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Abstract. We study theoretically the optical response of a 2D super-crystal of quantum Λ-
emitters which are coupled by their secondary dipole field. The latter introduces a feedback into
the system, the interplay of which with the intrinsic nonlinearity of emitters results in an exotic
behavior of the system’s optical response, such as periodic or quasi-periodic self-oscillations and
chaotic dynamics. We argue therefore that these predicted features can be promising for various
nanophotonic applications.

1. Introduction
Metasurfaces comprising (meta)atoms have been thoroughly investigated recently due to their
possible remarkable applications in the domain of light manipulation and sub-wavelength
nanophotonics [1, 2, 3]. For example, atomically thin layer of MoSe2 encapsulated in hexagonal
BN manifests high reflectance in the vicinity of collective (excitonic) resonance [4, 5]. Arrays
of atoms trapped in an optical lattice [6] and two-dimensional supercrystals of semiconductor
quantum dots (SQDs) [7, 8, 9] exhibit similar behavior. It was demonstrated also that the
optical response of the SQD super-crystals can demonstrate multistability and instabilities of
different types, including periodic and aperiodic self-oscillations and chaotic dynamics [10, 11].

In this contribution, we are modelling the reflection of the quasi-resonant radiation from a
monolayer of quantum emitters with the Λ-type arrangement of the energy levels. The secondary
field of all other emitter acting on a given one provides a feedback which, combined with the
intrinsic nonlinearity of the emitter itself, can result in a very rich optical dynamics. The
latter can manifest itself in various types of instabilities of measurable quantities such as the
reflectance.

2. Model and formalism
Our model system is an N×N square lattice of identical quantum emitters having a single upper
state |3〉 and a doublet |1〉 and |2〉 in the lower state. The doublet splitting ∆21 is assumed to be
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small compared to the optical transition frequencies ω31 and ω32. Optical transitions are allowed
only between the upper state |3〉 and those of the doublet |1〉 and |2〉 (the so-called Λ-scheme);
they are characterized by their transition dipole moments d31 and d32 which are taken to be
real and parallel to each other, for the sake of simplicity: d32 = µd31. The spontaneous decay
of the upper state |3〉 to the doublet states |2〉 and |1〉 is characterized by the rates γ31 and
γ32 = µ2γ31, respectively. The rate γ21 characterises the relaxation within the doublet. The
system is excited by the quasi-resonant continuous wave (CW) external field E = E0 cos(ω0t)
at normal incidence; the field is polarized along the transition dipole moments. All emitters
interact with each other via their secondary retarded dipole field which includes the near- and
far-zone contributions. Hereafter, we use the mean-field approximation in which the secondary
field does not depend on the position of the emitter.

Within the rotating wave approximation, the optical dynamics of the ”mean” Λ-emitter is
governed by the following system of equations for the density matrix ραβ (α, β = 1, 2, 3):

ρ̇11 = γ21ρ22 + γ31ρ33 + Ω∗ρ31 + Ωρ∗31 (1a)

ρ̇22 = −γ21ρ22 + γ32ρ33 + µ(Ω∗ρ32 + Ωρ∗32) (1b)

ρ̇33 = −(γ31 + γ32)ρ33 − Ω∗ρ31 − Ωρ∗31 − µ(Ω∗ρ32 + Ωρ∗32) (1c)

ρ̇31 = − [i∆31 + (γ31 + γ32)/2 + Γ] ρ31 + Ω(ρ33 − ρ11)− µΩρ21 (1d)

ρ̇32 = − [i∆32 + (γ31 + γ32 + γ21)/2 + Γ] ρ32 + µΩ(ρ33 − ρ22)− Ωρ∗21 (1e)

ρ̇21 = − (i∆21 + γ21/2) ρ21 + µΩ∗ρ31 + Ωρ∗32 , (1f)

Ω = Ω0 + (γR − i∆L)(ρ31 + µρ32) , (2)

where ∆31 = ω0−ω31 and ∆32 = ω0−ω32 are detunings of the incident field frequency ω0 from
the resonance frequencies ω31 and ω32 of the 1 ↔ 3 and 2 ↔ 3 transitions, respectively, and Γ
is the dephasing rate (it is taken to be the same for both transitions for the sake of simplicity).
The Rabi amplitude of the total field with the amplitude E is Ω = d31E/~ (~ is the reduced
Plank constant) and it is given by Eq. 2. The first term in Eq. 2, Ω0 = d31E0/~ stands for the
Rabi amplitude of the incident field with the amplitude E0 while the second term is the Rabi
amplitude of the secondary field produced by all other emitters at the position of a given one.
The part proportional to γR describes the far-zone contribution of the secondary field; it is the
Dicke superradiant constant [12, 13, 14, 10] determining the collective radiation relaxation rate
of Λ-emitters in the monolayer. On the other hand, the part proportional to ∆L accounts for
the near-zone contribution; it is analogous to the Lorentz local field [15] and determines the
(excitonic) energy level renormalization [15, 10, 16]. Irrespective of the system size, ∆L � γR
for a dense sample (λ � a). Finally, we note that Eqs. (1a-1f) conserve the total population:
ρ11 + ρ22 + ρ33 = 1, i. e. we consider the spontaneous decay to be the only channel of the
population relaxation.

In what follows, we address the system reflectance R (the reflection coefficient of the energy
flow) defined as

R =

∣∣∣∣Ωrefl

Ω0

∣∣∣∣2 , Ωrefl = γR(ρ31 + µρ32) , (3)

where Ωrefl is the Rabi amplitude of the reflected field.

3. Results
In our calculations we use the set of parameters typical for 2D supercrystals of SQDs [7, 10]:
γ31 = γ32 ≈ 3 · 109 s−1 (µ = 1 for simplicity), then for λ ∼ 100 ÷ 200 nm and a ∼ 10 ÷ 20
nm, γR ∼ 1012 s−1 and ∆L ∼ 1013 s−1. We set therefore γR = 100γ31 and ∆L = 1000γ31.
In what follows, we present our results calculated for ∆31 = 1000, ∆21 = 100, γ21 = 0.01 and
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Figure 1. Steady-state reflectance R as a function of the Rabi magnitude |Ω0| of the incident
field, calculated for different values of the dephasing rate Γ indicated in the plot. Stable and
unstable parts of the curves are given by solid black and dashed red lines, respectively. The
inset blows up the reflectance curve calculated for Γ = 50 in the vicinity of |Ω0| = 1.

different values of the dephasing rate Γ. The spontaneous emission rate γ31 is used as the unit
of frequency and γ−1

31 as the time unit.
First, we address the steady-state reflectance R as a function of the Rabi magnitude of the

incident field |Ω0| calculated for different values of the dephasing rate Γ. We use the standard
local Lyapunov exponent analysis to determine the stability of the steady-state reflectance. The
results are presented in Fig. 2 which shows that a region of unstable solutions (given by the red
dashed line) exists for relatively low values of |Ω0|, which is both surprising and promising for the
experiment. As can be seen from the figure, the region of instabilities shrinks as the dephasing
rate Γ increases, as expected. As the unstable regions shrink, more complex dynamical regimes,
such as quasi-periodic oscillations and chaos, predicted for Γ = 0 in Ref. [16] (not shown here),
disappear. A detailed study of the bifurcation diagram of the system will be addressed elsewhere.
In what follows, we restrict ourselves to a simple periodic self-oscillation regime.

To analyse the character of the reflectance instability, we calculated the system dynamics for
a relatively high value of the dephasing rate, Γ = 50, and a relatively low value of the Rabi
magnitude of the incident field, |Ω0| = 1, which falls within the unstable region of R (see the
vertical dotted line in the inset of Fig. 1). The calculation was made for the ground state initial
condition. Eqs. (1a–1f) were integrated until all transients vanished and the system converged
to an attractor. Then, the Fourier magnitude spectrum |

∫
Ωrefl(t) exp (iωt)dt| and the phase

space map (Re[Ωrefl(t)], Im[Ωrefl(t)]) of the attractor trajectory was calculated. The results are
presented in Fig. 2 which shows that the system converges to the attractor with a periodic self-
oscillations: the attractor trajectory is a closed line in the phase space and its Fourier spectrum
is a finite set of equidistant lines. Note that the frequencies of the self-oscillation fall into the
THz domain and that the reflectance oscillates in the range ≈ (0.2, 0.4). Bearing also in mind
that the excitation power density corresponding to |Ω0| = 1 is attainable in experiment, we
argue that such a self-oscillation of the reflectance is presumably measurable.

4. Conclusions
In conclusion, we studied theoretically the steady state and the dynamics of the reflectance of
a 2D metasurface comprizing regularly spaced quantum Λ-emitters subjected to a CW quasi-
resonant excitation. Using the Lyapunov exponent analysis we showed that the steady state
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Figure 2. Dynamics of the reflectance R (left panel) calculated for Γ = 50 and |Ω0| = 1; the
inset blows up the self-oscillatory dynamics on the attractor. Characteristics of the attractor:
the Fourier magnitude spectrum (central panel) and the phase space map (right panel).

has regions of unstable solutions. Our analysis of the system dynamics demonstrates that the
system can be in a periodic self-oscillation regime even for relatively strong dephasing rate
and low excitation power densities (. 1W/cm2). We argue therefore that the predicted effect
can probably be measured experimentally. We note also that the frequency of these THz self-
oscillations depend on the intensity of the excitation field, making them tunable. We argue
therefore that our results suggest various practical applications of metasurfases of quantum Λ-
emitters, in particular, a tunable generator of coherent THz radiation, which makes the system
a promising building block for nanophotonics devices.
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[5] Scuri G, Zhou Y, High A A, Wild D S, Shu C, De Greve K, Jauregui L A, Taniguchi T, Watanabe K, Kim

P, Lukin M D and Park H 2018 Phys. Rev. Lett. 120(3) 037402
[6] Bekenstein R, Pikovski I, Pichler H, Shahmoon E, Yelin S F and Lukin M D 2020 Nat. Physics 16 676
[7] Evers W H, Goris B, Bals S, Casavola M, de Graaf J, van Roij R, Dijkstra M and Vanmaekelbergh D 2013

Nano Lett. 13 2317
[8] Baimuratov A S, Rukhlenko I D, Turkov V K, Baranov A V and Fedorov A V 2013 Sci. Rep. 3 1727
[9] Baimuratov A S, Shlykov A I, Zhu W, Leonov M Y, Baranov A V, Fedorov A V and Rukhlenko I D 2017

Opt. Lett. 42 2423
[10] Ryzhov I V, Malikov R F, Malyshev A V and Malyshev V A 2019 Phys. Rev. A 100 003800
[11] Bayramdurdiyev D Y, Malikov R F, Ryzhov I V and Malyshev V A 2020 J. Exp. Theor. Phys. 131 244
[12] Dicke R H 1954 Phys. Rev. 93 99
[13] Trifonov E D, Zaitsev A I and Malikov R F 1979 Sov. Phys. JETP 49 33
[14] Benedict M G, Ermolaev A M, Malyshev V A, Sokolov I V and Trifonov E D 1996 Super-radiance:

Multiatomic Coherent Emission (IOP Publishing, Bristol)
[15] Benedict M G, Zaitsev A I, Malyshev V A and Trifonov E D 1991 Phys. Rev. A 43 3845
[16] Ryzhov I V, Malikov R F, Malyshev A V and Malyshev V A 2021 J. Opt. https://doi.org/10.1088/2040–

8986/ac2788


