
Physics Letters A 379 (2015) 2102–2105
Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla
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We study electronic transport in systems comprising square graphene nanorings with a ferromagnetic 
insulator layer on top of them. The rings are connected symmetrically or asymmetrically to contacts. 
The proximity exchange interaction of electrons with magnetic ions results in spin-dependent transport 
properties. When a nanoring is connected asymmetrically, the occurrence of Fano-like antiresonances in 
the transmission coefficient can induce abrupt changes in the spin polarisation under minute variations 
of the Fermi energy. We also demonstrate that the spin polarisation can be efficiently controlled by a 
side-gate voltage. This opens a possibility to use these effects for fabricating tunable sources of polarised 
electrons.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The first direct observation and systematic study of Aharonov–
Bohm conductance oscillations through a graphene ring [1] paved 
the way for exploiting quantum interference effects to design novel 
nanodevices. In this context, Wu et al. have demonstrated theoret-
ically that rectangular graphene nanorings pierced by a magnetic 
field behave like a resonant tunnelling device [2]. Recently, we 
proposed a novel quantum interferometer based on a hexagonal 
graphene nanoring [3]. Electron transport in such a device can be 
controlled by a side gate voltage applied across the nanoring. Its 
operation does not require a magnetic field and thus it can be 
more suitable for applications. We also argued that these systems 
could be used as spintronic devices if a layer of ferromagnetic in-
sulator, such as EuO, is deposited on top of the ring [4]. Due to the 
proximity exchange interaction between Eu2+ ions and graphene 
electrons [5,6] the ring can operate as a spin filter.

In this work we address the spin filtering properties of hybrid 
systems comprising ferromagnets and square graphene nanorings. 
In contrast to the previously studied hexagonal nanoring, the type 
of edge (armchair or zig-zag) of the square nanoring changes at 
each corner and, more importantly, the connection between the 
ring and the leads can be symmetric or asymmetric. One of the 
aims of the work is to compare the transmission properties of both 
configurations and assess their impact on the performance of the 
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device. Finally, we study the effect of a side-gate voltage applied 
across the ring and show how the transmission polarisation can 
be efficiently controlled by varying this voltage.

2. Model and formalism

The square graphene ring is connected symmetrically or asym-
metrically to two leads by graphene nanoribbons (GNRs), as shown 
in Fig. 1. A ferromagnetic layer grown on top of the graphene 
ring induces spin sublevels splitting due to the proximity exchange 
interaction [5]. Hereafter we assume the ferromagnet to be EuO 
because control of spin polarisation was demonstrated experimen-
tally for devices based on this material [6]. The two lateral elec-
trodes allow us to apply a side-gate voltage across the ring.

The width of all GNRs is w and the size of the inner hole is 
a × a. For definiteness, in this work we consider the case w = a. 
The ring is connected to the leads by two armchair GNRs. When 
the number of hexagons across the GNRs is N �= 3n − 1 (n being 
a positive integer), the GNR band structure has a width-dependent 
gap and the dispersion relation near the gap is quadratic. Hereafter 
we will consider only such GNRs because they are believed to be 
more advantageous for applications [3].

To model the devices we use the following tight-binding Hamil-
tonian within the nearest-neighbour approximation

H = σ �ex

∑
i∈L

|i〉〈i| − J
∑
〈i, j〉

|i〉〈 j| , (1)

where |i〉 is the π -orbital of the i-th carbon atom and the nearest 
neighbour coupling is J = 2.8 eV. The ferromagnetic layer affects 

http://dx.doi.org/10.1016/j.physleta.2015.06.027
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:adame@fis.ucm.es
http://dx.doi.org/10.1016/j.physleta.2015.06.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2015.06.027&domain=pdf


M. Saiz-Bretín et al. / Physics Letters A 379 (2015) 2102–2105 2103
Fig. 1. (a) Schematic view of the graphene nanoring with a ferromagnetic layer on 
top of it (green area). A side-gate voltage can be applied across the ring. The con-
nection between the ring and the GNRs can be (b) asymmetric or (c) symmetric. 
(d) Schematics of a simple qualitatively equivalent tight-binding lattice model of 
the ring. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

the site energies of the set L of carbon atoms which are in contact 
with it, shifting the energies by the amount σ�ex, where �ex is 
the exchange splitting energy and σ = +1 (σ = −1) for spin up 
(spin down) states. Throughout the paper we take �ex = 5 meV, 
which is of the order of the values known from the literature for 
hybrid systems based on graphene and EuO [5,7,8].

The quantum transmission boundary method [9,10] combined 
with the effective transfer matrix approach [11] were used to 
calculate wave functions and spin-dependent transmission coef-
ficients T± for spin up (+) and spin down (−) electrons (see 
Refs. [3] and [4] for further details). We define the degree of trans-
mission polarisation as

P = T+ − T−
T+ + T−

(2)

and it will be the figure of merit to assess the spin filtering prop-
erties of the device.

3. Non-ferromagnetic rings

First, we compare the transmission properties of symmetric and 
asymmetric nanorings with semiconducting graphene contacts in 
the absence of proximity exchange interaction (�ex = 0) and with 
zero side-gate voltage (V G = 0). Throughout the paper we focus on 
the energy region with only one propagating mode in the GNRs, 
then interference-related effects are not smoothed out due to the 
superposition of several modes. We have numerically found that 
the transmission patterns can be grouped into two categories, de-
pending on the value of N . If N = 3n − 2 the transmission coeffi-
cient presents resonant peaks whose shape is Lorentzian close to 
the resonance energy. A typical example is shown in Fig. 2(a) cor-
responding to w = 10.6 nm (N = 43) for both symmetric (dashed 
line) and asymmetric (solid line) nanorings. When N = 3n the 
transmission coefficient strongly depends on the symmetry of the 
nanoring. As shown in Fig. 2(b) for w = 11.1 nm (N = 45), the 
transmission coefficient for symmetrically connected nanorings is 
rather smooth and increases uniformly in the one-mode energy 
windows (see dashed line). On the contrary, if the ring is con-
nected asymmetrically, the transmission coefficient presents Fano-
like antiresonances (see solid line).
Fig. 2. Upper panels show the transmission coefficients in the absence of ferromag-
netic layer (�ex = 0) for two different values of the GNR width (given in the plot). 
The transmission polarisation when �ex = 5 meV is shown in the middle panels. 
Solid and dashed lines correspond to asymmetric and symmetric nanorings, respec-
tively. Lower panels show the density plots of the square modulus of the envelope 
wavefunction corresponding to the four energies marked by circles in the upper 
panels.

In order to understand the origin of the transmission features, 
in Fig. 2(e) we plot the square modulus of the envelope wave 
function for the four energies marked by circles and labelled by 
numbers in the upper panels of Fig. 2, all of them corresponding 
to asymmetric rings. When w = 10.6 nm (N = 43) the electron 
is strongly backscattered if the energy is far from a resonance 
(T � 1) and the corresponding wave function remains in the left 
contact (state labelled 1). In the case labelled 2 the transmission 
is large (T ≈ 1) and the wave function piles up inside the whole 
nanoring as it happens at resonant transmission. Similar patterns 
are found for nanorings connected symmetrically. Contrary to that, 
when w = 11.1 nm (N = 45) the transmission spectrum has Fano-
like features: both resonances with T ≈ 1 (state 3) and antireso-
nances with T = 0. State labelled 4 represents the latter case: the 
lower part of the nanoring acts here as a discrete level system at 
the background continuum of GNR states. At the antiresonance the 
wave function localises at the lower arm and is almost zero in the 
upper arm, which is the typical wave function pattern for Fano an-
tiresonances.

4. Simplified model

Numerical results can be qualitatively explained by a much sim-
pler tight-binding nearest-neighbour lattice model in which the 
nanoring is represented by a four-site ring connected to semi-
infinite chains [see Fig. 1(d) for the schematics]. Upper and lower 
ring sites, labelled 0± , have energies ε± while all other site en-
ergies are zero. Adjacent ring sites are coupled with hopping in-
tegrals − J± while the rest of hopping integrals are equal; their 
value is used as the energy unit.
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The transmission coefficient in this simplified model is

T (E) = 4 − E2

4 − E2 + F 2(E)
,

F (E) =
(

J 2+
E − ε+

+ J 2−
E − ε−

)−1

− E . (3)

Let us first consider a symmetric ring for which ε+ = ε− ≡ ε, 
J+ = J− ≡ J and F (E) = E(1/2 J 2 −1) −ε/2 J 2. When 2 J 2 �= 1, the 
real part of the transmission amplitude vanishes at the resonance 
energy Er = ε/(1 − 2 J 2). In this case, the transmission coefficient 
shows a Lorentzian profile close to the resonance energy given by

T (E) = �2

�2 + (E − Er)2
, �2 = 1 − E2

r /4

( J 2/2 − 1)2
. (4)

This profile is consistent with the numerical profiles found in sym-
metric nanorings with N = 3n − 2 and shown in Fig. 2(a). Notice 
that the simplified model shows no resonances when Er lies out-
side the band of the contact, which is in qualitative agreement 
with the smooth behaviour of the transmission coefficient of sym-
metric nanorings with N = 3n shown in Fig. 2(b).

Next, we consider an asymmetric ring where ε+ and ε− are 
different. The most salient feature in this case is the vanishing of 
the transmission at the antiresonance energy

Ea = ε− J 2+ + ε+ J 2−
J 2+ + J 2−

. (5)

This result qualitatively reproduces the dips observed in Fig. 2(b) 
(see, e.g., antiresonance labelled 4). In addition, when Ea lies out-
side the band of the semi-infinite chains there are no antireso-
nances in the transmission coefficient. This prediction also agrees 
well with the results corresponding to N = 3n − 2, shown in 
Fig. 2(a).

5. Ferromagnetic rings

When a EuO layer is deposited on top of the nanoring, the 
interaction with the ferromagnet shifts the transmission curves to-
wards upper/lower energies for spin up/down electrons. Except for 
the energy shift, the transmission patterns remain qualitatively the 
same and are not shown here, while the transmission polarisations 
P are presented in the middle panels of Fig. 2. For symmetrically 
connected nanorings, P changes sign smoothly over a wide en-
ergy region. Consequently, transmission polarisation remains rather 
insensitive to changes of the Fermi energy. On the contrary, the 
polarisation for asymmetrically connected nanorings changes more 
abruptly, especially when the transmission coefficient shows Fano-
like antiresonances, as is the case of N = 3n. Therefore, asymmetric 
rings seem to be more promising from the point of view of device 
applications since minute variations of the Fermi energy can lead 
to large changes in the spin polarisation.

However, both configurations (symmetric and asymmetric) 
show a similar behaviour when a side-gate voltage V G is ap-
plied across the ring. Therefore, we will only consider one of the 
rings hereafter, namely the asymmetric ring with w = 10.6 nm
(N = 43). As shown in Fig. 3(a), new sharp features can be in-
duced in the transmission coefficient by the side-gate, as the ones 
found around E = 95–100 meV. These strong asymmetries result in 
a more abrupt change of the polarisation when varying the Fermi 
energy [see Fig. 3(b)]. In addition, the side-gate plays another im-
portant role as it allows for a precise control of the transmission 
polarisation through the device. Fig. 4(a) shows the polarisation 
map as a function of the carrier energy E and the side-gate volt-
age V G . As the figure suggests, the sign of the polarisation can be 
Fig. 3. Upper panel shows the transmission coefficient in the absence of ferromag-
netic layer (�ex = 0) for an asymmetric ring with w = 10.6 nm. The transmission 
polarisation when �ex = 5 meV is shown in the lower panel. Solid and dashed lines 
correspond to an applied side-gate of V G = 65 mV and V G = 0, respectively.

Fig. 4. (a) Transmission polarisation as a function of the carrier energy E and the 
side-gate voltage V G . (b) Average transmission polarisation 〈P 〉 as a function of V G

calculated for E1 = 103.9 meV and E2 = 108.4 meV (see Eq. (6) and the text).

changed by the side gate. We define the average polarisation as 
follows

〈P 〉 = 〈T+〉 − 〈T−〉
〈T+〉 + 〈T−〉 , 〈T±〉 = 1

E2 − E1

E2∫
E1

T±(E)dE . (6)

Note that 〈P 〉 gives the average electric current polarisation at zero 
temperature when Fermi levels of the two contacts are set to E1
and E2. The average polarisation 〈P 〉 is plotted as a function of 
V G in Fig. 4(b) for E1 = 103.9 meV and E2 = 108.4 meV. The fig-
ure shows that in the vicinity of the gate voltage V G ≈ 70 mV
the polarisation undergoes an abrupt change from 〈P 〉 ≈ 0.9 to 
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〈P 〉 ≈ −0.8, suggesting the possibility of controlling the electric 
current polarisation by the side gate voltage.

6. Conclusions

In summary, we have proposed and studied a novel spin fil-
ter system which exploits quantum interference effects. The device 
comprises a square graphene nanoring, connected symmetrically or 
asymmetrically to the leads, and a ferromagnetic layer (e.g. of EuO) 
grown on top of the ring. The proximity induced exchange inter-
action between the ferromagnetic ions and the graphene electrons 
result in a spin-dependent transmission coefficient and, as a con-
sequence, a spin-dependent conductance and electric current. We 
showed that the polarisation of the transmission changes abruptly 
when the Fermi energy is varied in the vicinity of Fano-like an-
tiresonances which occur in asymmetrically connected nanorings. 
We put forward and analysed a simplified quasi-one-dimensional 
model of the nanoring and explained qualitatively different typi-
cal transmission features found in both symmetrically and asym-
metrically connected nanorings. We also demonstrated that the 
side-gate voltage can be used to control the transmission polari-
sation in an efficient way in all the studied cases (independently 
of the width of the GNRs or the symmetry of the system geom-
etry). The side-gate voltage induces Fano-like antiresonances in 
rings with both types of connections and leads to more abrupt po-
larisation variations in a controllable way. It should be mentioned 
that Fano-like antiresonances can also be induced by a magnetic 
flux [12] but spin control by electric means is more suitable for 
nanoelectronic applications. Therefore, we conclude that the pre-
dicted effects open a possibility to design novel tunable sources of 
polarised electrons.
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