dou-
bling [35, 36]. We shall not discuss the details of the numerical
calculations, for more information the reader is referenced to
reference [34] and to the supplementary material. The numer-
ical results can be summarized as follows: (1) in-plane (i.e.
parallel to the topological interface) linearly polarized fields
lead to anisotropic Dirac cones, where the widening occurs in
the direction perpendicular to the field amplitude; (2) in-plane
circularly polarized fields gap out the Dirac cone and widen
the cone isotropically; (3) out-of-plane (i.e. perpendicular
to the topological interface) linearly polarized fields lead to
an isotropic widening of the cone, similar to the static case
[10]; (4) out-of-plane circularly polarized fields lead to a
combination of (1) and (3). Out-of-plane fields also lead to
hybridization with the bulk states at quasienergies closer to the
Floquet–Brillouin zone edges [34]. As it will be shown, the
high-frequency expansions up to second order correctly cap-
tures the features observed in the numerical calculations, with
only slight deviations in the case of out-of-plane circularly
polarized fields. This is possibly due to the aforementioned
hybridizations, which become more prominent as the field is
increased.

In order to perform high-frequency expansions of the Flo-
quet Hamiltonian we need the Fourier components of the
true Hamiltonian, equation (7). The only non-zero Fourier
components are

H0 = α · p+ β sgn (z), H−1 = H†
1 = α · a. (9)

Since the only non-zero components are m = 0,±1, the high-
frequency expansion [see equation (A.6)] simply reads

HF 	 H0 +
1
ω

[H1,H−1] +
1

2ω2
([H−1, [H0,H1]] + h.c.)

(10)
Evidently, the first order approximation cannot lead to a widen-
ing of the Dirac cone since it only couples p-independent
terms. Therefore, it can only lead to gap openings. This is why,
in order to explore the widening, it becomes necessary to push
the expansion up to second order. After some tedious algebra,
the first order term reads

δH1 =
1

2ω3

∑
i jk

εi jksi f j fk sin θ jk, (11)

where εi jk is the Levi-Civita symbol and we have defined θi j =
θi − θ j and f = ( fx , fy, fz). Before diving into the second order
term, let us explore the possible gap openings that can occur
due to δH1. As we can immediately see, such a term breaks
time-reversal symmetry whenever the polarization is not lin-
ear, meaning that θi j �= 0 for some pair i �= j. Indeed, if the
polarization is linear, we immediately have δH1 = 0. In all
other cases, we can see the breaking of time-reversal symmetry

T δH1T −1 = −δH1. (12)

However, it turns out that such a term only opens a quasienergy
gap for the surface states if the field has two non-zero in-plane
components with a non-zero phase difference θi j between two
such components. Indeed, up to first order, we have that HF 	
H0 + δH1, so we may project δH1 on to the subspace of the
surface states given in equation (5). Notice that we need not
worry about the actual z-dependence of the bispinor through
exp(−|z|) since δH1 is position independent. Moreover, the
off-diagonal terms are zero since δH1 is τ-independent. Thus,
∓〈Φ|δH1|Φ〉± = 0. As a result, δH1 does not couple |Φ〉± and
|Φ〉∓, which implies that it can only affect at p⊥ = 0, thereby
possibly opening quasienergy gaps. Since z〈±|σi|±〉z = ±δiz

and y〈±|τ 0|±〉y = 2, then

±〈Φ|δH1|Φ〉± = ± f x fy

ω3
sin θxy. (13)

As we said previously, it is necessary to have two nonzero
in-plane components with nonzero θxy. Any out-of-plane com-
ponent will not contribute. Thus, even if there is some nonzero
θi j, only if θxy �= 0 there will be gap openings for the surface
states. The Floquet Hamiltonian for the surface states will then
be

HF,S =
(
σ × p⊥

)
· ẑ +

f x fy

ω3
sin θxy σz. (14)

Therefore, by applying a periodic driving, we induce a mass
term into HF,S, which leads to quasienergy gaps

Δ = 2
f x fy

ω3
sin θxy. (15)

This observation can already be made by considering the sur-
face effective Hamiltonian in the first place [27]. Our calcu-
lation also shows that out-of-plane components do not lead to
gap openings. Additionally, we may check if this equation fits
the numerical solution of the problem. As it can be seen in
figure 1, the agreement with the numerical calculations is sig-
nificant. As it can be seen, by driving the system with different
polarizations, the gap can be dynamically altered from zero
to 2 fx fy/ω

3. This quasienergy gap is non-trivial, in the sense
that it occurs due to breaking of time-reversal symmetry. As
a result, the topological boundary displays a quantum anoma-
lous Hall phase characterized by non-zero Chern numbers [27]
and, if the interface is finite, edge states or hinge modes appear
and the system becomes a higher order topological insulator
[17].
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Figure 1. Quasienergy gap openings for in-plane fields with
fx = fy ≡ f. The dots represent the numerical solution to the full
problem and the black lines correspond to equation (15). (a)
Circularly polarized field for different frequencies and (b) changing
polarization for ω = 5 and different values of f.

In the next two subsections, we shall be interested on the
widening of the Dirac cones by linear and circularly polarized
fields. We noted earlier that such widening cannot be due to
δH1 and we need to consider δH2. After some manipulations,
we find

δH2 =
1
ω4

[
−| f |2H0 +

∑
i j

f i f jpiα j cos θi j

]
. (16)

We will now particularize to the case of linear and circularly
polarized fields.

3.1. Linear polarization

We can see that if the polarization is linear, meaning that
θi j = 0 for all i, j, then δH1 = 0 and the cosine term in δH2

equals one. The expression for δH2 simplifies even further if
we consider two specific cases of linear polarization: in-plane
and out-of-plane. In the former case, only one component of
f contained in the interface is needed. Because the interface
has continuous rotation symmetry, we can choose the compo-
nent to point along any direction of our choice. Let us pick
the x-direction for convenience. In that case, fx ≡ f and all
other components of f are zero. In this situation, the Floquet

Figure 2. Reduction of the velocity along the y-direction as a
function of f 2/ω4 for in-plane linearly polarized fields. The dots
represent the numerical solution to the full problem and the black
line corresponds to equation (18).

Hamiltonian reads

HF 	 αx px +

(
1 − f 2

ω4

)[
αy py + αz pz + β sgn (z)

]
. (17)

which is nothing but the Hamiltonian for a topological bound-
ary, equation (3), if we rescale by a factor of (1 − f 2/ω4)−1 the
x-component of the momentum and the quasienergy. Hence,
we can conclude that the surface states survive under the
external driving, their dispersions becoming anisotropic along
the direction perpendicular to the driving, in this case the
y-direction. Indeed, the velocities would simply be

vx = 1, vy = 1 − f 2

ω4
. (18)

In figure 2 we compare the numerical result obtained from
the procedure discussed in reference [34] with equation (18)
and the agreement is noteworthy. Moreover, we can numer-
ically confirm that the surface states do not couple to the
bulk states and, therefore, using surface effective Hamiltoni-
ans would have been appropriate in this case. One point that
is not captured by the high-frequency expansion, at least not
to second order, is the avoided crossings that take place at
the Floquet–Brillouin zone edges, which can be observed in
the numerical solution of the Hamiltonian [34] due to cou-
pling between different Floquet side-bands. In any case, the
anisotropic widening of the Dirac cones can be manipulated at
will by properly adjusting the field and the frequency.

Let us now turn to the case of having out-of-plane linearly
polarized fields. In that case, fz ≡ f and all other components
of f are zero. In that case, the Floquet Hamiltonian reads

HF 	
(

1 − f 2

ω4

)(
αx px + αy py + β sgn (z)

)
+ αz pz. (19)

As in the previous case, this is the Hamiltonian for a topo-
logical boundary with rescaled quasienergies by a factor of
(1 − f 2/ω2)−1. However, in contrast to the previous case, the
in-plane momenta are not rescaled but the z-coordinate is by
a factor of (1 − f 2/ω2), which implies that the surface states
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Figure 3. Reduction of the velocity as a function of f 2/ω4 for
out-of-plane linearly polarized fields. The dots represent the
numerical solution to the full problem and the black line
corresponds to equation (20).

become more delocalized as f 2/ω4 increases. In any case, for
sufficiently small fields and high frequencies, the surface states
remain localized but display an isotropic widening of the Dirac
cone where the velocity is given by

v = 1 − f 2

ω4
. (20)

A similar reduction has been observed in the static case
theoretically [10, 45] and experimentally [46]. These obser-
vations are consistent with the numerical calculations. In par-
ticular, for the velocity we observe a noticeable agreement in
figure 3. As we can see, the agreement starts to fail at large
field amplitudes. This can be explained from the fact that the
surface states become less localized as the field increases and
their interaction with the bulk states becomes non-negligible.
As a result, hybridizations with the bulk states can occur
for surface states closer to the Floquet–Brillouin zone edges
[34].

3.2. Circular polarization

For circular polarization, δH1 is no longer zero as we already
discussed. We shall be interested in two cases: in-plane fields
and out-of-plane fields. For the in-plane field, we have fx =
fy ≡ f , fz = 0 and θxy = π/2. Notice that the field amplitude,

| f |, will be a factor of
√

2 larger than in the in-plane case since
| f | =

√
2 f in this case. It is therefore important not to confuse

f with | f |. In this situation, the Floquet Hamiltonian can be
written as

HF 	
(

1 − 2 f 2

ω4

)
(αz pz + β sgn (z))

+

(
1 − f 2

ω4

)
(α · p⊥) +

Δ

2
σz,

(21)

with Δ = 2 f 2/ω3 as defined in equation (15) for θxy = π/2.
After rescaling, equation (21) is that of a topological boundary
with an additional mass term which, as discussed earlier, opens

Figure 4. Reduction of the velocity as a function of f 2/ω4 for
in-plane circularly polarized fields. The dots represent the numerical
solution to the full problem and the black line corresponds to
equation (22).

up a gap for the surface states at p⊥ = 0. Additionally, there is
an isotropic velocity reduction

v = 1 − f 2

ω4
. (22)

The reduction is isotropic because of the symmetry of the driv-
ing, that is, because the driving is circular. However, as we have
seen, a linear driving leads to anisotropic velocities. Therefore,
for elliptical polarizations we would expect to have anisotropic
velocities as well. Indeed, in the most general case of in-plane
fields we would have for the quasienergy dispersion

ε2 =

[(
1 −

f 2
y

ω4

)
px + py

f x fy

ω4
cos θxy

]2

×
[(

1 − f 2
x

ω4

)
py + px

f x fy

ω4
cos θxy

]2

+

(
f x fy

ω3
sin θxy

)2

.

(23)

As it can be seen, the analysis is more complicated, but we
can see that the dispersion can be modulated almost at will by
considering different values for fx , fy and θxy. If θxy = π/2 we
have an anisotropic reduction

vx = 1 −
f 2

y

ω4
, vy = 1 − f 2

x

ω4
. (24)

The linearly polarized case requires one of the amplitudes to
be zero as we have set θxy = π/2 and we get the strongest
anisotropy where the velocity changes only in the direction
perpendicular to the field. The circularly polarized is isotropic
as we discussed, but all cases in between are anisotropic as we
were aiming for. We have already seen that the quasienergy gap
perfectly matches the numerical calculations in figure 1. We
can also test if the reduction of the velocity fits the numerical
calculations. Indeed it does, as shown in figure 4.

Let us conclude this section with the last case, out-of-plane
circularly polarized fields. We will choose fx = 0 and fy =

5
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Figure 5. Reduction of the velocity along the (a) x-direction as a
function of 2 f 2/ω4 and (b) y-direction as a function of f 2/ω4 for
out-of-plane circularly polarized fields. The dots represent the
numerical solution to the full problem and the black line
corresponds to equation (26).

fz ≡ f and θyz = π/2. In this situation, the Floquet Hamilto-
nian reads

HF 	
(

1 − 2 f 2

ω4

)
(αx px + β sgn (z))

+

(
1 − f 2

ω4

)(
αy py + αz pz

)
+

Δ

2
σx

(25)

with Δ = f 2/ω3. This situation shares features with the lin-
early polarized in-plane and out-of-plane fields, since it can be
thought of as the application of two independent linearly polar-
ized fields in both directions. Indeed, the Hamiltonian above
corresponds to that of a topological boundary after proper
rescaling, where again the surface states become more delo-
calized and there is rescaling of px . Additionally, the mass
term does not open a quasienergy gap as we already discussed.
Regarding the anisotropic Dirac cone, we can already give
an answer before turning to the actual results. We know that
the in-plane component of the field leads to a reduction of
the velocity in the direction perpendicular to the field [see
equation (18)]. The out-of-plane component leads to isotropic
reduction as shown by equation (20). Therefore, we expect to
observe a reduction of the velocity in both directions due to

the out-of-plane component, with an enhanced reduction along
the direction perpendicular to the in-plane component. This is
precisely what we observe

vx = 1 − 2 f 2

ω4
, vy = 1 − f 2

ω4
. (26)

The question is how well does this fit the numerical results. As
it can be seen in figure 5, the agreement is not as good as in
the previous cases considered in the paper. In particular, there
is very little agreement in figure 5(a) for large fields. Qual-
itatively, however, we do observe that the velocity is further
reduced along the x-direction as compared to the y-direction.
The strong deviations are due to the fact that the surface states
hybridize with the bulk states the farther away we move from
the Dirac point [34].

4. Conclusions

Topological insulators display Dirac cones at the surface which
are protected by time-reversal symmetry. The transport prop-
erties associated to these cones are very distinct from ordinary
semiconductors [4, 16]. It is therefore interesting to be able
to manipulate and reshape these cones, for instance by induc-
ing anisotropies and opening non-trivial energy gaps. One such
way to achieve this is by means of periodic modulation [27, 30,
31, 47–50]. In this article, we have considered a topological
boundary as described by a three-dimensional Dirac Hamilto-
nian with a mass term which changes sign upon crossing the
boundary. Using numerical calculations like those discussed
in reference [34] and high-frequency expansions up to second
order, we have been able to predict the appearance of gap open-
ings in the quasienergy spectrum when the external field has
two nonzero in-plane components with nonzero phase differ-
ence. The results are in agreement to those obtained by means
of surface effective Hamiltonians in the case of in-plane fields
[27]. Additionally, the second order term in the expansion
has allowed us to find analytical expressions for the widening
of the cones, which occurs both isotropically and anisotropi-
cally, with very good agreement to the numerical calculations.
The high-frequency expansions derived in this paper from the
full three-dimensional Hamiltonian put on a firmer footing the
numerical results presented in reference [34] and provide a
means to clearly understand the underlying physics. Further-
more, the analytical expressions allow us to see the depen-
dence of the velocities and the quasienergy gap on the driv-
ing field parameters. By means of Floquet engineering, we
have been able to show that such anisotropies in the Dirac
cones can be achieved dynamically by simple external means,
namely by changing the field orientations and the polarization.
These anisotropies could potentially have an important impact
in quantum transport as they do in the static case [16].
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Appendix A. Floquet theory

Let H(t) = H(t + T) be a time-dependent periodic Hamil-
tonian with period T . Then Floquet theorem states that its
eigenstates can be written as

Ψ(t) = e−iεt Φ(t), (A.1)

where Φ(t) = Φ(t + T). In other words, Ψ(t) is an eigen-
state of the evolution operator over a single period U(T) with
eigenvalue exp(−iεT). As a result, ε and ε+ nω describe the
same state, with n ∈ Z and ω = 2π/T the driving-frequency.
Hence, in analogy to the quasimomentum of Bloch’s theorem,
ε is called the quasienergy and it is restricted to the first
Floquet–Brillouin zone, ε ∈ [−Ω/2,Ω/2). Φ(t) satisfies

[i∂t + ε]Φ(t) = H(t)Φ(t). (A.2)

The periodicity of Φ(t) allows us to Fourier expand it as

Φ(t) =
∑

m

e−imωt ϕm. (A.3)

As a result
(ε+ nω)ϕn =

∑
m

Hmϕn−m (A.4)

where Hm is the mth Fourier component of H(t).
Because Ψ(t) is an eigenstate of U(T) with eigenvalue

exp(−iεT ), U(T ) is commonly written as [29]

U(T) ≡ e−iHFT , (A.5)

where HF represents an effective Floquet Hamiltonian. It
should be noted, however, that HF is not the true Hamiltonian
of the system since it is defined modulo ω. However, if the
frequency of the driving is sufficiently high, it can be shown
that the effective Hamiltonian captures the physics of the true
Hamiltonian. In that same limit, an expansion in powers ofω−1

can be put forward. Up to second order, we can write [42–44]

HF 	 H0 + δH1 + δH2,

δH1 =
1
ω

∑
m>0

1
m

[Hm,H−m] ,

δH2 =
1
ω2

⎛
⎜⎜⎝∑

m�=0

1
2m2

[H−m, [H0,Hm]]

+
∑
m�=0

m′ �=0,m

1
3mm′

[
H−m′ ,

[
Hm′−m,Hm

]]
⎞
⎟⎟⎠ .

(A.6)

Notice that H0 is simply the time-average of H(t), which
implies that it only contains the dc part of H(t).
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