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ABSTRACT: We address new optical nanoantenna systems
with tunable highly directional radiation patterns. The antenna
comprises a regular linear array of metal nanoparticles in the
proximity of an interface with high dielectric contrast. We
show that the radiation pattern of the system can be controlled
by changing parameters of the excitation, such as the
polarization and/or incidence angles. In the case of excitation
under the total reflection condition, the system operates as a
nanoscopic source of radiation, converting the macroscopic
incident plane wavefront into a narrow beam of light with
adjustable characteristics. We derive also simple analytical
formulas which give an excellent description of the radiation pattern and provide a useful tool for analysis and antenna design.
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Radio and microwave antennas operate as receivers or
emitters of electromagnetic radiation within the corre-

sponding wavelength ranges. The size of these devices is
typically on the order of the wavelength, which enables one to
convert the freely propagating electromagnetic energy into a
localized excitation of the antenna and vice versa. Fabricating an
optical antenna requires technology of producing objects with
subwavelength size, down to several tens of nanometers, which
is now possible with modern methods of nanotechnology.1−6

Recently, plasmonic antennas, operating in the visible range
of the spectrum, have received a great deal of attention.7−9

Among others, resonator,10 bow-tie,11,12 Yagi-Uda,13

graded,14,15 cross resonant,16 core−shell17 and nanorod18

configurations have been investigated. Nonlinear plasmonics,19

nanoscale spectroscopy20 with optical antennas, and nano-
antenna-enhanced gas sensing21 have also been discussed.
Usually, plasmonic antennas comprise arrays of metallic

nanoparticles or nanowires, which convert propagating optical
signals into surface plasmon modes or vice versa. One of the
challenging tasks here is the antenna excitation. Several
schemes have been proposed, ranging from excitation by an
adjacent point emitter (such as a single molecule or quantum
dot),18 which requires a very high precision of positioning of
the point source, to the excitation by a beam of an electron
microscope.13 Other important and challenging aspects are the
design and control of the radiation patterns of such
antennas.13,18 In this paper both issues are addressed
theoretically. We consider an antenna system, consisting of a
regular linear array of metal nanospheres located close to the
interface of two materials with high dielectric contrast. It is
shown that the radiation pattern of such a system can be
controlled and tuned in a variety of ways, in particular, by

changing the angles of incidence and polarization of the
excitation beam. We propose to illuminate the system by
evanescent waves, which is advantageous from the viewpoint of
separation of the excitation from the antenna signal. We show
that the radiation pattern of the considered antenna is strongly
directional and highly sensitive to the excitation parameters,
which can be explained by the interference between the field
created by the nanoparticle electric dipoles and their images
induced by the interface.
The outline of the paper is as follows. In the next section, we

describe the plasmonic antenna system as well as theoretical
methods to treat its response. Then, we present results of the
numerical calculations of the antenna radiation patterns
followed by an approximate analytical treatment which provides
insight into the physics of the predicted effects. Finally, we
summarize our results and comment on their possible usage
and further development.

Model and Formalism. Our model system comprises an
array of nanoparticles in close proximity to the interface of two
dielectrics with permittivities ε1 and ε2 > ε1 (see Figure 1). The
array is a linear chain of N equally spaced identical metal
spheres with radii a and center-to-center distances d, which are
embedded in a dielectric with permittivity ε1 at a center-to-
interface distance h (the chain is parallel to the interface). The
ratios a/d ≤ 1/3 and a/h ≤ 1/3 are chosen in such a way that
the point dipole approximation for the interactions between
different particles can be used. The former condition on the
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sphere radius and the center-to-center distance was discussed in
refs 22 and 23. The latter relationship is analogous; to verify its
validity we compared results obtained within the point dipole
approximation with those calculated using the boundary-
elements method,24 which were in good agreement. Because
of this we use simpler and numerically less demanding methods
based on the point-dipole approximation henceforth.
The nanospheres are characterized by their polarizabilities

α(ω), where ω is the frequency of the incident field. The
polarizability of small particles (compared with the wavelength)
in a homogeneous environment can be described retaining the
first two correction terms:25,26
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where α(0)(ω) is the bare quasi-static polarizability of the
sphere, k1 = (ω/c)(ε1

1/2) is the wave vector of light in the
medium embedding the spheres, and c is the speed of light in
vacuum. The term quadratic in k1 describes the depolarization
shift of the plasmon resonance, while the cubic one accounts
for the radiative damping.26 Dielectric or metallic surfaces in
the proximity of a sphere can also modify its polarizability (see
below). Within the quasi-static approximation, the bare
polarizability α(0) is expressed in terms of the frequency
dependent dielectric constant of the bulk nanoparticle material,
εM(ω), and that of the embedding dielectric:27,28
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In the point dipole approximation, the induced dipole
moment of the n-th sphere pn can be obtained by solving the
following set of equations:

∑ε α ω= + ̂p E r G r r p( )[ ( ) ( , ) ]n n
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n m m1 0
(3)

where m and n run from 1 to N, rn is the position vector of the
center of the n-th sphere, E0(rn) is the total external electric
field (either the refracted one, if illuminated from the ε2 side, or
a superposition of the direct excitation and that reflected from
the interface, if excited from the ε1 side), and Ĝ(r,r′) is the
Green’s tensor of the total secondary dipole field:
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Here, Ĝ0(r,r′) is the Green’s tensor in a homogeneous medium
giving the electric field created at point r by a unit dipole
located at r′:29
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where ∇∇ is the dyadic product of the nabla operators and 1 is
the unit dyadic. Ĝr(r,r′) is the Greens’ tensor of the reflected
dipole field, which describes the interaction between nano-
particles mediated by the interface. This tensor can be
calculated numerically using the Sommerfeld integrals formal-
ism which has been extensively studied and widely used
throughout the literature.30−32 The self-interaction term
Ĝ(rn,rn) corrects the polarizability, eq 1, for the presence of
the interface and guarantees, in particular, the correct energy
balance.
For any given external field E0(r), the system of equations in

eq 3 is linear in pn, and the induced dipole moments can be
computed by standard numerical methods. Once they are
obtained, it is straightforward to calculate the total electric field
at an arbitrary point r (located outside the volumes of the
spheres):

∑= + ̂E r E r G r r p( ) ( ) ( , )
m

m m0
(6)

We are interested in the radiation of the antenna (i.e., in the
far-zone component of the scattered field) above the interface.
We consider excitations from the ε2 side (from below) under
conditions of total reflection. Then, the incident field E0(r) is
an evanescent wave in the upper half-space, and its contribution
to the total field is negligible if the detection point is sufficiently
far from the interface. In this case, the far field is governed by
the second term in eq 6. To obtain the antenna radiation
pattern, one should calculate the angular dependence of the
radiant intensity U(θ,ϕ) on an enclosing sphere centered at the
system and having a radius R ≫ λ1, where λ1 = 2π/k1 is the
excitation wavelength in the medium. This intensity is given by

∑θ ϕ ∝ | ̂ |U R G R r p( , ) ( , )
m

m m
2 2
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As we show below, radiation patterns of the antenna
considered here can be highly directional: typically, they have
a narrow main lobe and a set of much weaker side lobes. To
characterize the directionality of the antenna radiation
quantitatively, we use the standard directivity parameter:

∫
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which is the ratio between the maximum radiant intensity and
the average one. The integration in eq 8 is performed over the
solid angle of 2π (instead of the usual 4π), because we are
interested in the radiation in the upper half-space only.

Numerical Results. We calculated the antenna radiation
patterns for a linear array of N = 15 identical silver nanospheres
in proximity to the interface between two media with refractive
indices n1 = (ε1)

1/2 = 1.5 (above the interface) and n2 = (ε2)
1/2

= 2.1 (below the interface). Other parameters of the model
were chosen as follows: the nanosphere radius a = 45 nm, the

Figure 1. System schematics: a regular linear array of identical
spherical metal nanoparticles located parallel to the interface between
two dielectrics with permittivities ε1 and ε2 (ε1 < ε2), a is the
nanosphere radius, d is the center-to-center, and h is the center-to-
interface distance.
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interparticle separation d = 180 nm, and the array-to-interface
distance h = 135 nm. Tabulated data for the permittivity of
silver33 were used to calculate the polarizability of the
nanospheres.
We assume that the system is illuminated by a plane wave

with the wavelength in vacuum λ0 = 610 nm, incident from the
medium below the interface, while we are interested in the
radiation into the upper half space. Let the spherical
coordinates of the detection point be (R,θ,ϕ) with θ ∈ [0,π/
2] and ϕ ∈ [0,2π] (ϕ = 0 in the direction of the array), while Θ
and Φ are the polar and azimuthal angles of incidence of the
incoming plane wave (see Figure 2). To excite the system by an

evanescent wave the incidence polar angle Θ should lie within
an interval (Θc,π/2), where Θc = arcsin (n1/n2) is the angle of
the total reflection; for the considered system Θc = 45.6°.
Finally, we will also distinguish between the s and p
polarizations of the excitation.
Figure 3 shows radiation patterns calculated for the s-

polarized excitation incident at a polar angle Θ = 50° > Θc and
different azimuthal angles: Φ = 0°, 30°, 45°, 60°, 75°, and 90°.
The figure demonstrates that in all cases the radiation is highly
directional; the directivity D is given in the white rectangle in
each plot. The interference between the fields scattered by the
nanoparticles is constructive only within a relatively narrow
solid angle, giving rise to the formation of the main lobe of the
pattern. As we show below, its shape can be obtained
analytically. It is clear from the comparison of the incidence
geometry (see green arrows in Figure 3) and the position of the
main lobe that the latter is formed by the forward scattered
light.
As can be seen from Figure 3, the orientation of the main

lobe varies smoothly with the azimuthal angle of incidence Φ.
Much more pronounced and abrupt changes can occur if the
incidence is more oblique. For example, for Θ = 60° the
antenna main lobe orientation can be almost reversed by a
relatively small change of the azimuthal angle Φ, as shown in
the upper panels of Figure 4. In the lower panel of the figure we
plotted cross sections of the main lobes for two different
excitation conditions, which demonstrate that the predominant
scattering switches from the forward to the backward one when
the azimuthal angle Φ changes from 30° to 10°. A similar
switching effect is observed in the lower optically denser
medium too (see Figure 5). Note that the angles of the main
radiation lobes are different from the angles of incidence and

reflection; therefore, the excitation will not interfere with the
signal, which can facilitate measurements.

Figure 2. Geometry of the excitation and detection: E0 is the
excitation field, n̂0 = k2/k2 describes the direction of its incidence, and
0 ≤ Θ ≤ π/2 and −π/2 ≤ Φ ≤ π/2 are the polar and azimuthal angles
of incidence. The blue cone represents the detector whose angular
coordinates are θ and ϕ.

Figure 3. Polar plots of the radiation patterns of the antenna described
in the text. The color gives the far-field intensity as a function of the
detection angles θ and ϕ. The polar angle θ changes linearly along the
radius from 0 to π/2 (dashed circles are drawn each 30°). The system
was excited by an s-polarized plane wave with angles of incidence Θ =
50° and (from left to right) Φ = 0°, 30° (upper row), 45°, 60° (middle
row), 75°, 90° (lower row). The excitation propagation direction is
represented schematically by the green vector; its end point has the
angle coordinates (Θ,Φ). The directivity D of the radiation pattern is
given in the white rectangle in each plot. Blue lines represent the main
lobe position calculated within the image dipole and stationary phase
approximations, as described in the next section (see text for more
details).

Figure 4. Upper rowsame as in Figure 3, but for incidence at Θ =
60° and Φ = 30° (left) and Φ = 10° (right). Switching of the antenna
radiation direction is observed when the azimuthal angle Φ changes
within a relatively narrow range. The lower plot shows the cross
sections of the two radiation patterns computed for ϕ = 0: blue and
pink filled areas correspond to Φ = 30° and Φ = 10°, respectively. The
black solid and dashed lines represent the same cross sections
calculated according to the approximate formula in eq 11.
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The power radiated by a dipole in the proximity of a
dielectric interface is higher in the optically denser medium. For
the considered system about 10% of the total scattered power
goes into the upper half-space. The scattered intensity is
proportional to the incident one and is limited therefore by the
maximum possible dissipated power determined by the melting
threshold of the nanoparticles.
Figure 6 shows the dependence of the directivity on the

incidence angles Θ and Φ. The switching effect takes place in

the vicinity of the pronounced dip in the directivity; the
directivity is decreased when the phase difference between
adjacent induced dipoles is equal to π (see the white dashed
line in the figure). In this case their is a mirror symmetry in the
far-field pattern with respect to the plane θ = π/2 and two
identical lobes of forward and backward scattered light coexist.
The two neighboring light-colored quarter-circle features are
determined by the strong forward or backward scattering
condition, when the far-field pattern is characterized by a single
highly directional lobe. When the dip is crossed, the direction
of the main lobe is switched abruptly.
Finally, we address the effect of the polarization of the

incoming light on the radiation pattern. The polarization affects
the direction of the induced particle dipoles, whose far field
interference determines the shape of the pattern. The effect of
polarization is expected to be most pronounced for Φ = 90°,

because in this case the s-polarized light induces dipoles almost
parallel to the antenna axis, while the p-polarized excitation
favors the dipole orientation perpendicular to the axis. We
calculated the radiation patterns for the two excitation
polarizations in the case of Θ = 46° and Φ = 90°; the results
are shown in Figure 7. The upper panels present the full polar

patterns, while the lower one shows their cross sections for ϕ =
π/2. As expected, the most pronounced difference between the
two cases is observed in the vicinity of the polar angle θ = 0
where the pattern has a pronounced dip in the case of p-
polarized excitation while the radiation is strong in the other
case.
Thus, the radiation pattern of the system can be adjusted by

changing the excitation parameters, such as the geometry of
incidence or polarization, which can easily be controlled in the
experiment.

Analytical Results and Discussion. In this section we
present an approximate analytical approach for the calculation
of the antenna radiation pattern, combining the image dipole
and stationary phase approximations. Analytical results allow us
to gain insight into the physics of the system’s response and to
understand qualitatively the numerical results obtained in the
previous section. Moreover, our simple analytical formulas can
be used to solve the inverse problem: engineer the geometry of
the system and excitation meeting particular requirements, such
as a desired radiation pattern.
The radiation pattern is determined by the intensity of the

secondary scattered field in the far zone. If a single dipole p is
located at {0,0,h} (we use Cartesian coordinates for dipole
positions for convenience) and R ≫ h, its radiation reads

θ ϕ
ε

≈
− · θ−k

R
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p p n n
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e eik h ik R
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1
2
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where n is the unit vector, pointing in the direction of the
detection (θ and ϕ are its angular coordinates). Note that the
last exponential factor, determined by the overall phase k1R, is
an angle-independent common factor, and therefore it is
irrelevant for the field intensity. Being in close proximity to the

Figure 5. Same as in Figure 4, but for the lower half-space. The polar
angle θ is measured from the normal to the interface pointing down.

Figure 6. Directivity versus the incidence angles Θ and Φ. The dashed
line shows the incidence at which the phase difference between
adjacent induced dipoles is π. The dots correspond to the illumination
conditions used in Figure 4.

Figure 7. Upper rowradiation patterns for Θ = 46° ≳ Θc and Φ =
90° for two different polarizations of the excitation: s (left panel) and p
(right panel). The lower plot shows cross sections of the two patterns
at ϕ = π/2: red dashed and solid blue lines correspond to s and p-
polarized excitations, respectively.
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interface, the dipole induces surface charge density whose
electric field contributes to the radiation as well. This secondary
reflected field Er is given by the Sommerfeld integrals which can
be calculated in the far-zone of the upper medium by making
use of the stationary phase approximation.32 The result reads:

θ ϕ θ θ ϕ

θ θ ϕ

= ·

+ ·

θE E e e

E e e

( , ) e [ ( )( ( , ) )

( )( ( , ) ) ]

ik h
s s s

p p p

r
2 cos

d

d

1
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where θ ϕ( , )s and θ ϕ( , )p are the Fresnel reflection
coefficients for the s- and p-polarized waves2 incident from
the upper medium onto the interface, es and ep are unit vectors
of the s- and p-polarized components of the radiated field: es =
n × nz/|n × nz| (nz being the normal to the interface pointing
up) and ep = n × es. As is seen from the comparison of eqs 9
and 10, the secondary field Er is equivalent to that produced by
an image dipole placed at {0, 0, −h} in a homogeneous
medium with the dielectric constant ε1. However, the s and p
components of the reflected field Er are renormalized by the
corresponding Fresnel reflection coefficients.
The radiation of an array of dipoles is the superposition of

their far fields; its intensity angular distribution depends
exclusively on the relative phases of the contributing fields (a
relatively small shift of the coordinate origin would result in an
additional common angular independent, and therefore
irrelevant, phase of the field). When such dipoles are arranged
in a regular linear chain and R ≫ Nd, the total secondary far
field can be calculated analytically, using the following
additional approximations. First, we assume that the phase
and orientation of the n-th dipole is determined by the phase
and polarization of the external field E0(rn) acting upon it and,
second, that all dipoles have the same amplitude. It turns out
that, for the considered system, excitation geometries and
wavelengths these approximations are reasonable. In this case,
the phase difference between two dipoles located at {x1,0,h}
and {x2,0,h} is k1n21(x2 − x1) sin Θ cos Φ with n21 = n2/n1. On
the other hand, the phase difference in the far fields of the two
dipoles is k1(x2 − x1) sin θ cos ϕ. Using all of the above
assumptions and the corresponding phase relations, one can
sum the fields produced by all dipoles and their images, arriving
finally at the following expression for the radiation:

θ ϕ β
β

θ ϕ θ ϕΘ Φ = +N
E E E( , , , )

sin( /2)
sin( /2)

[ ( , ) ( , )]d r

(11)

where β is the phase difference of the radiation of two
neighboring particles,

β θ ϕ= − Θ Φk d n(sin cos sin cos )1 21 (12)

In the adopted approximation, the orientation of the induced
dipoles is dictated by the polarization of the incident field E0. If
the excitation is s-polarized, the dipoles are oriented along Φ +
π/2, and no field is radiated in this direction. If the detection
angle ϕ is not close to Φ + π/2, the fields in the square brackets
in eq 11 are smooth functions of θ and ϕ. Therefore, it is the
fraction of the two sine functions in eq 11 that determines the
lobe structure of the radiation pattern (a detailed discussion of
this prefactor can be found, for example, in ref 34). This
fraction is large when β = 2πn with an integer n, in which case
the interference is constructive and the far-field of N dipoles is
about N times larger than that of a single dipole. Hence, the
enhancement factor of the radiated intensity over that of a

single nanoparticle is on the order of N2. Strong far-field lobes
are formed in the vicinity δβ ≪ 2/N of the scattering angles
giving solutions to the equation β = 2πn. This vicinity becomes
smaller as N increases, resulting in the narrowing of the lobes.
On the contrary, if θ and ϕ are such that βN = 2πn where n is
not a multiple of N, the interference is destructive, and the
antenna is only weakly radiating in these directions. Essentially,
eq 11 gives the far-field of a double chain of identical dipoles
and their images.
The lower panel of Figure 4 shows the radiation pattern cross

sections calculated numerically, according to eq 7, (blue and
pink filled areas correspond to Φ = 10° and 30°, respectively)
and those obtained using the approximate analytical expression
in eq 11 (solid and dashed lines). The amplitude of the
analytical result was scaled to get the same maximum as the
numerical result. The figure demonstrates that the analytical
expression gives an excellent description of the main lobes of
the patterns. For the chosen polar angle of incidence Θ = 60°,
the main lobe almost reverses its direction when the azimuthal
angle of incidence changes from Φ = 10° to Φ = 30°. Below, we
provide a simple qualitative explanation of this behavior based
on the analysis of our approximate formula.
To understand the underlying physics of the predominant

scattering direction switching, we note that the phase β can be
rewritten in terms of the projection of the incoming and
outgoing wave vectors onto the chain axis: β = (k1x − k2x)d.
The interference is constructive when β = 2πn, which can be
interpreted as the diffraction condition: k1x − k2x = 2πn/d,
where 2πn/d are the vectors of the reciprocal lattice with the
lattice constant d. The latter relationship is the momentum
conservation law for a periodic structure where the k-vector is
conserved to within a vector of the reciprocal lattice.
The constructive interference condition β = 2πn is the

standard diffraction grating equation. However, there is an
important aspect. In the considered system, the fact that the
lower medium is optically denser than the upper one (i.e., k2 >
k1) plays the key role and results in the appearance of
qualitatively new solutions as compared to the traditional
diffraction case. As long as k2x ≤ k1 the condition β = 0 can be
met for θ ≈ Θ and ϕ ≈ Φ; that is, the direction of the main
lobe is close to that of the incidence resulting in strong
“forward” scattering. Moreover, for the range of parameters
chosen, k1d < π, and therefore the scattering pattern is always
characterized by a single strong lobe.
On the other hand, for k2x > k1, forward scattering is

forbidden because it would require a wave vector larger than
the one allowed in the upper medium. In this qualitatively new
situation, the constructive interference occurs for the outgoing
wave vectors which differ from the incoming ones by a vector of
the reciprocal lattice. In particular, the condition β = −2π can
be met when k1x and k2x have opposite signs. The latter is the
“backward” scattering observed in Figure 4.
Because the switching effect is determined by the underlying

momentum translation condition, which is a consequence of
the symmetry of the system, it is expected to also hold for
different excitation wavelengths and geometrical parameters, for
example, for arrays deposited closer to the interface.
Figure 7 demonstrates that the antenna radiation patterns

can be controlled also by the polarization of the incident light,
which is a parameter that can easily be changed in an
experiment. In Figure 7, the polar angle of incidence Θ is only
slightly larger than the angle of total reflection while the
azimuthal angle Φ = π/2 implies incidence normal to the chain
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axis. Under these conditions, the main lobe of the pattern is
determined by the equation β = 0, having the obvious solution
ϕ = π/2. The θ-dependence of the patterns in this case is
dictated by the excitation polarization. For the s-polarized
excitation, all dipoles are oriented along the chain, that is along
ϕ = 0, and the radiation is efficient within a continuous broad
range of polar angles θ (see the dashed red line in the lower
panel of Figure 7). Contrary to that, when the excitation is p-
polarized, all dipoles are almost perpendicular to the chain axis
and to the interface plane, that is along θ = 0. According to eq
9, a dipole does not radiate in its own direction, which explains
the appearance of a pronounced dip around θ = 0 in the
radiation pattern (see the blue solid line in the lower panel of
Figure 7).
Summary. We addressed radiation patterns of a plasmonic

antenna comprising a regular linear chain of identical metal
nanospheres in close proximity to an interface between two
media with high dielectric contrast. When such a system is
illuminated from the higher refractive index side of the interface
it can be excited by evanescent waves. In this case the excitation
does not mask the useful antenna signal, which is advantageous
for measurements and applications. We showed that the
radiation pattern and its directivity can be controlled by
changing the incidence angles and/or polarization of the
excitation. In particular, for some excitation geometries, the
antenna pattern is characterized by a very narrow main lobe
whose direction can be changed abruptly by a relatively small
change of incidence angles.
We have calculated the antenna radiation patterns using the

traditional, much more numerically elaborated and accurate,
Sommerfeld integrals approach, and a much simpler one, based
on the image dipole and the stationary phase approximations.
We have shown that, despite the complexity of the system, our
analytical expression for the radiation patterns gives an
excellent description of the main features of the antenna
response. These simple formulas can become a useful tool for
solving the inverse problem: engineering a system that has a
desired radiation pattern. For example, analyzing the formulas it
is possible to figure out the system and excitation geometries
giving rise to a particular direction and directionality of the
main lobe.
An antenna comprising identical nanoparticles operates

within a relatively narrow bandwidth; however, the spectral
range can be broadened by using graded plasmonic arrays.14,15

We note that, although we considered the theoretically simplest
case of the chain of nanospheres, our results are expected to be
valid for arrays of particles with more complex shapes, such as
discs, which can be easier to fabricate. Real-life structures always
have fabrication imperfections. It is quite clear that a disorder
would lead to some smearing of the features of the far-field
pattern. However, the plasmon resonances of metal nano-
particles are broad and a relatively small change of the particle
sizes would not affect their polarizability (hence, the induced
dipoles) to a large extent. The same can be said about the
interaction: being a long-range one it is not very sensitive to
small deviations of particle positions. A more detailed
quantitative study of disorder effects goes beyond the scope
of this Letter.
Similar ideas and approaches can be applied to more

complicated nanostructures, such as 2D arrays or metamate-
rials.35 The dielectric interface would still play its key role,
contributing two important aspects: the dielectric contrast is an
additional degree of freedom allowing to control radiation

patterns of the nanoscopic sources of light, while excitation by
evanescent waves results in the conversion of a macroscopic
plane wave into a narrow beam of light with adjustable
characteristics and direction. Apart from being an interesting
fundamental phenomenon, this opens new possibilities in
optical nanodevices design and new opportunities to control
the flow of electromagnetic energy at the nanometer scale, in
particular, for precisely addressing and exciting nanoscopic
objects such as nanostructures, quantum dots, single molecules,
and so forth.
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■ NOTE ADDED AFTER ASAP PUBLICATION
This Letter was published ASAP on February 1, 2013. Equation
10 has been modified. The correct version was published on
February 4, 2013.
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